
STA 414/2104

Statistical Methods for Machine Learning and Data Mining

Radford M. Neal, University of Toronto, 2014

Week 7

Clustering and Mixture Models

Unsupervised Learning, Clustering, and Mixture Distributions

Recall that unsupervised learning does not focus on predicting anything in

particular, but rather tries to find “interesting” aspects of the data.

One possible informal objective is to find clusters of similar items. One possible

formal objective is modeling the probability distribution of all observed variables.

It can be useful to model a probability distribution in which variables are

dependent using latent (also called hidden) variables to express some or all of the

dependencies.

When there is one discrete latent variable, the model will express the distribution

as a mixture of distributions. The latent variable can also be seen as identifing

the cluster an item belongs to.

Example: We have data on symptoms of patients (body temperature, blood

pressure, etc.). We could cluster the patients, hoping the clusters will correspond

to “diseases”. We could model the distribution of symptoms using a discrete

latent variable, hoping it will represent the disease a patient has. The distribution

of symptoms will be a mixture of distributions for each disease.

K-Means Clustering

Suppose we have data x1, . . . , xn, with each xi being a vector of p variables.

We aim to divide the data into K clusters of similar items, measuring similarity by

Euclidean distance (perhaps rescaling variables to all have standard deviation one).

The K-means algorithm iteratively finds K centres for the clusters, and assigns

each item to the cluster whose centre it is nearest to:

1) Initialize µ1, . . . , µK somehow (eg, set them to randomly selected data items).

2) Repeat the following:

a) For i = 1, . . . , n, assign data item i to the cluster, k, for which ||xi − µk|| is
smallest. (Prefer the current assignment if it is tied for the best.)

b) For k = 1, . . . ,K, set µk to the mean of data items assigned to cluster k.

until there is no change in the cluster assignments from the previous iteration.

It’s easy to see that this process converges, since each step reduces the value of

J =
n
∑

i=1

||xi − µci ||2

where ci is the cluster assigned to data item i. The algorithm may not find the

global minimum of J , however.

From Clustering to Mixture Models

K-means clustering assigns a definite cluster to each data item. But often this is

unrealistic — eg, some patients have combinations of the symptoms we have

measured that are consistent with more than one disease.

The clusters found by the K-means algorithm are described only by the mean of

the data items in the cluster. We might like a more complete description of what

items in a cluster are like.

Both of these issues can be addressed by modeling the data as coming from a

mixture distribution, with mixture components corresponding to clusters.

Mixture Distributions

K distributions with probability/density functions P1(x), . . . , PK(x) can be mixed

in proportions π1, . . . , πK to give a mixture distribution with probability/density

function

P (x) =
K
∑

k=1

πk Pk(x)

For example, when x is one dimensional, we can mix N(0, 12) and N(4, 22) with

proportions 1/4 and 3/4, giving the density function

P (x) =
1

4

1√
2π

exp(−(1/2)x2) +
3

4

1

2
√
2π

exp(−(1/2)(x−4)2/22)

as pictured below:

−2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

−2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

−2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

N(0, 1) N(4, 22) (1/4)N(0, 1) + (3/4)N(4, 22)

Gaussian Mixture Models

When data items are real vectors, it may be reasonable to model the data as

a mixture of Gaussian distributions, using the data to estimate the mixing

proportion, the mean vector, and covariance matrix for each component.

The density function for this model, with K components, can be written as

P (x|π, µ,Σ) =

K
∑

k=1

πk N(x|µk,Σk)

We might allow Σk to be any valid covariance matrix, or we might constrain Σk

to be a diagonal matrix. If the Σk are diagonal, all the dependence between the

variables in x is a consequence of the distribution being a mixture.

A natural idea is to estimate πk, µk, and Σk for k = 1, . . . ,K by maximizing the

likelihood. Assuming that data items are independent, the log likelihood is

L(π, µ,Σ) =
n
∑

i=1

logP (xi|π, µ,Σ)

where xi is the data vector for item i.

