
STA 414/2104

Statistical Methods for Machine Learning and Data Mining

Radford M. Neal, University of Toronto, 2014

Week 1



What are Machine Learning and Data Mining?



Typical Machine Learning and Data Mining Problems

Document search:

Given counts of words in a document, determine what its topic is.

Group documents by topic without a pre-specified list of topics.

Many words in a document, many, many documents available on the web.

Cancer diagnosis:

Given data on expression levels of genes, classify the type of a tumor.

Discover categories of tumors having different characteristics.

Expression levels of many genes measured, usually for only a few patients.

Marketing:

Given data on age, income, etc., predict how much each customer spends.

Discover how the spending behaviours of different customers are related.

Fair amount of data on each customer, but messy (eg, missing values).

May have data on a very large number of customers (millions).



Supervised Learning Problems

In the ML literature, a supervised learning problem has these characteristics:

We are primarily interested in prediction.

We are interested in predicting only one thing.

The possible values of what we want to predict are specified, and we have

some training cases for which its value is known.

The thing we want to predict is called the target or the response variable.

For a classification problem, we want to predict the class of an item — the topic

of a document, the type of a tumor, whether a customer will purchase a product.

For a regression problem, we want to predict a numerical quantity — the amount

a customer spends, the blood pressure of a patient, the melting point of an alloy.

To help us make our predictions, we have various inputs (also called predictors or

covariates) — eg, gene expression levels for predicting tumor type, age and income

for predicting amount spent. We use these inputs, but don’t try to predict them.



Unsupervised Learning Problems

For an unsupervised learning problem, we do not focus on prediction of any

particular thing, but rather try to find interesting aspects of the data.

One non-statistical formulation: We try to find clusters of similar items, or

to reduce the dimensionality of the data.

Examples: We may find clusters of patients with similar symptoms, which we call

“diseases”. We may find that an overall “inflation rate” captures most of the

information present in the price increases for many commodities.

One statistical formulation: We try to learn the probability distribution of all

the quantities, often using latent (also called hidden) variables.

These formulations are related, since the latent variables may identify clusters or

correspond to low-dimensional representations of the data.



Machine Learning and Data Mining Problems
Versus Problems in Traditional Statistics

Motivations:

Prediction · Understanding · Causality

Much traditional statistics is motivated primarily by showing that one factor

causes another (eg, clinical trials). Understanding comes next, prediction last.

In machine learning and data mining, the order is usually reversed — prediction

is most important.

Amount of Data:

Many machine learning problems have a large number of variables — maybe

10,000, or 100,000, or more (eg, genes, pixels). Data mining applications often

involve very large numbers of cases — sometimes millions.

Complex, non-linear relationships:

Traditional statistical methods often assume linear relationships (perhaps after

simple transformations), or simple distributions (eg, normal).



Attitudes in Machine Learning and Data Mining
Versus Attitudes in Traditional Statistics

Despite these differences, there’s a big overlap in problems addressed by machine

learning and data mining and by traditional statistics. But attitudes differ. . .

Machine learning Traditional statistics

No settled philosophy or widely Classical (frequentist) and

accepted theoretical framework. Bayesian philosophies compete.

Willing to use ad hoc methods Reluctant to use methods without

if they seem to work well (though some theoretical justification (even if

appearances may be misleading). the justification is actually meaningless).

Emphasis on automatic methods with Emphasis on use of human judgement

little or no human intervention. assisted by plots and diagnostics.

Methods suitable for many problems. Models based on scientific knowledge.

Heavy use of computing. Originally designed for hand-calculation,

but computing is now very important.



How Do “Machine Learning” and “Data Mining” Differ?

These terms are often used interchangeably, but. . .

“Data mining” is more often used for problems with very large amounts of

data, where computational efficiency is more important than statistical

sophistication — often business applications.

“Machine learning” is more often used for problems with a flavour of artificial

intelligence — such as recognition of objects in visual scenes, or robot navigation.

The term “data mining” was previously used in a negative sense — to describe

the misguided statistical procedure of looking for many, many relationships in the

data until you finally find one, but one which is probably just due to chance.

One challenge of data mining is to avoid doing “data mining” in this sense!



Some Challenges for Machine Learning

Handling complexity: Machine learning applications usually involve many

variables, often related in complex ways. How can we handle this complexity

without getting into trouble?

Optimization and integration: Most machine learning methods either involve

finding the “best” values for some parameters (an optimization problem), or

averaging over many plausible values (an integration problem). How can we do

this efficiently when there a great many parameters?

Visualization: Understanding what’s happening is hard when there are many

variables and parameters. 2D plots are easy, 3D not too bad, but 1000D?

All these challenges are greater when there are many variables or parameters

— the so-called “curse of dimensionality”. But more variables also provide more

information — a blessing, not a curse.



Ways of Handling Complexity



Complex Problems

Machine learning applications often involve complex, unknown relationships:

Many features may be available to help predict the response (but some

may be useless or redundant).

