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1 A: Steps for implementing the ABSL algorithm

Algorithm 1 describes the steps needed to implement ABSL.

2 B: Details of the Pilot Run

In the case of ABC samplers, before running a MCMC chain, we estimate the initial
and final thresholds ε0 and ε15 (15 equal steps in log scale were used for all models)
and the matrix A which is used to calculate the discrepancy δ = d(S(y), s0) = (S(y)−
s0)TA(S(y)− s0).
To estimate A, we use the following steps:

• Set A = Id

• Repeat steps I and II below J times (J=3 in our implementations)

I Generate 500 pairs {ζi,yi}500
i=1 from p(ζ)f(y|ζ) and calculate discrepancies {ζi, δi}500

i=1

with δi = d(S(yi), s0)

II Let ζ∗ with smallest discrepancy. Finally generate 100 pseudo-data (y1, . . . ,y100)
from f(y|ζ∗), compute corresponding summary statistics (s1, . . . , s100) and
set A to be the inverse of covariance matrix of (s1, . . . , s100).

We set ε0 to be the 5% quantile of the observed discrepancies. The final ε15 is
obtained by implementing a Random Walk version of Algorithm 3 and decreasing ε0
gradually by setting εj as the 1% quantile of discrepancies δ corresponding to accepted
samples generated between adaption points aj−1 and aj , for 2 ≤ j ≤ 15.

The number of simulations was set to 500 and 100 just for computational convenience
and is not driven by any theoretical arguments.
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2 Approximate MCMC for Approximate Bayes

3 C: Moving Average Model

A popular toy example to check the performances of ABC and BSL techniques is MA2
model:

zi
iid∼ N (0, 1); i = {−1, 0, 1, · · · , n},

yi = zi + θ1zi−1 + θ2zi−2; i = {1, · · · , n}.
(1)

The data are represented by the sequence y = {y1, · · · , yn}. It is well known that Yi
follow a stationary distribution for any θ1, θ2, but there are conditions required for the
identifiability. Hence, we impose a uniform prior on the following set:

θ1 + θ2 ≥ −1,

θ1 − θ2 ≤ 1,

−2 ≤ θ1 ≤ 2,

−1 ≤ θ2 ≤ 2.

(2)

It is very easy to see that the joint distribution of y is multivariate Gaussian with
mean 0, diagonal variances 1 + θ2

1 + θ2
2, covariance at lags 1 and 2, θ1 + θ1θ2 and θ2

respectively and zero at other lags. In this case, the (Exact) sampling is feasible. For
simulations we set {θ1 = 0.6, θ2 = 0.6}, n = 200 and define the summary statistics
S(y) = (γ̂0(y), γ̂1(y), γ̂2(y)) as the sample variance and the covariances at lags 1 and
2. First we show the results based on one replicate. Figure 1 shows the trace plots,
histograms and auto-correlation functions estimated from the posterior draws for pa-
rameters θ1 and θ2 for the AABC-U sampler. Note that only post burn-in samples are
shown. Similarly, Figure 2 and Figure 3 display the behaviour of ABSL-U sampler
and standard ABC-RW, respectively. From these plots it is apparent that the proposed
AABC-U and ABSL-U have much better mixing than ABC-RW. In the interest of
keeping the paper length within reasonable limits, we briefly mention that additional
simulations suggest that AABC-L is similar to AABC-U and ABSL-L to ABSL-U, while
ABC-IS is outperformed by ABC-RW.

In order to summarize and compare the information in the MCMC draws produced
by the approximated samplers and the exact chain, we plot the estimated densities in
Figure 4. The left and right side plots refer to θ1 and θ2, respectively. The two upper
plots compare the estimated density of the exact MCMC sampler with ABC-based ones
(SMC, ABC-RW and AABC-U), while the two lower plots compare the exact sampler
with Synthetic Likelihood based methods (BSL-IS and ABSL-U).

The posterior distributions evaluated from AABC-U is very similar to those pro-
duced by SMC and ABC-RW, but all are distinct from the Exact one. This latter
difference may be due to the loss of information incurred when the posterior is con-
ditional on a non-sufficient statistic. Similarly, the distribution produced by ABSL-U
draws is very close to that of BSL-IS. These observations hold for both components, θ1

and θ2.
To study the accuracy, precision and efficiency of the proposed samplers we perform a
simulation study where 100 data sets are generated and all samplers are run for every
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Figure 1: MA2 model: AABC-U Sampler. Each row corresponds to parameters θ1 (top
row) and θ2 (bottom row) and shows in order from left to right: Trace-plot, Histogram
and Auto-correlation function. Red lines represent true parameter values.
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Figure 2: MA2 model: ABSL-U Sampler. Each row corresponds to parameters θ1 (top
row) and θ2 (bottom row) and shows in order from left to right: Trace-plot, Histogram
and Auto-correlation function. Red lines represent true parameter values.
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Figure 3: MA2 model: ABC-RW Sampler. Each row corresponds to parameters θ1 (top
row) and θ2 (bottom row) and shows in order from left to right: Trace-plot, Histogram
and Auto-correlation function. Red lines represent true parameter values.
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Figure 4: MA model: Estimated densities for each component. First row compares Ex-
act, SMC, ABC-RW and AABC-U samplers. Second row compares Exact, BSL-IS and
ABSL-U. Columns correspond to parameter’s components, from left to right: θ1 and θ2.
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Table 1: Simulation Results (MA model): Average Difference in Mean, Difference in
Covariance, Total Variation, square roots of Bias and MSE, Effective Sample Size per
CPU time, Variances of Lower/Upper Quantiles and Mean times CPU time for every
sampling algorithm.

