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Analytically-Tractable Bayesian Models



Conjugate Prior Distributions

For most Bayesian inference problems, the integrals needed to do inference and

prediction are not analytically tractable — hence the need for numerical

quadrature, Monte Carlo methods, or various approximations.

Most of the exceptions involve conjugate priors, which combine nicely with the

likelihood to give a posterior distribution of the same form. Examples:

1) Independent observations from a finite set, with Beta / Dirichlet priors.

2) Independent observations of Gaussian variables with Gaussian prior for the

mean, and either known variance or inverse-Gamma prior for the variance.

3) Linear regression with Gaussian prior for the regression coefficients, and

Gaussian noise, with known variance or inverse-Gamma prior for the variance.

It’s nice when a tractable model and prior are appropriate for the problem.

Unfortunately, people are tempted to use such models and priors even when they

aren’t appropriate.



Independent Binary Observations with Beta Prior

We observe binary (0/1) variables Y1, Y2, . . . , Yn.

We model these as being independent, and identically distributed, with

P (Yi = y | θ) =





θ if y = 1

1− θ if y = 0



 = θy (1−θ)1−y

Let’s suppose that our prior distribution for θ is Beta(a,b), with a and b being

known positive reals. With this prior, the probability density over (0, 1) of θ is:

P (θ) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1−θ)b−1

Here, the Gamma function, Γ(c), is defined to be
∫
∞

0
xc−1 exp(−x) dx. Note that

Γ(c) = (c−1)! when c is an integer.

When a = b = 1 the prior is uniform over (0, 1).

The prior mean of θ is a / (a+ b). Big a and b give smaller prior variance.



Posterior Distribution with Beta Prior

With this Beta prior, the posterior distribution is also Beta:

P (θ |Y1 = y1, Y2 = y2, . . . , Yn = yn)

∝ P (θ)
n∏

i=1

P (Yi = yi | θ)

∝ θa−1 (1−θ)b−1

n∏

i=1

θyi (1−θ)1−yi

∝ θΣyi+a−1 (1−θ)n−Σyi+b−1

So the posterior distribution is Beta (
∑

yi + a, n−
∑

yi + b).

One way this is sometimes visualized is as the prior being equivalent to

a fictitious observations with Y = 1 and b fictitious observations with Y = 0.

Note that all that is used from the data is
∑

yi, which is a minimal sufficient

statistic, whose values are in one-to-one correspondence with possible likelihood

functions (ignoring constant factors).



Examples of Beta Priors and Posteriors
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Predictive Distribution from Beta Posterior

From the Beta (
∑

yi + a, n−
∑

yi + b) posterior distribution, we can make a

probabilistic prediction for the next observation:

P (Yn+1 = 1 |Y1 = y1, Y2 = y2, . . . , Yn = yn)

=

∫
1

0

P (Yn+1 = 1 | θ)P (θ |Y1 = y1, Y2 = y2, . . . , Yn = yn) dθ

=

∫
1

0

θ P (θ |Y1 = y1, Y2 = y2, . . . , Yn = yn) dθ

=

∫
1

0

θ
Γ(n+ a+ b)

Γ(Σyi + a)Γ(n− Σyi + b)
θΣyi+a−1 (1−θ)n−Σyi+b−1 dθ

=
Γ(n+ a+ b)

Γ(Σyi + a)Γ(n− Σyi + b)

Γ(1 + Σyi + a)Γ(n− Σyi + b)

Γ(1 + n+ a+ b)

=

∑
yi + a

n+ a+ b

This uses the fact that cΓ(c) = Γ(1 + c).



Generalizing to More Than Two Values

For i.i.d. observations with a finite number, K, of possible values, with K > 2, the

conjugate prior for the probabilities θ1, . . . , θK is the Dirichlet distribution, with

the following density on the simplex where all θk > 0 and
∑

θk = 1:

P (θ1, . . . , θK) =
Γ(Σkαk)

Πk Γ(αk)

K∏

k=1

θαk−1

k

The parameters α1, . . . , αK can be any positive reals.

The posterior distribution after observing n items, of which m1 have value 1,

m2 have value 2, etc. is Dirichlet with parameters α1 +m1, . . . , αK +mK .

The predictive distribution for item n+ 1 is

P (Yn+1 = k |Y1 = y1, . . . , Yn = yn) =
mk + αk

n+Σαk



Independent Observations from a Gaussian Distribution

We observe real variables Y1, Y2, . . . , Yn.

We model these as being from some Gaussian distribution with unknown mean,

µ, and known variance, σ2, and as independent, given a value for µ.

The conjugate prior for µ is Gaussian with some mean µ0 and variance σ2
0.

