Logistic Regression

STA302 F 2014

See last slide for copyright information

Binary outcomes are common and important

- The patient survives the operation, or does not.
- The accused is convicted, or is not.
- The customer makes a purchase, or does not.
- The marriage lasts at least five years, or does not.
- The student graduates, or does not.

Logistic Regression

Dependent variable is binary (Bernoulli): $1=$ Yes, 0=No

$$
\operatorname{Pr}\{Y=1 \mid \mathbf{X}=\mathbf{x}\}=E(Y \mid \mathbf{X}=\mathbf{x})=\pi
$$

Least Squares vs. Logistic Regression

Least Squares Line

Logistic Regression Curve

The logistic regression curve arises from an indirect representation of the probability of $Y=1$ for a given set of x values.

Representing the probability of an event by π

$$
\text { Odds }=\frac{\pi}{1-\pi}
$$

Odds $=\frac{\pi}{1-\pi}$

- If $\mathrm{P}(\mathrm{Y}=1)=1 / 2$, odds $=.5 /(1-.5)=1$ (to 1)
- If $P(Y=1)=2 / 3$, odds $=2$ (to 1)
- If $\mathrm{P}(\mathrm{Y}=1)=3 / 5$, odds $=(3 / 5) /(2 / 5)=1.5$ (to 1)
- If $\mathrm{P}(\mathrm{Y}=1)=1 / 5$, odds $=.25$ (to 1)

The higher the probability, the greater the odds

$$
\text { Odds }=\frac{\pi}{1-\pi}
$$

$0 \leq$ Odds $<\infty$

Linear regression model for the log odds of the event $\mathrm{Y}=1$ for $i=1, \ldots, n$

$$
\log \left(\frac{\pi}{1-\pi}\right)=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p-1} x_{p-1}
$$

Note π is a conditional probability.

Equivalent Statements

$$
\log \left(\frac{\pi}{1-\pi}\right)=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p-1} x_{p-1}
$$

$$
\begin{gathered}
\frac{\pi}{1-\pi}=e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p-1} x_{p-1}} \\
=e^{\beta_{0}} e^{\beta_{1} x_{1}} \cdots e^{\beta_{p-1} x_{p-1}} \\
\pi=\frac{e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p-1} x_{p-1}}}{1+e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p-1} x_{p-1}}}
\end{gathered}
$$

$$
E(Y \mid \mathbf{x})=\pi=\frac{e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p-1} x_{p-1}}}{1+e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p-1} x_{p-1}}}
$$

- A distinctly non-linear function
- Non-linear in the betas
- So logistic regression is an example of non-linear regression.

In terms of log odds, logistic regression is like regular regression

$$
\log \left(\frac{\pi}{1-\pi}\right)=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p-1} x_{p-1}
$$

In terms of plain odds,

- (Exponential function of) the logistic regression coefficients are odds ratios
- For example, "Among 50 year old men, the odds of being dead before age 60 are three times as great for smokers."

Odds of death given smoker
Odds of death given nonsmoker

Logistic regression

- $X=1$ means smoker, $X=0$ means nonsmoker
- $Y=1$ means dead, $Y=0$ means alive
- \log odds of death $=\beta_{0}+\beta_{1} x$
- Odds of death $=e^{\beta_{0}} e^{\beta_{1} x}$

Odds of Death $=e^{\beta_{0}} e^{\beta_{1} x}$

Group	x	Odds of Death
Smokers	1	$e^{\beta_{0}} e^{\beta_{1}}$
Non-smokers	0	$e^{\beta_{0}}$

$\frac{\text { Odds of death given smoker }}{\text { Odds of death given nonsmoker }}=\frac{e^{\beta_{0}} e^{\beta_{1}}}{e^{\beta_{0}}}=e^{\beta_{1}}$

Cancer Therapy Example

$$
\text { Log Survival Odds }=\beta_{0}+\beta_{1} d_{1}+\beta_{2} d_{2}+\beta_{3} x
$$

Treatment	d_{1}	d_{2}	Odds of Survival $=e^{\beta_{0}} e^{\beta_{1} d_{1}} e^{\beta_{2} d_{2}} e^{\beta_{3} x}$
Chemotherapy	1	0	$e^{\beta_{0}} e^{\beta_{1}} e^{\beta_{3} x}$
Radiation	0	1	$e^{\beta_{0}} e^{\beta_{2}} e^{\beta_{3} x}$
Both	0	0	$e^{\beta_{0}} e^{\beta_{3} x}$

x is severity of disease

For any given disease severity x ,

$\frac{\text { Survival odds with Chemo }}{\text { Survival odds with Both }}=\frac{e^{\beta_{0}} e^{\beta_{1}} e^{\beta_{3} x}}{e^{\beta_{0}} e^{\beta_{3} x}}=e^{\beta_{1}}$

In general,

- When x_{k} is increased by one unit and all other independent variables are held constant, the odds of $Y=1$ are multiplied by $e^{\beta_{k}}$
- That is, $e^{\boldsymbol{\beta}_{k}}$ is an odds ratio --- the ratio of the odds of $Y=1$ when x_{k} is increased by one unit, to the odds of $\mathrm{Y}=1$ when everything is left alone.
- As in ordinary regression, we speak of "controlling" for the other variables.