Diff with Exact Diff with True Par Efficiency

Sampler DIM DIC TV
√

Bias2
√

MSE ESS/cpu VQL ∗ cpu VQU ∗ cpu VE ∗ cpu

SMC 0.082 0.005 0.418 0.014 0.116 - 0.040 0.052 0.009
ABC-RW 0.088 0.006 0.466 0.016 0.124 0.231 0.040 0.018 0.029
ABC-IS 0.084 0.007 0.455 0.016 0.116 0.389 0.083 0.013 0.040
AABC-U 0.083 0.007 0.444 0.018 0.117 6.215 0.007 0.009 0.003
AABC-L 0.080 0.007 0.438 0.017 0.113 5.107 0.004 0.011 0.013
BSL-RW 0.082 0.007 0.438 0.015 0.115 0.282 0.092 0.492 0.046
BSL-IS 0.081 0.007 0.436 0.015 0.115 0.923 0.035 0.109 0.010
ABSL-U 0.081 0.010 0.443 0.017 0.115 5.584 0.013 0.038 0.004
ABSL-L 0.082 0.008 0.441 0.015 0.115 6.030 0.009 0.017 0.003

data set. The results are summarized in Table 3. Examining this table we immediately
note that the ESS/CPU measure is much larger for the proposed algorithms than for
the standard methods. The improvement is very substantial, for example ESS/cpu for
AABC-U is 12 times larger than for the standard ABC procedures like ABC-RW. The
proposed methods generally also outperform SMC sampler in terms of overall efficiency,
i.e. when variances of the quantiles and mean CPU time are considered jointly. Similar
results are shown for Bayesian Synthetic Likelihood. We also examine DIM, DIC, TV
and MSE quantities that provide information about the proximity of approximate sam-
ples to the exact MCMC ones. For all these quantities the smaller the value the better is
the sampler. We see that all these measures for AABC-U and AABC-L are very similar
to SMC, ABC-RW and ABC-IS and frequently outperforms them. Similarly for BSL
approach. Another observation is that the approximated algorithm with the uniform
and linear weights generally perform very similarly.
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4 D: Stochastic Volatility with Gaussian emissions

When analyzing stationary time series, it is frequently observed that there are periods
of high and periods of low volatility. Such phenomenon is called volatility clustering, see
for example (Lux and Marchesi, 2000). One way to model such a behaviour is through
a Stochastic Volatility (SV) model, where variances of the observed time series depend
on hidden states that themselves form a stationary time series. Consider the following
model which depends on three parameters (θ1, θ2, θ3):

x1 ∼ N (0, 1/(1− θ2
1)); vi

iid∼ N (0, 1); wi
iid∼ N (0, 1); i = {1, · · · , n},

xi = θ1xi−1 + vi; i = {2, · · · , n},

yi =
√

exp(θ2 + exp(θ3)xi)wi; i = {1, · · · , n}.

(3)

Only y = (y1, · · · , yn) is observed while (x1, · · · , xn) are hidden states. The parameter
θ1 ∈ (−1, 1) controls the auto-correlation of hidden states, while θ2 and θ3 are unre-
stricted and relate to the hidden states influence on the variability of the observed series.
Given a hidden state, the distribution of the observed variable is normal which may not
be appropriate in some examples. We introduce the following priors, independently for
each parameter:

θ1 ∼ Unif [0, 1],

θ2 ∼ N (0, 1,−L,L),

θ3 ∼ N (0, 1,−L,L).

(4)

We set the true parameters to (θ1 = 0.95, θ2 = −2, θ3 = −1) and length of the time
series n = 500. We use the Particle MCMC (PMCMC) as the Exact sampling scheme.
Since the pseudo-data sets can be easily generated for every parameter value, the SV is a
good example to demonstrate the performances of the generative algorithms considered
here. For summary statistics we use a 7-dimensional vector whose components are:

(C1) #{i : y2
i > quantile(y2

0, 0.99)},

(C2) Average of y2,

(C3) Standard deviation of y2,

(C4) Sum of the first 5 auto-correlations of y2,

(C5) Sum of the first 5 auto-correlations of {1{y2
i
<quantile(y2,0.1)}}

n
i=1,

(C6) Sum of the first 5 auto-correlations of {1{y2
i
<quantile(y2,0.5)}}

n
i=1,

(C7) Sum of the first 5 auto-correlations of {1{y2
i
<quantile(y2,0.9)}}

n
i=1.