Rather than talk about the variance, it is more convenient to talk about the

precision, equal to the reciprocal of the variance. A data point has precision

τ = 1/σ2 and the prior has precision τ0 = 1/σ2
0.

The posterior distribution for µ given the n data points is also Gaussian, with

precision τn = τ0 + nτ , and with mean

µn =
τ0µ0 + nτy

τ0 + nτ

where y is the sample mean of the observations y1, . . . , yn.

The predictive distribution for Yn+1 is Gaussian with mean µn and variance

(1/τn) + σ2.

If we let σ0 go to infinity — an example of an improper prior — the posterior

mean, µn, will equal the sample mean, y, and the posterior variance will be σ2/n.



Gaussian with Unknown Variance

What if both the mean and the variance (precision) of the Gaussian distribution

for Y1, . . . , Yn are unknown?

There is still a conjugate prior, but in it, µ and τ are dependent:

τ ∼ Gamma(a, b)

µ | τ ∼ N(µ0, c/τ)

for some known constant µ0 and known positive constants a, b, and c.

It’s hard to imagine circumstances where our prior information about µ and τ

would have a dependence of this sort. But unfortunately, people use this

conjugate prior anyway, because it’s convenient.



Bayesian Linear Basis Function Models



A Bayesian Linear Basis Function Model

Let’s set up a Bayesian linear basis function model by giving β a Gaussian prior:

yi |xi, β ∼ N(φ(xi)
Tβ, σ2)

β ∼ N(m0, S0)

This Gaussian prior will turn out to be conjugate.

For the moment, we regard the noise variance, σ2, the prior mean of the β vector,

m0, and the prior covariance matrix for β, S0, as known constants.

Often, we will let m0 = 0 and let S0 be diagonal, so that the βj are independent.

We might let β0 (the intercept term) have a large variance, and all the other βj

have the same variance.

The symbol y will sometime denote a single, generic response value, and other

times denote the vector [y1, . . . , yn]
T of responses for training cases. We use Φ for

the matrix of basis function values for the n training cases.



Multivariate Gaussian Model with Multivariate Gaussian Prior

To warm up. . . Suppose we model an observed vector b as having a multivariate

Gaussian distribution with known covariance matrix B and unknown mean x. We

give x a multivariate Gaussian prior with known covariance matrix A and known

mean a.

The posterior distribution of x will be Gaussian, since the product of the prior

density and the likelihood is proportional to the exponential of a quadratic

function of x:

Prior× Likelihood ∝ exp(−(x− a)TA−1(x− a)/2) exp(−(b− x)TB−1(b− x)/2)

The log posterior density is this quadratic function (· · · is parts not involving x):

−1

2

[
(x− a)TA−1(x− a) + (b− x)TB−1(b− x)

]
+ · · ·

= −1

2

[
xT (A−1 +B−1)x − 2xT (A−1a+B−1b)

]
+ · · ·

= −1

2

[
(x− c)T (A−1 +B−1)(x− c)

]
+ · · ·

where c = (A−1 +B−1)−1 (A−1a+B−1b). This is the density for a Gaussian

distribution with mean c and variance (A−1 +B−1)−1.



Posterior for a Linear Basis Function Model

Both the log prior and the log likelihood are quadratic functions of β. The log

likelihood for β is as follows (where · · · indicates terms not involving β):

−
1

2

[
(y − Φβ)T (σ2I)−1(y − Φβ)

]
+ · · · = −

1

2

1

σ2

[
βTΦTΦβ − 2βTΦTy

]
+ · · ·

which is the same quadratic function of β as for a Gaussian log density with

covariance σ2(ΦTΦ)−1 and mean (ΦTΦ)−1ΦTy.

This combines with the prior for β in the same way on the previous slide, with

the result that the posterior distribution for β is Gaussian with covariance

Sn =
[
S−1
0 + (σ2(ΦTΦ)−1)−1

]
−1

=
[
S−1
0 + (1/σ2)ΦTΦ

]
−1

and mean

mn = (S−1
n )−1

[
S−1
0 m0 + (1/σ2)ΦTΦ(ΦTΦ)−1ΦTy

]

= Sn

[
S−1
0 m0 + (1/σ2)ΦTy

]



Predictive Distribution for a Test Case

We can write the response, y, for some new case with inputs x as

y = φ(x)Tβ + e

where the “noise” e has the N(0, σ2) distribution, independently of β.

Since the posterior distribution for β is N(mn, Sn), the posterior distribution for

φ(x)Tβ will be N(φ(x)Tmn, φ(x)
TSnφ(x)).

Hence the predictive distribution for y will be N(φ(x)Tmn, φ(x)
TSnφ(x) + σ2).



