Exercises October 30

STA 4508S (Fall, 2018)

- 1. Suppose that Y_i are independent exponential random variables with $E(Y_i) = \psi \lambda_i$, and Z_i are independent exponential random variables with $E(Z_i) = \psi / \lambda_i$, i = 1, ..., n.
 - (a) Show that ψ is orthogonal to $\lambda = (\lambda_1, \ldots, \lambda_n)$, with respect to expected Fisher information.
 - (b) Find the maximum likelihood estimates of λ and ψ .
 - (c) Show that $\hat{\psi}$ is not consistent for ψ as $n \to \infty$.
 - (d) Derive the adjusted profile log-likelihood for ψ :

$$\ell_{\mathbf{a}}(\psi) = \ell_{\mathbf{p}}(\psi) - \frac{1}{2} \log |j_{\lambda\lambda}(\psi, \hat{\lambda}_{\psi})|,$$

and find the probability limit of the adjusted maximum likelihood estimator $\hat{\psi}_{a}$ obtained by maximizing $\ell_{a}(\psi)$.

2. (Knight, 2000 Ch. 5.6; Owen, 1988). Suppose Y_1, \ldots, Y_n are independent and identically distributed from an unknown distribution function F. To estimate F we restrict attention to distributions putting positive probability mass only at the points Y_1, \ldots, Y_n , assumed distinct. Knight defines the non-parametric log-likelihood function for $F(\cdot)$ as

$$L(p_1,...,p_n) = \sum_{i=1}^n \log(p_i), \quad p_i \ge 0, \Sigma p_i = 1,$$

where p_i is the probability mass at Y_i .

- (a) Show that L(p) (or equivalently $\ell(p) = \log L(p)$) is maximized at $\hat{p}_i = 1/n$.
- (b) Suppose that $\mu = E(Y_i) = \int y dF(y)$ is the parameter of interest, with $F(\cdot)$ as a nuisance parameter. The profile likelihood is obtained by maximizing

$$L(p_1,\ldots,p_n)$$
, subject to $p_i \ge 0, \Sigma p_i = 1, \Sigma p_i Y_i = \mu$,

where there is now an additional constraint on the vector p. Show that the solution to the maximization problem is given by

$$\hat{p}_i(\mu) = \frac{1}{n} \frac{1}{1 + \lambda(Y_i - \mu)}, \text{ where } \lambda \text{ solves}$$
$$0 = \frac{1}{n} \sum_{i=1}^n \frac{Y_i - \mu}{1 + \lambda(Y_i - \mu)}.$$