Figures 5, 6 and 7 show trace-plots, histograms and ACF function for AABC-U, ABSL-
U and ABC-RW samplers respectively for each component (red lines correspond to the
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Figure 5: SV model: AABC-U Sampler. Each row corresponds to parameters θ1 (top
row), θ2 (middle row) and θ3 (bottom row) and shows in order from left to right:
Trace-plot, Histogram and Auto-correlation function. Red lines represent true parameter
values.

true parameter). The major observation is that AABC-U and ABSL-U are less sluggish
than ABC-RW, exhibiting smaller auto-correlation values.

In Figure 8 we compare the sample-based kernel smoothing posterior marginal den-
sity estimates for Exact, SMC, ABC-RW and AABC-U (top row) as well as Exact,
BSL-IS and ABSL-U (bottom row). We note that all samples obtained from the ap-
proximate algorithms are similar to the Exact posterior (produced using PMCMC with
100 particles). Generally all ABC-based samplers perform similarly, on the other hand
ABSL-U performs worse than generic BSL-IS in this run as it is shifted away from the
exact posterior for θ1 and θ3.
To get more general conclusions we show average results in Table 5 over 100 data repli-
cates. We note that the proposed algorithms outperform the benchmark samplers by 8
times in ESS/cpu. These methods also significantly outperform the generic samplers if
the variance of quantiles and mean (times CPU time) is considered. Moreover, AABC-U
and AABC-L have very similar or smaller values for DIM, TV and MSE, which demon-
strates that these samplers are much more efficient than the standard methods and at
the same produce as accurate (or more accurate) parameter estimates than the generic
algorithms.
ABSL-U and ABSL-L on the other hand did not perform well for this model, TV and
MSE for these samplers are larger by 10% than the generic ones.



8 Approximate MCMC for Approximate Bayes

0 10000 20000 30000 40000

0.
6

0.
8

1.
0

Trace−plot for θ1

Iteration

θ 1

Histogram for θ1

θ1

F
re

qu
en

cy

0.6 0.7 0.8 0.9 1.0

0
40

00
80

00

0 50 100 150 200

0.
0

0.
4

0.
8

Lag

A
C

F

ACF for θ1

0 10000 20000 30000 40000

−
4.

0
−

3.
0

−
2.

0

Trace−plot for θ2

Iteration

θ 2

Histogram for θ2

θ2

F
re

qu
en

cy

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5

0
20

00
50

00

0 50 100 150 200

0.
0

0.
4

0.
8

Lag

A
C

F

ACF for θ2

0 10000 20000 30000 40000

−
2.

0
−

1.
0

0.
0

Trace−plot for θ3

Iteration

θ 3

Histogram for θ3

θ3

F
re

qu
en

cy

−2.5 −2.0 −1.5 −1.0 −0.5 0.0

0
20

00
50

00

0 50 100 150 200

0.
0

0.
4

0.
8

Lag

A
C

F

ACF for θ3

Figure 6: SV model: ABSL-U Sampler. Each row corresponds to parameters θ1 (top
row), θ2 (middle row) and θ3 (bottom row) and shows in order from left to right:
Trace-plot, Histogram and Auto-correlation function. Red lines represent true parameter
values.

Table 2: Simulation Results (SV model): Average Difference in Mean, Difference in
Covariance, Total Variation, square roots of Bias and MSE, Effective Sample Size per
CPU time, Variances of Lower/Upper Quantiles and Mean times CPU time for every
sampling algorithm.

Diff with Exact Diff with True Par Efficiency

Sampler DIM DIC TV
√

Bias2
√

MSE ESS/cpu VQL ∗ cpu VQU ∗ cpu VE ∗ cpu

SMC 0.232 0.043 0.417 0.187 0.316 - 1.907 1.917 0.272
ABC-RW 0.210 0.040 0.459 0.228 0.342 0.097 2.785 1.200 1.678
ABC-IS 0.179 0.044 0.460 0.196 0.294 0.090 4.728 2.077 2.263
AABC-U 0.194 0.045 0.424 0.212 0.304 2.445 0.329 0.710 0.259
AABC-L 0.189 0.044 0.420 0.211 0.316 2.253 1.002 0.130 0.225
BSL-RW 0.200 0.036 0.411 0.175 0.287 0.043 12.619 10.843 2.888
BSL-IS 0.195 0.036 0.404 0.175 0.285 0.113 12.273 7.514 1.246
ABSL-U 0.229 0.042 0.551 0.184 0.303 0.822 0.945 1.766 0.326
ABSL-L 0.231 0.041 0.548 0.197 0.311 0.817 0.747 1.183 0.287
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Figure 7: SV model: ABC-RW Sampler. Each row corresponds to parameters θ1 (top
row), θ2 (middle row) and θ3 (bottom row) and shows in order from left to right:
Trace-plot, Histogram and Auto-correlation function. Red lines represent true parameter
values.