Comparison with Regularized Estimates

In a Bayesian linear basis function model, the predictive mean for a test case is

what we would get using the posterior mean value for the regression coefficients

— a consequence of the model being linear in the parameters.

We can compare the Bayesian mean prediction with the prediction using the

regularized (maximum penalized likelihood) estimate for β, which is

β̂ = (λI∗ +ΦTΦ)−1ΦTy

where I∗ is like the identity matrix except that I∗1,1 = 0.

Compare with the posterior mean, if we set the prior mean, m0, to zero:

mn = Sn(1/σ
2)ΦTy

= (S−1
0 + (1/σ2)ΦTΦ)−1(1/σ2)ΦTy

= (σ2S−1
0 + ΦTΦ)−1ΦTy

If S−1
0 = (1/ω2)I∗, then these are the same, with λ = σ2/ω2. This corresponds to

a prior for β in which the βj are independent, all with variance ω2, except that β0

has an infinite variance.



A Semi-Bayesian Way to Estimate σ
2 and ω

2

We see that σ2 (the noise variance) and ω2 (the variance of regression coefficients,

other than β0) together (as σ
2/ω2) play a role similar to the penalty magnitude,

λ, in the maximum penalized likelihood approach.

We can find values for σ2 and ω2 in a semi-Bayesian way by maximizing the

marginal likelihood — the probability of the data (y) given values for σ2 and ω2.

[ We need to set the prior variance of β0 to some finite ω2
0 (which could be very

large), else the probability of the observed data will be zero. ]

We can also select basis function parameters (eg, s) by maximizing the marginal

likelihood.

Such maximization is somewhat easier than the full Bayesian approach, in which

we define some prior distribution for σ2 and ω2 (and any basis function

parameters we haven’t fixed), and then average predictions over their posterior

distribution. [ One would probably use some Markov chain Monte Carlo (MCMC)

method to do this averaging. ]



Finding the Marginal Likelihood for σ2 and ω
2

The marginal likelihood for σ2 and ω2 given a vector of observed responses, y, is

found by integrating over β with respect to its prior:

P (y |σ2, ω2) =

∫
P (y |β, σ2)P (β |ω2) dβ

This is the denominator in Bayes’ Rule, that normalizes the posterior.

Here, the basis function values for the training cases, based on the inputs for

those cases, are considered fixed.

Both factors in this integrand are exponentials of quadratic functions of β, so this

turns into the same sort of integral as that for the normalizing constant of a

Gaussian density function, for which we know the answer.



Details of Computing the Marginal Likelihood

We go back to the computation of the posterior for β, but we now need to pay

attention to some factors we ignored before. I’ll fix the prior mean of β to m0=0.

The log of the probability density of the data for a given β is

−
n

2
log(2π) −

n

2
log(σ2) −

1

2
(y − Φβ)T (y − Φβ)/σ2

The log prior density for β is

−
m

2
log(2π) −

1

2
log(|S0|) −

1

2
βTS−1

0 β

expanding and then adding these together, we see the following terms that don’t

involve β:

−
n+m

2
log(2π) −

n

2
log(σ2) −

1

2
log(|S0|) −

1

2
yTy/σ2

and these terms that do involve β:

−
1

2
βTΦTΦβ/σ2 + βTΦTy/σ2 −

1

2
βTS−1

0 β



More Details. . .

If we combine the quadratic terms that involve β, we get

−
1

2

[
βT (S−1

0 +ΦTΦ/σ2)β − 2βTΦTy/σ2
]

We had previously used this to identify the posterior covariance and mean for β.

Setting the prior mean to zero, these are

Sn =
[
S−1
0 + (1/σ2)ΦTΦ

]
−1

, mn = SnΦ
Ty/σ2

We can write the terms involving β using these, then “complete the square”:

−
1

2

[
βTS−1

n β − 2βTS−1
n mn

]

= −
1

2

[
βTS−1

n β − 2βTS−1
n mn + mT

nS
−1
n mn

]
+

1

2
mT

nS
−1
n mn

= −
1

2
(β −mn)

TS−1
n (β −mn) +

1

2
mT

nS
−1
n mn

The second term above doesn’t involve β, so we can put it with the other such.



And Yet More Details. . .

We now see that the log of the prior times the probability of the data has these

terms not involving β:

−
n+m

2
log(2π) −

n

2
log(σ2) −

1

2
log(|S0|) −

1

2
yTy/σ2 +

1

2
mT

nS
−1
n mn

and this term that does involve β:

−
1

2
(β −mn)

TS−1
n (β −mn)

When we exponentiate this and then integrate over β, we see that
∫

exp
(
−

1

2
(β −mn)

TS−1
n (β −mn)

)
dβ = (2π)m/2 |Sn|

1/2

since this is just the integral defining the Gaussian normalizing constant.

