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next, yields exact prices – up to rounding errors – to European-style op-
tions and extends to barrier, American-style and Bermudan options. Our
model of lines yields exact solutions to the VG model for path-depen-
dent options with payout contingent on information on the lines only,
such as discretely monitored barrier and Bermudan options and special
values of one of the VG parameters. American-style options are priced
only approximately as the exercise boundary is piecewise constant in this
scheme. The case of a general VG model is within reach of Richardson
extrapolation methods.

In the following, we review the financial interpretation of the method
of lines in terms of randomised maturity options as developed by Carr
(1998), introduce the proposed model of lines that is appropriate for VG
models, discuss barrier and Bermudan options, and elaborate on extrap-
olation methods. We refer the reader to Albanese, Jaimungal & Rubisov
(2000) for a more thorough discussion of implementation details.

Jumps and the method of lines
The method of lines is an approximation scheme for solving quite gener-
al partial differential equations (PDEs). In contrast to lattice pricing mod-
els, only the time variable is discretised, while stock prices are continuous.
This partial discretisation leads to a chain of ordinary differential equations
(ODEs) along the lines to be solved backwards from maturity. The method
of lines has been found to be an efficient numerical scheme for solving
free boundary value problems, such as the pricing of American-style op-
tion contracts (Meyer & Van der Hoek, 1997). A semi-explicit solution to
the sequence of ODEs arising from the method of lines version of the
Black-Scholes PDE was given in Carr & Faguet (1994). Carr (1998) gives
an intriguing financial interpretation of the method of lines that established
a connection with random maturity contracts and has motivated us to ex-
tend the method to jump processes.

The price P(n)(S, K) of a European-style option maturing in n∆t units
of time is given by:

(1)

subject to the appropriate terminal and boundary conditions. For exam-
ple, the conditions for a put option are as follows:

(2)

As usual (a)+ is equal to a if a > 0 and zero otherwise. Carr (1998) no-
tices that the resulting prices can be interpreted as prices of claims of ran-
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T
he Black-Scholes model (1973) has played a pivotal role
in the development of option pricing theory. Much ef-
fort has been directed at extending this basic model to
achieve closer agreement with market prices. However,
no single model has won similar widespread recogni-
tion. The proliferation of pricing models is due not only

to the search for numerical efficiency but also to the fundamental issue
that has to be addressed when discriminating between different models.
If two models agree on all prices of European-style claims at all maturi-
ties, they are not necessarily equivalent – they may forecast qualitatively
different dynamics of option prices (Carr & Madan, 2000), produce dif-
ferent hedge ratios, show discrepancies in the prices of path-dependent
options and disagree on what is the optimal exercise policy for Ameri-
can-style options.

Derman & Kani (1994, 1998) and Derman, Kani & Chriss (1996) have
proposed explaining the observed deviations by postulating that the stock
price process is a diffusion with continuous paths while the volatility de-
pends on the stock price and calendar time. An alternative is to use sto-
chastic volatility models that are in good agreement with historical time
series, such as the Garch model studied by Duan (1996). But these mod-
els fail to capture the steepening tendency of the volatility smiles for short-
dated options, which is better explained by jump processes for the stock
price process. A jump model with an elegant economic justification is based
on the variance-gamma (VG) process, introduced by Madan, Carr & Chang
(1998, see also Carr et al, 2000). Conceivably, a second generation pricing
framework will eventually emerge that combines the salient features of all
these approaches.

In this article, we focus on the VG jump model and describe a sim-
ple numerical technique that can be regarded as a replacement of the bi-
nomial lattice approximations to accommodate jumps. The closed-form
solution for European-style options derived in Meyer & Van der Hoek
(1997) allows one to calibrate the VG model easily. However, the pric-
ing problem for exotic path-dependent options has not been solved in
analytic closed form. Methods such as Monte Carlo simulations or the so-
lution of integro-differential equations can be used but their implemen-
tation presents challenges. The method we propose exploits a
fundamental connection between the approximation scheme known as
the “method of lines” and jump processes, from where we derive the
name we propose, “model of lines”. The method of lines was first intro-
duced in the financial literature by Carr (1998) as an approximation
methodology for pricing American-style options. Within the method of
lines, time derivatives are replaced by finite differences, while deriva-
tives with respect to stock price are kept intact. Consequently, the pric-
ing equation is reduced to an inhomogeneous ordinary
differential-difference equation. In most cases, the resulting equation can
be solved analytically. Otherwise, numerical integration methods can be
used. We demonstrate that a modified version of the method of lines,
which incorporates a scaling of the stock price from one time step to the
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dom maturity τ (see figure 1) following the Erlang distributed with densi-
ty function:

(3)

In the limit ∆t → 0 the above density reduces to a delta function. The ex-
piry of the option is then certain to occur at time T = n∆t and the price
converges to the Black-Scholes limit. Notice that (3) can be viewed as the
density for a gamma process evaluated at time n∆t with variance rate ν =
∆t and mean rate 1.