5 E: Additional Plots

5.1 Additional Plots Related to Ricker’s Model

Figures 9, 12 and 11 show trace-plots, histograms and ACF function for AABC-U,
ABSL-U and ABC-RW samplers for each component (red lines correspond to the true
parameter).

In Figure 12 we present the kernel density estimates of the marginal posteriors
based on the samples obtained by different methods. First row compares Exact, SMC,
ABC-RW and AABC-U samplers. Second row compares Exact, BSL-IS and ABSL-U.
Columns correspond to parameter’s components, from left to right: θ1, θ2 and θ3.

5.2 Additional Plots Related to Stochastic Volatility with α-Stable
errors

Figures 13, 15 and 14 show trace-plots, histograms and ACF function for AABC-U,
ABSL-U and ABC-RW samplers respectively for each component (red lines correspond
to the true parameters).

Figure 16 shows the plotted estimated densities based on the SMC, ABC-RW and
AABC-U samplers.
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Figure 8: SV model: Estimated posterior marginal densities for each component. First
row compares Exact, SMC, ABC-RW and AABC-U samplers. Second row compares
Exact, BSL-IS and ABSL-U. Columns correspond to parameter’s components, from left
to right: θ1, θ2 and θ3.

6 F: Additional Simulations using Random Walk
Metropolis

In this section we perform additional simulations, on the same examples used in the
main paper, but using random walk proposals. These new algorithms are no longer
theoretically justifiable within the constructed framework, but it is still interesting to
see how do these algorithms work in practice. Thus we compare the following algorithms:

(SMC) Standard Sequential Monte Carlo for ABC;

(ABC-RW) The modified ABC-MCMC algorithm which updates ε and the random
walk Metropolis transition kernel during burn-in;

(ABC-IS) The modified ABC-MCMC algorithm which updates ε and the Independent
Metropolis transition kernel during burn-in;

(BSL-RW) Modified BSL where it adapts the random walk Metropolis transition kernel
during burn-in;

(BSL-IS) Modified BSL where it adapts the independent Metropolis transition kernel
during burn-in;
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Figure 9: Ricker’s model: AABC-U Sampler. Each row corresponds to parameters θ1

(top row), θ2 (middle row) and θ3 (bottom row) and shows in order from left to right:
Trace-plot, Histogram and Auto-correlation function. Red lines represent true parameter
values.
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Figure 10: Ricker’s model: ABSL-U Sampler. Each row corresponds to parameters θ1

(top row), θ2 (middle row) and θ3 (bottom row) and shows in order from left to right:
Trace-plot, Histogram and Auto-correlation function. Red lines represent true parameter
values.
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Figure 11: Ricker’s model: ABC-RW Sampler. Each row corresponds to parameters θ1

(top row), θ2 (middle row) and θ3 (bottom row) and shows in order from left to right:
Trace-plot, Histogram and Auto-correlation function. Red lines represent true parameter
values.
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Figure 12: Ricker’s model: Estimated posterior marginal densities for each component.
First row compares Exact, SMC, ABC-RW and AABC-U samplers. Second row com-
pares Exact, BSL-RW and ABSL-U. Columns correspond to parameter’s components,
from left to right: θ1, θ2 and θ3.
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Figure 13: SV α-Stable model: AABC-U Sampler. Each row corresponds to parameters
θ1 (top row), θ2 (second top row), θ3 (second bottom row), θ4 (bottom row) and shows
in order from left to right: Trace-plot, Histogram and Auto-correlation function. Red
lines represent true parameter values.
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Figure 14: SV α-Stable model: ABC-RW Sampler. Each row corresponds to parameters
θ1 (top row), θ2 (second top row), θ3 (second bottom row), θ4 (bottom row) and shows
in order from left to right: Trace-plot, Histogram and Auto-correlation function. Red
lines represent true parameter values.
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Figure 15: SV α-Stable model: ABSL-U Sampler. Each row corresponds to parameters
θ1 (top row), θ2 (second top row), θ3 (second bottom row), θ4 (bottom row) and shows
in order from left to right: Trace-plot, Histogram and Auto-correlation function. Red
lines represent true parameter values.
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Figure 16: SV α-Stable model: Estimated densities for each component. First row com-
pares SMC, ABC-RW and AABC-U samplers. Second row compares SMC, BSL-IS and
ABSL-U. Columns correspond to parameter’s components, from left to right: θ1, θ2, θ3

and θ4.
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(AABC-IS-U) Approximated ABC-MCMC with independent proposals and uniform
(U) weights;

(AABC-IS-L) Approximated ABC-MCMC with independent proposals and linear (L)
weights;

(AABC-RW-U) Approximated ABC-MCMC with the random walk Metropolis transi-
tion kernel and uniform (U) weights;

(AABC-RW-L) Approximated ABC-MCMC with the random walk Metropolis transi-
tion kernel and linear (L) weights;

(ABSL-IS-U) Approximated BSL-MCMC with independent proposals and uniform (U)
weights;

(AABC-IS-L) Approximated BSL-MCMC with independent proposals and linear (L)
weights;

(ABSL-RW-U) Approximated BSL-MCMC with the random walk Metropolis transition
kernel and uniform (U) weights;

(AABC-RW-L) Approximated BSL-MCMC with the random walk Metropolis transi-
tion kernel and linear (L) weights;

(Exact) Likelihood is computable and posterior samples are generated using an MCMC
algorithm that is example-specific.