Issues with Maximum Likelihood for Gaussian Mixture Models

Non-identifiability: The global maximum of the likelihood for a mixture model

is not unique, since permuting the labels of the mixture components will produce

a different set of parameter values that fits the data just as well.

Other local maxima: Even aside from re-labellings, there is often more than

one local maximum of the likelihood. Finding one of the global maxima (or at

least a good local maximum) may require searching for the maximum from many

different starting points.

We don’t want the global maximum anyway: When K > 1, the actual

global maximum will be at a point with infinite likelihood, in which for some

component, k, and some data item, i, we have 0 < πk < 1, µk = xi, and Σk = 0.

This gives an infinite spike of probability density at one point, while other points

have non-zero probability density from other components.

Because of this problem, we need to try as many starting points as needed to find

a good local maximum that isn’t one where some Σk → 0.

The EM algorithm

The EM Algorithm for Gaussian Mixture Models

We could use some general purpose optimization method (eg, R’s nlm function)

to find the parmeters of a mixture model that maximize the likelihood (avoiding

the singular solutions with Σk → 0). But a method known as the EM algorithm is

commonly used, because it is simple to implement, and very stable. (Though it

can unfortunately also be rather slow.)

The idea: If we knew which mixture component each data item came from,

estimating the mixing proportions and the parameters of each component

distribution would be easy. We don’t know this, but given an initial guess at the

parameters, we can probabilistically assign a component to each data item, and

then get a better estimate of the parameters based on these assignments.

This is sort of like the K-means algorithm, but in a probabilistic setting, with a

proof that the algorithm will reach a (local) maximum of the likelihood.

Details of the EM Algorthim for Gaussian Mixture Models

Here are the details of the EM algorithm for a Gaussian mixture model with Σk

being diagonal, with diagonal elements of σ2
kj .

We alternate between “E” (Expectation) steps and “M” (Maximization) steps:

E Step: Using the current values of the parameters, compute the

“responsibilities” of components for data items, by applying Bayes’ Rule:

rik = P (data item i came from component k |xi) =
πk N(xi|µk,Σk)

∑

k′
πk′ N(xi|µk′ ,Σk′)

M Step: Using the current responsibilities, re-estimate the parameters, using

weighted averages, with weights given by the responsibilities:

πk =
1

n

∑

i

rik, µk =
∑

i

rikxi

/

∑

i

rik, σ2
k =

∑

i

rik(xi − µk)
2
/

∑

i

rik

We start with some initial guess at the parameter values (perhaps random), or

perhaps with some initial guess at the responsibilities (in which case we start with

an M step). We continue alternating E and M steps until there is little change.

The EM Algorithm in General

Consider model for observed data x (which might be a vector of n independent

items) that is accompanied by a latent (unobserved) z (also possibly a vector of n

independent values). A model with parameters θ describes the joint distribution

of x and z, as P (x, z|θ).

We want to estimate θ by maximum likelihood, which means finding the θ that

maximizes

P (x|θ) =
∑

z

P (x, z|θ)

(This assumes z is discrete; if it’s continuous the sum is replaced by an integral.)

We assume that this isn’t easy. But suppose that we can easily find the θ that

maximizes P (x, z|θ), for any known x and z. We try to use (something related to)

this capability in an iterative algorithm for maximizing P (x|θ).

The EM Algorithm in General — Details

The general EM algorithm alternates these steps:

E Step: Using the current value of the parameter, θ, find the distribution, Q, for

the latent z, given the observed x:

Q(z) = P (z|x, θ)

M Step: Maximize the expected value of logP (x, z|θ) with respect to θ, where

the expectation is with respect to the distribution Q found in the E step:

θ = argmax
θ

EQ[logP (x, z|θ)]

For many models (specifically, those in the “exponential family”), maximizing

EQ[logP (x, z|θ)] will be feasible if maximizing logP (x, z|θ) for known z is feasible.