Relationships may be highly non-linear, and distributions non-normal.

We don’t have a theoretical understanding of the problem, which might

have helped limit the forms of possible relationships.

Example: Recognition of handwritten digits.

Consider the problem of recognizing a handwritten digit from a 16× 16 image.

There are 256 features, each the intensity of one pixel.

The relationships are very complex and non-linear. Knowing that a particular

pixel is black tells you something about what the digit is, but much of the

information comes only from looking at more than one pixel simultaneously.

People do very well on this task, but how do they do it? We have some

understanding of this, but not enough to easily mimic it.



How Should We Handle Complexity?

Properly dealing with complexity is a crucial issue for machine learning.

Limiting complexity is one approach — use a model that is complex enough to

represent the essential aspects of the problem, but that is not so complex that

overfitting occurs.

Overfitting happens when we choose parameters of a model that fit the data we

have very well, but do poorly on new data.

Reducing dimensionality is another possibility. Perhaps the complexity is only

apparent — really things are much simpler if we can find out how to reduce the

large number of variables to a small number.

Averaging over complexity is the Bayesian approach — use as complex a

model as might be needed, but don’t choose a single set of parameter values.

Instead, average the predictions found using all the parameter values that fit the

data reasonably well, and which are plausible for the problem.



Example Using a Synthetic Data Set

Here are 50 points generated with x uniform from (0, 1) and y set by the formula:

y = sin(1 + x2) + noise

where the noise has the N(0, 0.032) distribution.

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

true function and data points

The noise-free function, sin(1 + x2), is shown by the line.



Results of Fitting Polynomial Models of Various Orders

Here are the least-squares fits of polynomial models for y having the form (for

p = 2, 4, 6) of

y = β0 + β1 x + · · · + βp x
p + noise

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

second−order polynomial model

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

fourth−order polynomial model

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

sixth−order polynomial model

The gray line is the true noise-free function. We see that p = 2 is too simple, but

p = 6 is too complex — if we choose values for βi that best fit the 50 data points.



Do We Really Need to Limit Complexity?

If we make predictions using the “best fitting” parameters of a model, we have to

limit the number of parameters to avoid overfitting.

For this example, with this amount of data, the model with p = 4 was about

right. We might be able to choose a good value for p using the method of “cross

validation”, which looks for the value that does best at predicting one part of the

data from the rest of the data.

But we know that sin(1 + x2) is not a polynomial function — it has an infinite

series representation with terms of arbitrarily high order.

How can it be good to use a model that we know is false?

The Bayesian answer: It’s not good. We should abandon the idea of using the

“best” parameters and instead average over all plausible values for the

parameters. Then we can use a model (perhaps a very complex one) that is as

close to being correct as we can manage.



Reducing Dimensionality for the Digit Data

Consider the handwritten digit recognition problem previously mentioned. For

this data, there are 7291 training cases, each with the true class (0–9) and 256

inputs (pixels). Can we replace these with many fewer inputs, without great loss

of information?

One simple way is by Principal Components Analysis (PCA). We imagine the

7291 training cases as points in the 256 dimensional input space. We then find

the direction of highest variance for these points, the direction of second-highest

variance that is orthogonal to the first, etc.

We stop sometime before we find 256 directions — say, after only 20 directions.

We then replace each training case by the projections of the inputs on these 20

directions.

In general, this might discard useful information — perhaps the identity of the

digit is actually determined by the direction of least variance. But often it keeps

most of the information we need, with many fewer variables.



Principal Components for the Zip-Code Digits

Here are plots of 1st versus 2nd, 3rd versus 4th, and 5th versus 6th principal

components for training cases of digits “3” (red), “4” (green), and “9” (blue):

−5 0 5

−6
−4

−2
0

2
4

6
8

PC1

P
C

2

−6 −4 −2 0 2 4 6

−5
0

5

PC3

P
C

4

−4 −2 0 2 4 6

−6
−4

−2
0

2
4

PC5

P
C

6

Clearly, these reduced variables contain a lot of information about the identity of

the digit — probably much more than we’d get from any six of the original inputs.



Pictures of What the Principal Components Mean

Directions of principal components in input space are specified by 256-dimensional

unit vectors. We can visualize them as 16× 16 “images”. Here are the first ten:



Introduction to Supervised Learning



A “Supervised Learning Machine”

Here’s the most general view of how a “learning machine” operates for a

supervised learning problem:

Prediction for
test target

Learning

Machine

Training inputs

Training targets

 
Test input

Any sort of statistical procedure for this problem can be viewed in this

“mechanical” way, but is this a useful view? It does at least help clarify the

problem. . .

Note that, conceptually, our goal is to make a prediction for just one test case.

In practice, we usually make predictions for many test cases, but in this

formulation, these predictions are separate (though often we’d compute some

things just once and then use them for many test cases).