The final result is that the log of the marginal likelihood is

−
n

2
log(2π) −

n

2
log(σ2) −

1

2
log

( |S0|

|Sn|

)
−

1

2
yTy/σ2 +

1

2
mT

nS
−1
n mn



Another Formula for the Marginal Likelihood

The last two terms in the formula on the previous slide seem a bit mysterious.

They can be rewritten as follows:

−
1

2
yTy/σ2 +

1

2
mT

nS
−1
n mn

= −
1

2
yTy/σ2 + mT

nS
−1
n mn −

1

2
mT

nS
−1
n mn

= −
1

2
yTy/σ2 + mT

nΦ
Ty/σ2 −

1

2
mT

nΦ
TΦmn/σ

2 −
1

2
mT

nS
−1
0 mn

= −
1

2
||y − Φmn)||

2/σ2 −
1

2
mT

nS
−1
0 mn

This gives another formula for the log marginal likelihood, which is more intuitive

and also better numerically (avoids large roundoff in computing yTy):

−
n

2
log(2π) −

n

2
log(σ2) −

1

2
log

( |S0|

|Sn|

)
−

1

2
||y − Φmn)||

2/σ2 −
1

2
mT

nS
−1
0 mn

Here, (1/2) log(|S0|/|Sn|) is the log of the factor by which the prior contracts to

the posterior, the next term is the data fit with the posterior mean, and the last

term is the prior density at the posterior mean.



Computations for the Semi-Bayesian Approach

Maximizing the marginal likelihood with respect to σ2, ω2, and parameters of the

basis functions could be done by many standard optimization methods.

For maximizing with respect to σ2 and ω2, there’s also an iterative re-estimation

procedure (see the next slide).

We can then use the posterior mean, mn, to predict the response in a test case

with inputs x, as φ(x)Tmn. The posterior covariance, Sn, is used in producing a

predictive variance for the response, which is φ(x)TSnφ(x) + σ2.

Note that these semi-Bayesian predictions are all based on a single set of values

for σ2, ω2, etc., although they do integrate over β.



Re-estimating σ
2 and ω

2

Naively, one might iterate to find the posterior mean and covariance of β, based

on the current estimates for σ2 and ω2, by re-estimating σ2 and ω2 as follows:

σ̂2 =
1

n

n∑

i=1

(yi − Φ(xi)
Tmn)

2, ω̂2 =
1

m

m−1∑

j=0

([mn]j)
2

This assumes S0 = ω2I. But this isn’t quite right: consider that some data points

could be fitted nearly exactly when the model is flexible, and some coefficients in

mn could be nearly zero if they aren’t relevant to any data point.

Instead, we find the “effective number of parameters”, γ, as

γ =
m∑

j=1

λi

λi + 1/ω2

where the λi are the eigenvalues of ΦTΦ/σ2, and then re-estimate as follows:

σ̂2 =
1

n− γ

n∑

i=1

(yi − Φ(xi)
Tmn)

2, ω̂2 =
1

γ

m−1∑

j=0

([mn]j)
2

Details are in David MacKay’s thesis (Section 2.4).



Computations for the Fully-Bayesian Approach

The full Bayesian approach is to integrate over the posterior distribution for σ, ω,

etc. as well as β, which can be done by MCMC methods, using the marginal

likelihood for σ, ω, etc. (integrating over β).

We then make a prediction for the response in a test case by averaging the

posterior mean for β based on a sample of values for σ, ω, etc. The standard

deviation for the unknown response can be found as well. We could also

approximate the whole predictive distribution, which in general is not Gaussian.

Alternatively, we can sample for β as well as σ, ω, etc. This avoids any expensive

matrix computations, but fails to take advantage of conjugacy. We’d need to do

this if we used a non-conjugate prior for β.

Note: We can’t use an improper prior for ω that gives infinite mass to ω → 0,

since ω = 0 gives only finite misfit to the data. Similarly, if φ allows the data to

be fit exactly, we may not be able to use an improper prior for σ with infinite

mass at zero.



How Feasible are Linear Basis Function Models?

Modeling a general non-linear relationship of y to x with a linear basis function

model seems attractive when x is of low dimension, but when there are many

inputs, we would seem to need a huge number of local basis functions to “cover”

the high dimensional input space. This is at least a computational problem.

One possibility is to use a relatively small number of basis functions, that cover

only the actual area where x values are found, which may be the vicinity of a

manifold of much lower dimension. We might:

– pick a subset of data points as centres for basis functions

– make the basis functions depend on parameters that adapt to the data.

A neural network with one hidden layer is an example of the latter approach.

Instead, we might go ahead and use a huge number of basis functions, maybe an

infinite number. We’ll later see that there’s a computational trick that allows this.