Justification of the EM algorithm

To see that the EM algorithm maximizes (at least locally) the log likelihood,

consider the following function of the distribution Q over z and the parameters θ:

F (Q, θ) = EQ[logP (x, z|θ)] − EQ[logQ(z)]

= logP (x|θ) + EQ[logP (z|x, θ)] − EQ[logQ(z)]

= logP (x|θ) − EQ[log(Q(z)/P (z|x, θ))]

The final term above is the “Kullback-Leibler (KL) divergence” between the

distribution Q(z) and the distribution P (z|x, θ). One can show that this

divergence is always non-negative, and is zero only when Q(z) = P (z|x, θ).
We can now justify the EM algorithm by showing that

a) The E step maximizes F (Q, θ) with respect to Q — a consequence of KL

divergence being minimized when Q(z) = P (z|x, θ).

b) The M step maximizes F (Q, θ) with respect to θ — clear since EQ[logQ(z)]

doesn’t depend on θ.

c) The maximum of F (Q, θ) occurs at a θ that maximizes P (x|θ) — if instead

P (x|θ∗) > P (x|θ) for some θ∗, then F (Q∗, θ∗) > F (Q, θ) with Q∗(z) = P (z|x, θ∗).

How this Translates to the Mixture Version

For the mixture example, the model parameters are θ = (π, µ, σ).

We’ll let the latent variables be zik = 1 if data item i comes from component k,

and 0 otherwise.

In the E step, we find the distribution of the zik given xi and the model

parameters. It turns out that all we actually need from this distribution is the

expected value of each zik (same as the probability that zik = 1), which we define

to be rik, and find by Bayes’ Rule as shown before.

In the M step, we need to maximize EQ

(n
∑

i=1

logP (xi, zi|θ)
)

.

Suppose we knew the value of both xi and zi = (zi1, . . . , ziK) for data item i.

The log probability (dropping constant factors) for that item can be written as

log





K
∏

k=1



πk

p
∏

j=1

(

1

σkj
exp(−(1/2)(xij−µkj)

2/σ2
kj)

)





zik




Note that all but one factor in the outer product will have the value one.

We maximize the expected value of the sum of the above for all i, with respect to

the distribution of zi found in the E step. We’ll see how this works out next. . .

Details of the Mixture Version of EM

Taking the expectation of the log probability of data item i with respect to the

distribution of zi (denoted by Q), we get

EQ







log





K
∏

k=1



πk

p
∏

j=1

(

1

σkj
exp(−(1/2)(xij−µkj)

2/σ2
kj)

)





zik










= EQ







K
∑

k=1

zik



log(πk)−
1

2

p
∑

j=1

(

log(σ2
kj) + (xij−µkj)

2/σ2
kj

)











=
K
∑

k=1

rik



log(πk)−
1

2

p
∑

j=1

(

log(σ2
kj) + (xij−µkj)

2/σ2
kj

)





where rik = EQ(zik). To maximize the sum of the above for all i, we separately

maximize
n
∑

i=1

K
∑

k=1

rik log(πk) with respect to π, and −1

2

n
∑

i=1

rik(xij−µkj)
2 with

respect to each µkj , and finally −1

2

n
∑

i=1

rik

(

log(σ2
kj) + (xij−µkj)

2/σ2
kj

)

with

respect to each σ2
kj . This gives the algorithm presented earlier.

How Many Mixture Components Should We Use?

Non-Bayesian Ways of Setting K

If we estimate the parameters of a mixture of K distributions by maximum

likelihood, we will “overfit” if we choose K to be too big. Letting K = n is the

extreme — then every data point can have its own mixture component, which can

give it infinite probability density.

Many, many schemes have been devised for picking an appropriate value for K,

most without a convincing justification.

One plausible way is to look at performance on a validation set, with parameters

estimated from a separate estimation set (or use S-fold cross validation).

To do this, we need a measure of performance.

We could use the average log probabability of the validation observations.

Or we could use something else that reflects our actual intended use of the

results. For instance, we might intend to use a mixture model to fill in missing

covariates in a regression model, in which case we might use squared error in

prediction of left-out values from other values.