Note that AABC-IS-U, AABC-IS-L, ABSL-IS-U and ABSL-IS-L are the proposed algo-
rithms described and assessed in the paper. We now add AABC-RW-U, AABC-RW-L,
ABSL-RW-U and ABSL-RW-L where instead of an independent (IS), a random walk
(RW) proposal is implemented (as in ABC-RW and BSL-RW) where covariance matrix
is learned during the burn-in period.
Tables 3,4,5 and 6 show the performance of each sampling algorithm (averaged over
100 independent data-set replicates) for Moving Average, Ricker’s, Stochastic Volatility
with Gaussian and α-Stable errors models respectively.

First focusing on the ABC-based samplers we observe that for all the models the
approximated posterior distributions of AABC-RW are generally similar to AABC-IS;
DIM, DIC, TV and

√
MSE are quite similar. The efficiency of these samplers (in terms

of ESS/cpu) however shows a deterioration compared to the independent samplers, but
still significantly outperform the generic samplers (ABC-RW and ABC-IS). When the
efficiency is measured using variances of quantiles and mean (times CPU time) then
generally AABC-RW-U performs better than AABC-RW-L. Moreover, for the Moving
Average and Stochastic Volatility (with Gaussian errors) models, AABC-RW-U does
not show a clear improvement over the benchmarks in terms of VE ∗ cpu. This is due to
the fact that auto-correlation values (and hence the variance of the estimates) for RW
samplers are generally larger than for IS.
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Looking now at BSL-based algorithms, the situation is a little bit different. The
proximity of the approximate posterior distribution of RW algorithms to the true pos-
terior and true parameters is still similar to IS sampler however the efficiency changes
from one model to another. For the Moving Average model, IS samplers clearly outper-
form the RW in terms of efficiency. It is reversed for Ricker’s model where ABSL-RWs
show much better ESS/cpu compared to the IS sampler. Finally for Stochastic volatility
models (with Gaussian and α-stable emission probabilities) the efficiency of the algo-
rithms with RW and IS proposals are comparable in terms of ESS/cpu, but IS is still
more efficient when the variances of quantiles and mean (times CPU time) are consid-
ered. The algorithms with RW proposals still show better efficiency compared to the
benchmarks (BSL-RW and BSL-IS).

To summarize, the RWM algorithms still show significant improvement in efficiency
compared to the generic samplers, without sacrificing the precision of the estimated
posterior. However, for some models, these samplers show a deterioration in efficiency
when compared to the IS samplers. The dimension of parameter space for all the models
considered does not exceed 4 and therefore the implementation of the IS is feasible. For
larger parameter spaces the approximation of the target distribution with a multivariate
normal and hence the use of IS may become more problematic and thus making RWM
a viable alternative.

Table 3: Simulation Results (MA model): Average Difference in Mean, Difference in
Covariance, Total Variation, square roots of Bias and MSE, Effective Sample Size per
CPU time, Variances of Lower/Upper Quantiles and Mean times CPU time for every
sampling algorithm.

Diff with Exact Diff with True Par Efficiency

Sampler DIM DIC TV
√

Bias2
√

MSE ESS/cpu VQL ∗ cpu VQU ∗ cpu VE ∗ cpu

SMC 0.081 0.004 0.389 0.014 0.115 - 0.040 0.052 0.009
ABC-RW 0.083 0.006 0.394 0.019 0.119 0.364 0.040 0.018 0.029
ABC-IS 0.082 0.007 0.390 0.015 0.116 0.634 0.083 0.013 0.040
AABC-IS-U 0.082 0.006 0.395 0.015 0.116 8.060 0.007 0.009 0.003
AABC-IS-L 0.083 0.007 0.398 0.014 0.116 6.418 0.004 0.011 0.013
AABC-RW-U 0.081 0.006 0.391 0.015 0.116 3.281 0.020 0.021 0.018
AABC-RW-L 0.081 0.006 0.392 0.014 0.116 2.632 0.023 0.025 0.016
BSL-RW 0.081 0.007 0.401 0.014 0.114 0.425 0.092 0.492 0.046
BSL-IS 0.081 0.007 0.403 0.015 0.115 1.413 0.035 0.109 0.010
ABSL-IS-U 0.080 0.009 0.401 0.017 0.115 7.428 0.013 0.038 0.004
ABSL-IS-L 0.081 0.007 0.400 0.015 0.115 8.061 0.009 0.017 0.003
ABSL-RW-U 0.080 0.013 0.409 0.023 0.116 1.741 1.087 1.553 0.045
ABSL-RW-L 0.081 0.011 0.404 0.021 0.115 2.057 0.373 0.733 0.022
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Table 4: Simulation Results (Ricker’s model): Average Difference in Mean, Difference
in Covariance, Total Variation, square roots of Bias and MSE, Effective Sample Size per
CPU time, Variances of Lower/Upper Quantiles and Mean times CPU time for every
sampling algorithm.