Instead of considering random maturity claims, we can equivalently
consider claims of fixed maturity, whereby the underlying asset is subject
to stochastic time changes. Stochastic time changes are related to jump
processes, and since the Erlang distribution is a particular case of the gamma
distribution, the underlying jump process is the VG process. This defines
what we call the model of lines.

To make the connection with the VG model more precise, one has to
ensure that stock prices drift at the risk-neutral rate. The stock price, in the
risk-neutral measure, following a VG process, is given by:

(4)

Here, X(τ; θ, σ) denotes a Brownian process evaluated at time τ with drift
θ and volatility σ; Γ(τ, ν) is a gamma process evaluated at time τ with vari-
ance rate ν (and mean rate 1); and ω is chosen so that the discounted stock
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price is a martingale (see, for instance, Madan, Carr & Chang, 1998), ie,
risk-neutrality is satisfied:

(5)

Notice that, conditional on the gamma time, the stock price follows a
lognormal process. Consequently, each unit of calendar time supports
Γ(t, ν) units of “financial time” (see figure 2). Furthermore, in financial
time, ln(St /S0) is a Brownian process with drift θ and volatility σ2. As a
result, the price of a European-style contingent claim, maturing at time
∆t with payout h(St + ∆t), conditional on financial time is:

(6)

where PBS(S, g, r, σ) denotes the Black-Scholes price of the plain vanilla
option maturing at time g. It is straightforward to show that the conditional
price satisfies the following variation of the Black-Scholes equation:

(7)

with boundary condition:

(8)

and the operator DS is defined as follows:

(9)

The unconditioned price of the European-style claim is obtained by ap-
plying the gamma density:

(10)

to the conditional price, performing the integration over all financial times
and discounting the result:

(11)

Now consider the special case ν = ∆t. In this case, the Γ distribution
reduces to the Poisson exponential distribution, and the unconditioned
price reduces to:

(12)( ) ( )
g / t

r t
t t0

e
P S e dg p S ,g

t

− ∆∞− ∆=
∆∫

( ) ( )( ) ( )r t
t tt,0

P S e dg f g p S ,g
∞− ∆

Γ ∆ ν= ∫

( )( ) ( )
t

t

1 g /

t, t

g e
f g

∆
ν

∆
ν

− − ν

Γ ∆ ν ∆
ν

=
Γ ν

2 2 2
S SS S

1 1
D S d Sd

2 2
 ≡ σ + θ + σ  

( ) ( )t
t t

g 0
lim p S ,g h e Sω ∆
→

=

( ) ( )g S tD p S ,g 0−∂ + =

( ) ( )
( )21

2

t t t

g t 2
BS t

p S ,g h S g

1
e P e S ,g, ,

2

+∆

θ+ σ ω ∆

 =  
  = θ + σ σ    

E

[ ] ( )0
0

t t r
t t

2

S e S

1 1
r ln 1

2

−= ⇒

  ω = + − θ + σ ν   ν  

E

t T

S

... ...

The standard method of lines yields exact prices for an option that
matures at a random time that is distributed according to an Erlang
distribution

1. Standard method of lines
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The graph shows several gamma process sample paths that describe
financial time. Notice that these paths are different from typical 
diffusion process paths. Also, as ν tends towards zero, the path 
becomes more deterministic

2. Gamma process sample paths that
describe financial time
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3. Pictorical representation of the
model of lines
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obtain the exotic price on the previous line and so on. The algorithm al-
lows for efficient implementations, whereby errors are independent of the
spacing between lines and are only due to the ODE integration.

There are several important features of the model of lines that should
be elaborated on. First, since trading occurs in calendar time, not in fi-
nancial gamma time, the underlying stock in financial time does not need
to satisfy a martingale condition resulting from arbitrage considerations.
Hence, it is not surprising that the drift θ that appears in (9) is not the
risk-free rate r. Second, in the operator DS, there is no constant term, ie,
the term –rP in the usual Black-Scholes equation is missing. On reflec-

Applying the integral kernel appearing in the right-hand side of (12) to the
equation in (7), one finds that:

(13)

The limit can be calculated by using the boundary condition in (8) to
obtain:

(14)

This procedure can then be applied recursively to obtain the price of any
payout that matures in multiples of ∆t, and is given succinctly by the fol-
lowing differential-difference equations:

(15)

(16)

This system of ODEs is shown in figure 3.
Within the model of lines, information between time steps is unavail-

able. Consequently, any option that is contingent on that information, such
as an American-style option, cannot be priced exactly using this method-
ology. However, Bermudan options, which can be exercised at times n∆t,
can be priced exactly as described below.