The conditional probability of $\mathrm{Y}=1$

$$
\begin{aligned}
\pi & =\frac{e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p-1} x_{p-1}}}{1+e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p-1} x_{p-1}}} \\
& =\frac{e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}}{1+e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}}
\end{aligned}
$$

This formula can be used to calculate a predicted $\mathrm{P}(\mathrm{Y}=1 \mid \mathbf{x})$. Just replace betas by their estimates

It can also be used to calculate the probability of getting the sample data values we actually did observe, as a function of the betas.

Likelihood Function

$$
\begin{aligned}
\ell(\boldsymbol{\beta}) & =\prod_{i=1}^{n} P\left(Y_{i}=y_{i} \mid \mathbf{x}_{i}\right)=\prod_{i=1}^{n} \pi^{y_{i}}(1-\pi)^{1-y_{i}} \\
& =\prod_{i=1}^{n}\left(\frac{e^{\mathbf{x}_{i}^{\prime} \beta}}{1+e^{\mathbf{x}_{i}^{\prime} \beta}}\right)^{y_{i}}\left(1-\frac{e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}}{1+e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}}\right)^{1-y_{i}} \\
& =\prod_{i=1}^{n}\left(\frac{e^{\mathbf{x}_{i}^{\prime} \beta}}{1+e^{\mathbf{x}_{i}^{\prime} \beta}}\right)^{y_{i}}\left(\frac{1}{1+e^{\mathbf{x}_{i}^{\prime} \beta}}\right)^{1-y_{i}} \\
& =\prod_{i=1}^{n} \frac{e^{y_{i} \mathbf{x}_{i}^{\prime} \beta}}{1+e^{\mathbf{x}_{i}^{\prime} \beta}} \\
& =\frac{e^{\sum_{i=1}^{n} y_{i} \mathbf{x}_{i}^{\prime} \beta}}{\prod_{i=1}^{n}\left(1+e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}\right)}
\end{aligned}
$$

Maximum likelihood estimation

- Likelihood = Conditional probability of getting the data values we did observe,
- As a function of the betas
- Maximize the (log) likelihood with respect to betas.
- Maximize numerically ("Iteratively re-weighted least squares")
- Likelihood ratio tests play he role of F tests.
- Divide regression coefficients by estimated standard errors to get Z-tests of $\mathrm{H}_{0}: \beta_{\mathrm{j}}=0$.
- These Z-tests are like the t-tests in ordinary regression.

The conditional probability of $\mathrm{Y}=1$

$$
\begin{aligned}
\pi_{i} & =\frac{e^{\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{p-1} x_{i, p-1}}}{1+e^{\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{p-1} x_{i, p-1}}} \\
& =\frac{e^{\mathbf{x}_{i}^{\top} \boldsymbol{\beta}}}{1+e^{\mathbf{x}_{i}^{\top} \boldsymbol{\beta}}}
\end{aligned}
$$

This formula can be used to calculate a predicted $\mathrm{P}(\mathrm{Y}=1 \mid \mathbf{x})$. Just replace betas by their estimates

It can also be used to calculate the probability of getting the sample data values we actually did observe, as a function of the betas.

Likelihood Function

$$
\begin{aligned}
& L(\boldsymbol{\beta})=\prod_{i=1}^{n} P\left(Y_{i}=y_{i} \mid \mathbf{x}_{i}\right)=\prod_{i=1}^{n} \pi_{i}^{y_{i}}\left(1-\pi_{i}\right)^{1-y_{i}} \\
&=\prod_{i=1}^{n}\left(\frac{e^{\mathbf{x}_{i}^{\top} \boldsymbol{\beta}}}{1+e^{\mathbf{x}_{i}^{\top} \boldsymbol{\beta}}}\right)^{y_{i}}\left(1-\frac{e^{\mathbf{x}_{i}^{\top} \boldsymbol{\beta}}}{1+e^{\mathbf{x}_{i}^{\top} \boldsymbol{\beta}}}\right)^{1-y_{i}} \\
&=\prod_{i=1}^{n}\left(\frac{e^{\mathbf{x}_{i}^{\top} \boldsymbol{\beta}}}{1+e^{\mathbf{x}_{i}^{\top} \boldsymbol{\beta}}}\right)^{y_{i}}\left(\frac{1}{1+e^{\mathbf{x}_{i}^{\top} \boldsymbol{\beta}}}\right)^{1-y_{i}} \\
&=\prod_{i=1}^{n} \frac{e^{y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\beta}}}{1+e^{\mathbf{x}_{i}^{\top} \boldsymbol{\beta}}} \\
&= e^{\prod_{i=1}^{n} y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\beta}} \\
&=1 l_{i=1}^{n}\left(1+e^{\mathbf{x}_{i}^{\top} \boldsymbol{\beta}}\right)
\end{aligned}
$$

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. These
Powerpoint slides will be available from the course website:
http://www.utstat.toronto.edu/brunner/oldclass/302f14

