Chapter 18: More about Tests, p522

- null hypothesis has to give a parameter value like H_0 : p = 0.7 .
- alternative has to say what you are trying to prove like H_A : $p \neq 0.7$.
- Kind of alternative you use depends on exactly what you want to prove:
 - is p different? (2-sided)
 - is p larger? (1-sided)
 - is p smaller? (1-sided)
- Failing to reject H_0 does not prove that H_0 correct.

_

Tests and Confidence interval for the population mean Chap 20 p555

Similar idea as for proportions:

Ex:

In a metropolitan area, the concentration of cadmium (Cd) in leaf lettuce was measured in 6 representative gardens where sewage sludge was used as fertilizer. The following measurements (in mg/kg of dry weight) were obtained.

Cd

21 38 12 15 14 8

Is there strong evidence that the mean concentration of Cd is higher than 12.

Descriptive Statistics

$$H_0: \mu=12$$
 $H_a: \mu>12$
 $t=\frac{\bar{x}-\mu}{s/\sqrt{n}}=\frac{18-12}{10.68/\sqrt{6}}=1.38$

degrees of freedom = 6 - 1 = 5

$$t = 1.38$$

p-value > 0.10. Do not reject H_0 at α = 0.05.

CIs for the population mean μ

Give a 95% CI for the mean Cd concentration.

$$\left(\bar{x}-t\frac{s}{\sqrt{n}}, \bar{x}+t\frac{s}{\sqrt{n}}\right) = \left(18-2.571 \times \frac{10.68}{\sqrt{6}}, 18+2.571 \times \frac{10.68}{\sqrt{6}}\right)$$

StatCrunch commands

Stat > T Statistics > One-Sample

Hypothesis test results:

μ: mean of Variable

 H_0 : $\mu = 12$

 $H_A: \mu > 12$

Variable	Sample Mean	Std. Err.	DF	T-Stat	P-value	
Cd	18	4.358899	5	1.3764944	0.1136	(

95%

confidence interval results:

μ: mean of Variable

Variable	Sample Mean	Std. Err.	DF	L. Limit	U. Limit
Cd	18	4.358899	5	6.795094	29.204906

Exercise.

In order to test H_0 : μ =60 vs H_a : μ ≠60 a random sample of 9 observations (normally distributed) is obtained, yielding \bar{x} =55 and s = 5. What is the p-value of the test for this sample?

- a) greater than 0.10
- b) between 0.05 and 0.10
- c) between 0.025 and 0.05
- d) between 0.01 and 0.025
- e) less than 0.01

Ans: t = -3 p is between 0.005x2 and 0.01x2 i.e. between 0.01 and 0.02 and so d) the answer.

We are done!