Bayesian Mixture Models

A different approach is to use a Bayesian model, in which we don’t predict using a

single estimate of the parameters. This will avoid overfitted solutions in which

each component models just one data point, infinitely well.

We need to specify a prior distributions for the parameters (eg, mean vector and

covariance matrix) of each mixture component.

We might let this prior be independent for each component.

We cannot let this prior be improper. If we do, only one component will be used,

since the prior probability of a second component having reasonable parameter

values will be zero!

We also need a prior for the mixing proportions...

A Prior for Mixing Proportions

A Bayesian mixture model needs to have a prior distribution for the mixing

proportions, π1, . . . , πK . One possibility is the Dirichlet distribution, which has

the following density on the simplex where πk > 0 and
∑

πk = 1:

P (π1, . . . , πK) =
Γ(Σkαk)

Πk Γ(αk)

K
∏

k=1

παk−1

k

The parameters α1, . . . , αK can be any positive reals.

If Z1, Z2, . . . are i.i.d. given π, with P (Zi = k) = πk, the posterior distribution

after observing z1, . . . , zn, with n1 of the zi having value 1, n2 having value 2, etc.

is a Dirichlet distribution with parameters α1+n1, . . . , αK+nK .

The predictive distribution for Zn+1 given Z1, . . . , Zn is

P (Zn+1 = k |Z1 = z1, . . . , ZK = zk) =
nk + αk

n+Σk′αk′

Implementing Bayesian Mixture Models

Bayesian mixture models are usually implemented using Markov chain Monte

Carlo methods, which we aren’t covering in this course.

Just like the EM algorithm for maximum likelihood fitting of mixtures can

converge to a bad local maximum, a Markov chain Monte Carlo method for a

mixture model can get stuck for a long time in a local mode of the posterior

distribution — though it should get out eventually.

Choosing K Using Marginal Likelihood

We can choose among Bayesian mixture models with different numbers of

components, K, using the marginal likelihood for each value of K.

The marginal likelihood for these models is rather hard to compute, but it’s

possible.

But does this procedure make sense? Do we really believe that there is some true

(even if unknown) value of K?

Consider a mixture model for symptoms of patients, where we hope the mixture

components will represent “diseases”. Do we expect only K diseases, for some

reasonably small value of K?

As the number of patients, n, increases, we actually expect to see more and more

diseases (some of which will be quite rare).

Letting K be Infinite

We can let K go to infinity in a Bayesian mixture model with a Dirichlet prior for

π1, . . . , πK — giving what’s called a Dirichlet process mixture model.

If we use a Dirichlet prior for π1, . . . , πK with all parameters being α/K, the

limiting form of the “law of succession” for the predictive distribution of Zi,

representing which mixture component to use for item i, is

P (Zi = k | z1, . . . , zi−1) =
ni,k + α/K

i− 1 + α
→ ni,k

i− 1 + α

P (Zi 6= Zj for all j < i | z1, . . . , zi−1) → α

i− 1 + α

where ni,k is the number of z1, . . . , zi−1 that are equal to k.

So even with infinite K, behaviour is reasonable: The probability of the next

data item being associated with a new mixture component is neither 0 nor 1.

The Prior for Mixing Proportions as K Increases

Three random values from priors for π1, . . . , πK :

0.
0

0.
2

0.
4

0.
6

0.
8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

α = 1, K = 50 :
0.

0
0.

1
0.

2
0.

3
0.

4

0.
0

0.
1

0.
2

0.
3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

α = 1, K = 150 :

The Prior for Mixing Proportions as α Varies

Three random values from priors for π1, . . . , πK :

0.
0

0.
1

0.
2

0.
3

0.
4

0.
0

0.
1

0.
2

0.
3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

α = 1, K = 150 :
0.

0
0.

05
0.

10
0.

15
0.

20
0.

25

0.
0

0.
05

0.
10

0.
15

0.
20

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

α = 5, K = 150 :