Diff with Exact Diff with True Par Efficiency

Sampler DIM DIC TV
√

Bias2
√

MSE ESS/cpu VQL ∗ cpu VQU ∗ cpu VE ∗ cpu

SMC 0.151 0.017 0.336 0.084 0.218 - 0.655 0.180 0.065
ABC-RW 0.130 0.020 0.326 0.051 0.180 0.328 1.283 0.760 0.907
ABC-IS 0.154 0.022 0.383 0.082 0.221 0.169 0.800 1.875 0.881
AABC-IS-U 0.141 0.027 0.350 0.066 0.202 6.568 0.320 0.101 0.063
AABC-IS-L 0.142 0.026 0.339 0.070 0.200 7.818 0.505 0.065 0.245
AABC-RW-U 0.134 0.020 0.338 0.058 0.180 2.147 0.209 0.121 0.064
AABC-RW-L 0.138 0.021 0.334 0.067 0.193 1.996 11.869 0.117 3.026
BSL-RW 0.126 0.007 0.349 0.043 0.202 0.054 3.280 1.272 0.900
BSL-IS 0.111 0.008 0.343 0.015 0.182 0.011 31.815 4.890 6.892
ABSL-IS-U 0.101 0.006 0.323 0.023 0.167 0.302 1.042 0.444 0.242
ABSL-IS-L 0.109 0.006 0.331 0.014 0.181 0.241 2.280 0.664 0.267
ABSL-RW-U 0.115 0.005 0.326 0.019 0.185 0.523 0.737 0.542 0.202
ABSL-RW-L 0.113 0.005 0.331 0.021 0.184 0.365 0.954 0.498 0.332

Table 5: Simulation Results (SV model): Average Difference in Mean, Difference in
Covariance, Total Variation, square roots of Bias and MSE, Effective Sample Size per
CPU time, Variances of Lower/Upper Quantiles and Mean times CPU time for every
sampling algorithm.

Diff with Exact Diff with True Par Efficiency

Sampler DIM DIC TV
√

Bias2
√

MSE ESS/cpu VQL ∗ cpu VQU ∗ cpu VE ∗ cpu

SMC 0.227 0.036 0.372 0.186 0.316 - 1.907 1.917 0.272
ABC-RW 0.196 0.035 0.397 0.220 0.319 0.149 2.785 1.200 1.678
ABC-IS 0.186 0.039 0.380 0.195 0.327 0.148 4.728 2.077 2.263
AABC-IS-U 0.191 0.038 0.385 0.217 0.309 4.051 0.329 0.710 0.259
AABC-IS-L 0.187 0.041 0.376 0.214 0.308 3.712 1.002 0.130 0.225
AABC-RW-U 0.220 0.036 0.409 0.230 0.402 2.298 1.052 0.330 0.401
AABC-RW-L 0.200 0.033 0.398 0.227 0.311 1.864 1.407 1.479 0.639
BSL-RW 0.195 0.031 0.374 0.180 0.289 0.078 12.619 10.843 2.888
BSL-IS 0.189 0.031 0.365 0.175 0.284 0.185 12.273 7.514 1.246
ABSL-IS-U 0.223 0.037 0.514 0.187 0.307 1.256 0.945 1.766 0.326
ABSL-IS-L 0.223 0.037 0.510 0.195 0.308 1.265 0.747 1.183 0.287
ABSL-RW-U 0.232 0.034 0.502 0.215 0.315 1.220 4.103 3.646 0.883
ABSL-RW-L 0.232 0.033 0.495 0.224 0.317 1.245 2.703 2.513 0.464
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Table 6: Simulation Results (SV α-Stable model): Average Difference in Mean, Differ-
ence in Covariance, Total Variation, square roots of Bias and MSE, Effective Sample
Size per CPU time, Variances of Lower/Upper Quantiles and Mean times CPU time for
every sampling algorithm. In DIM, DIC and TV, samplers are compared to SMC.