A “Semi-Supervised Learning Machine”

For semi-supervised learning we have both some labelled training data (where we

know both the inputs and targets) and also some unlabelled training data (where

we know only the inputs). Here’s a picture:

Inputs for unlabelled

Inputs for labelled
training cases
Targets for labelled
training cases

training cases

Prediction for
test target

 
Test input

Machine

Learning

This can be very useful for applications like document classification, where it’s

easy to get lots of unlabelled documents (eg, off the web), but more costly to have

someone manually label them.



Data Notation for Supervised Learning

We call the variable we want to predict the target or response variable, and

denote it by y.

In a classification problem, y will take values from some finite set of class labels

— binary classification, with y = 0 or y = 1, is one common type of problem.

In a regression problem, y will be real-valued. (There are other possibilities, such

as y being a count, with no upper bound.)

To help us predict y, we have measurements of p variables collected in a vector x,

called inputs, predictors, or covariates.

We have a training set of n cases in which we know the values of both y and x,

with these being denoted by yi and xi for the i’th training case. The value of

input j in training case i is denoted by xij . The j’th input in a generic case is

denoted by xj . (Unfortunately, the meaning of x5 is not clear with this notation.)

The above notation is more-or-less standard in statistics, but notation in the

machine learning literature varies widely.



Predictions for Supervised Learning

In some test case, where we know the inputs, x, we would like to predict the value

of the response y.

Ideally, we would produce a probability distribution, P (y |x), as our prediction.

(I’ll be using P (·) for either probabilities or probability densities.)

But suppose we need to make a single guess, called ŷ.

For a real-valued response, we might set ŷ to the mean of this predictive

distribution (which minimizes expected squared error) or to the median (which

minimizes expected absolute error).

For a categorical response, we might set ŷ to the mode of the predictive

distribution (which minimizes the probability of our making an error).

Sometimes, errors in one direction are worse than in the other — eg, failure to

diagnose cancer (perhaps resulting in preventable death) may be worse than

mistakenly diagnosing it (leading to unnecessary tests). Then we should choose ŷ

to minimize the expected value of an appropriate loss function.



Nearest-Neighbor Methods

A direct approach to making predictions is to approximate the mean, median, or

mode of P (y |x) by the sample mean, median, or mode for a subset of the

training cases whose inputs are “near” the test inputs.

We need to decide how big a subset to use — one possibility is to always use the

K nearest training points. We also need to decide how to measure “nearness”.

If the inputs are numeric, we might just use Euclidean distance.

If y is real-valued, and we want to make the mean prediction, this is done as

follows:

ŷ(x) =
1

K

∑

i∈NK(x)

yi

where NK(x) is the set of K training cases whose inputs are closest to the test

inputs, x. (We’ll ignore the possibility of ties.)

Big question: How should we choose K?

If K is too small, we may “overfit”, but if K is too big, we will average over

training cases that aren’t relevant to the test case.



Parametric Learning Machines

One way a learning machine might work is by using the training data to estimate

parameters, and then using these parameters to make predictions for the test

case. Here’s a picture:

Parametric Learning Machine

Parameter

Test input
Prediction for
test target

 
Predictor

Estimator

Training inputs

Training targets

Parameters

This approach saves computation if we make predictions for many test cases —

we can estimate the parameters just once, then use them many times.

A hybrid strategy: Estimate some parameters (eg, K for a nearest-neighbor

method), but have the predictor look at the training inputs and targets as well.



Linear Regression

One of the simplest parametric learning methods is linear regression.

The predictor for this method takes parameter estimates β̂0, β̂1, . . . , β̂p, found

using the training cases, and produces a prediction for a test case with inputs x

by the formula

ŷ = β̂0 +

p∑

j=1

β̂j xj

For this to make sense, the inputs and response need to be numeric, but binary

variables can be coded as 0 and 1 and treated as numeric.

The traditional parameter estimator for linear regression is least squares — choose

β̂0, β̂1, . . . , β̂p that minimize the square error on the training cases, defined as

n∑

i=1

(
yi −

(
β0 +

p∑

j=1

βj xij

))2

As is well-known, the β̂ that minimizes this can be found using matrix operations.



Linear Regression Versus Nearest Neighbor

These two methods are opposities with respect to computation:

Nearest neighbor is a memory-based method — we need to remember the

whole training set.

Linear regression is parametric — after finding β̂0, β̂1, . . . , β̂p we can

forget the training set and use just these parameter estimates.

They are also opposites with respect to statistical properties:

Nearest neighbor makes few assumptions about the data (if K is small),

but consequently has a high potential for overfitting.

Linear regression make strong assumptions about the data, and

consequently has a high potential for bias, when these assumptions are

wrong.



Supervised Learning Topics

In this course, we’ll look at various supervised learning methods:

• Linear regression and logistic classification models, including methods for

which, rather than the original inputs, we use “features” that are obtained by

applying “basis functions” to the inputs.

• Gaussian process methods for regression and classification.

• Support Vector Machines.

• Neural networks.

We’ll also see some ways of controlling the complexity of these methods to avoid

overfitting, particularly

• Cross-validation.

• Regularization.

• Bayesian learning.