Let P~(St) denote the price of the plain-vanilla option given by equa-
tion (14). The price of the exotic, P(St), at the current time step, with re-
bate R(St) and lower exercise level SE.B., will then be:

(17)

A down-and-out barrier is obtained by taking SE.B. = H as the lower
barrier, and the rebate R(St) = R. A Bermudan put can be priced by choos-
ing SE.B. such that P~(SE.B.) = K – SE.B. and rebate R(St) = (K – St)+, and
enforcing a smooth pasting condition. The interested reader is referred to
Albanese, Jaimungal & Rubisov (2000) for the details. Generalisations to
double barriers and other exotics are fairly straightforward. According to
the standard dynamic programming procedure, once the price of the ex-
otic is obtained on the current line, that price is treated as the payout to
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5. Extrapolation of the implied volatility
of one-month European options for a
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6. Boundary of a Bermudan option that
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tion, it is clear that such a term must be absent because the discounting
occurs in real time and not financial time. Third, once the price on one
line is known, the price on the previous line is determined from an op-
tion with a scaled spot and discounted price. The discounting of the price
is natural, and can be thought of as the spot price of the next line. The
scaling of the spot itself can be understood from the fact that although
the drift of the stock in financial time is not equal to the risk-free rate, risk
neutrality must still be enforced. Consequently, across each line additional
drifting must be imposed.

Volatility smiles for a VG process with σ = 15%, θ = –20% and ∆t =
1 week are plotted in figure 4. We have calculated the relative error be-
tween the implied volatilities obtained using the exact prices in Madan, Carr
& Chang (1998) and those obtained using the model of lines. The largest
relative error for the smiles in figure 4 was found to be ~ 10–3% while the
average relative error over the smiles was found to be ~ 10–5%. There was
little difference in computation time between the two pricing schemes.

Extrapolation techniques
Although the time step dictates the ν parameter in the VG model, it is pos-
sible to use the model of lines to obtain approximate prices to VG mod-
els in which ν is different from ∆t. Just as Carr (1998) demonstrated that
Richardson extrapolation to ν = 0 reproduced the Black-Scholes value
when applying the method of lines, we propose to use an extrapolation
scheme to obtain the prices of options for ν ≠ ∆t. In figure 5, we have
plotted the exact implied volatilities for one-month European-style options
with various strike levels as a function of ν. Quadratic polynomials in ln ν
were used to fit the first three points at ν = ∆t = 1, 2 and 4 weeks, and
extrapolate to the fourth point at ν = 8 weeks. The fitting curves also plot-
ted in figure 5 demonstrate a reliable prediction. The absolute error in pre-
dicting the implied volatility at-the-money was found to be negligible. The
worst case turned out to be that of the out-of-the-money put struck at 80%
of the spot, for which the absolute error in implied volatility is 0.09%. Our
conclusion is that extrapolation allows for the pricing of any VG model
using the model of lines, but the prices thus obtained are approximate.

Just as in the case of plain-vanilla options, it is possible to use extrap-
olation to obtain the prices when ν ≠ ∆t in the exotic case. In figure 6, the
boundary of a Bermudan option that can be exercised every eight weeks
is plotted as a function of ν = ∆t = 1, 2, 4 and 8 weeks. The black dots
in figure 6 form the predicted eight-week boundary obtained by extrapo-
lation from the first three points. The extrapolation is based on a fit to a
quadratic polynomial of ln ν to the first three boundaries. The errors ob-
tained by this extrapolation method are minimal, with a maximum absolute
error of $0.18 for the longest maturity option. The at-the-money prices fit-
ted to a linear function of ν are displayed in figure 7. The errors are once
again negligible, with the longest maturity option being underpriced by
$0.02.

Conclusion
We propose a generalisation of the method of lines, which produces exact
prices for the VG process. The method admits a suggestive financial in-
terpretation, applies to a large, although not exhaustive, family of VG mod-
els and is able to reproduce a large variety of implied volatility shapes. For
this class of VG models, we are able to price exactly in terms of the solu-
tions to ODEs, and any payout is contingent only on price levels at the
lines, including Bermudan and barrier options. General VG models are
within reach of extrapolation methods. The numerical method is efficient
and simple to implement. ■
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