Diff with Exact Diff with True Par Efficiency

Sampler DIM DIC TV
√

Bias2
√

MSE ESS/cpu VQL ∗ cpu VQU ∗ cpu VE ∗ cpu

SMC 0.000 0.000 0.000 0.224 0.305 - 1.754 0.375 0.142
ABC-RW 0.087 0.015 0.173 0.242 0.321 0.120 1.387 0.249 0.565
ABC-IS 0.077 0.016 0.185 0.225 0.306 0.120 0.799 0.871 0.472
AABC-IS-U 0.077 0.014 0.130 0.254 0.323 2.550 0.252 0.511 0.085
AABC-IS-L 0.068 0.013 0.120 0.246 0.304 2.344 0.111 0.093 0.080
AABC-RW-U 0.073 0.010 0.127 0.248 0.336 1.595 0.278 0.085 0.130
AABC-RW-L 0.061 0.009 0.110 0.257 0.315 1.399 3.464 0.772 1.250
BSL-RW 0.045 0.011 0.131 0.230 0.293 0.064 10.847 3.657 3.111
BSL-IS 0.043 0.009 0.117 0.225 0.288 0.142 12.356 5.826 1.246
ABSL-IS-U 0.065 0.014 0.210 0.229 0.297 1.088 0.706 0.495 0.196
ABSL-IS-L 0.062 0.013 0.198 0.227 0.295 1.014 1.372 0.470 0.238
ABSL-RW-U 0.059 0.012 0.196 0.266 0.322 1.057 3.520 2.274 0.399
ABSL-RW-L 0.059 0.012 0.202 0.274 0.328 1.065 3.546 1.707 0.366

7 G: Data Analysis

For real world example we consider Dow-Jones index daily log returns from January 1,
2010 until December 31, 2018. The data were downloaded from Yahoo Finance1 website.
Given a time series of prices Pi, i = 1, · · · , n, log returns are calculated in the following
way:

ri = log(Pi)− log(Pi−1), i = 2, · · · , n.
The resulting time series is of length 2262. To make log returns more suitable for analysis,
we standardize rt by subtracting its mean and then multiply each return by 200, so
that absolute values were not too small, Figure 17 shows transformed returns. This
time series (y0) has mean zero by construction, and its auto-correlations and partial
auto-correlations are insignificant for any lag. However, it is obvious that variances are
correlated and there are alternating periods of low and high variability. This prompts
us to use Stochastic Volatility model with α-Stable errors as described in the previous
section. Since the likelihood does not exist for this class of models, the simulation-based
methods are probably the only available tools for the inference. The evolution of time
series is described by equation (5.4) and the parameter’s prior is set as in equation (5.5).
The skewed parameter of Stable distribution is fixed at value of −1. To estimate the
posterior distribution we run AABC-U and ABLS-U samplers. The summary statistic
for both methods is the same 7-dimensional vector defined in section 5.2. Each chain
was run for 100 thousand iterations with last 80 thousands used for inference. Figures 18
and 19 show trace-plots and histograms for AABC-U and ABSL-U samplers respectively
for each parameter. The conclusions are in agreement with the ones suggested by the

1https://ca.finance.yahoo.com/
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Figure 17: Dow Jones daily transformed log return for a period of Jan 2010 - Dec 2018.
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Figure 18: Dow Jones log returns: AABC-U Sampler. Every column corresponds to a
particular parameter component from left to right: θ1, θ2, θ3, θ4 and shows trace-plot
on top and histogram on bottom.

simulation study. The mixing of AABC-U is generally better than of ABSL-U. However,
posterior draws of ABSL-U for the first 3 components are uni-modal, symmetric and
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Figure 19: Dow Jones log returns: ABSL-U Sampler. Every column corresponds to a
particular parameter component from left to right: θ1, θ2, θ3, θ4 and shows trace-plot
on top and histogram on bottom.

bell-shaped, which is not surprising since the use of Gaussian priors within the BSL
method yields Gaussian posteriors due to conjugacy. Table 7 reports posterior mean
and 95% credible intervals for every parameter and for both samplers. AABC-U and

Table 7: Dow Jones log return stochastic volatility: 95% credible intervals and posterior
averages for 4 parameters for two proposed samplers (AABC-U and ABSL-U).

AABC-U ABSL-U
Parameter 2.5% Quantile Average 97.5% Quantile 2.5% Quantile Average 97.5% Quantile
θ1 0.787 0.899 0.990 0.775 0.856 0.959
θ2 -0.411 -0.147 0.112 -0.369 -0.092 0.222
θ3 -1.405 -0.790 -0.304 -1.858 -0.841 -0.206
θ4 1.758 1.916 1.997 1.721 1.909 1.996

ABSL-U produce similar results. We see that the estimated correlation between adjacent
variables in the hidden layer is about 0.9 and the estimate of α-Stable emission noise
is 1.91. This model can produce more extreme values than those predicted by one with
standard Gaussian noise.
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8 H: Theoretical Justifications

8.1 Proofs of theorems

Proof of Theorem 6.1. Note that supθ ‖ĥ(θ;ZN )− h(θ)‖ → 0 w.p.1 implies that for all
θ and ζ∗ in Θ:

ĥ(θ;ZN )
p→ h(θ),

ĥ(ζ∗;ZN )
p→ h(ζ∗),

therefore by Slutsky’s theorem we obtain

ĥ(ζ∗;ZN )

ĥ(θ;ZN )

p→ h(ζ∗)

h(θ)
,

for all (θ, ζ∗) in Θ×Θ. therefore

α̂(θ, ζ∗;ZN ) =
p(ζ∗)q(θ)ĥ(ζ∗;ZN )

p(θ)q(ζ∗)ĥ(θ;ZN )

p→ p(ζ∗)q(θ)h(ζ∗)

p(θ)q(ζ∗)h(θ)
= α(θ, ζ∗).

Since min(1, x) is a continuous function, Continuous Mapping Theorem implies that

â(θ, ζ∗;ZN ) = min(1, α̂(θ, ζ∗;ZN ))
p→ min(1, α(θ, ζ∗)) = a(θ, ζ∗).

Note that this not just a point-wise convergence, but uniform convergence in probability
so that one C will work for all (θ, ζ∗). That is, for any (θ, ζ∗), δ > 0 and ε > 0 there
exists C such that for all N > C, P (|â(θ, ζ∗;ZN )− a(θ, ζ∗)| > δ) < ε.
Another important observation is that (fixing θ, ζ∗ and letting a(θ, ζ∗) = a and â(θ, ζ∗;ZN ) =
â for convenience)

EZN
(|â− a|) =

∫
|â− a|dF (ZN ) =

∫
|â−a|<δ

|â− a|dF (ZN ) +

∫
|â−a|≥δ

|â− a|dF (ZN ) ≤

≤ δ +

∫
|â−a|≥δ

dF (ZN ) ≤ δ + ε.

(5)

Because |â − a| ≤ 1 and applying the definition of the convergence in probability. The
above inequality shows that we can make this expected value arbitrary small by taking
large enough N , moreover this result is uniform, so one N will work for all θ and ζ∗.
Next we focus on the distance between two transition kernels, this discussion is similar
to the proof of Corollary 2.3 in Alquier et al. (2016). Observe that (using independent
proposals):

P (θ, dζ∗) = q(ζ∗)a(θ, ζ∗)dζ∗ + δθ(ζ
∗)r(θ),

P̂N (θ, dζ∗) =

∫
q(ζ∗)â(θ, ζ∗;ZN )dζ∗dF (ZN ) + δθ(ζ

∗)r̂N (θ),
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where r(θ) = 1 −
∫
q(ζ∗)a(θ, ζ∗)dζ∗ and r̂N (θ) = 1 −

∫∫
q(ζ∗)a(θ, ζ∗)dζ∗dF (ZN ). Fix

θ ∈ Θ, and noting that the total variation between two probability distributions that
have densities is also equal to:

‖π − π̂‖TV = 0.5

∫
|π(θ)− π̂(θ)|dθ.

Therefore

P (θ, dζ∗)− P̂N (θ, dζ∗) =

∫
q(ζ∗)(a(θ, ζ∗)− â(θ, ζ∗;ZN ))dF (ZN )

+ δθ(dζ
∗)

∫∫
q(t)(a(θ, t)− â(θ, t;ZN ))dF (ZN )dt,

(6)

and it follows that

‖P (θ, dζ∗)− P̂N (θ, dζ∗)‖TV ≤0.5

{∫ ∣∣∣∣∫ q(ζ∗)(a(θ, ζ∗)− â(θ, ζ∗;ZN ))dF (ZN )

∣∣∣∣ dζ∗
+

∣∣∣∣∫∫ q(t)(a(θ, t)− â(θ, t;ZN ))dF (ZN )dt

∣∣∣∣}
≤0.5

{∫ ∣∣∣∣∫ q(ζ∗)(a(θ, ζ∗)− â(θ, ζ∗;ZN ))dF (ZN )

∣∣∣∣ dζ∗
+

∫ ∣∣∣∣∫ q(t)(a(θ, t)− â(θ, t;ZN ))dF (ZN )

∣∣∣∣ dt}
=

∫ ∣∣∣∣∫ q(t)(a(θ, t)− â(θ, t;ZN ))dF (ZN )

∣∣∣∣ dt
≤
∫∫

q(t) |a(θ, t)− â(θ, t;ZN )| dF (ZN )dt ≤ δ + ε

(7)

for any ε > 0 and δ > 0 and large enough N by (5). Since this result is true for any
θ ∈ Θ we finally get the main result:

sup
θ
‖P̂N (θ, dζ∗)− P (θ, dζ∗)‖TV ≤ δ + ε (8)

Proof of Theorem 6.2. We generally follow the proof of Theorem 2.4 in Johndrow et al.
(2015). First observe that:

νP̂0 · · · P̂M − µPM = (ν − µ)PM +

M−1∑
t=0

νP̂0 · · · P̂t(P̂t+1 − P )PM−t−1.

By Assumptions 2 and 3, we get:

‖νP̂0 · · · P̂tP̂t+1 − νP̂0 · · · P̂tP‖TV ≤ ε,
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and
‖νP̂0 · · · P̂tP̂t+1P

M−t−1 − νP̂0 · · · P̂tPPM−t−1‖TV ≤ ε(1− α)M−t−1.

Using these results, the triangular inequality and the formula for the sum of finite
geometric series we establish that:

‖νP̂0 · · · P̂M − µPM‖TV ≤‖µPM − νPM‖TV +

M−1∑
t=0

‖νP̂0 · · · P̂tP̂t+1P
M−t−1 − νP̂0 · · · P̂tPPM−t−1‖TV

≤(1− α)M‖µ− ν‖TV + ε

M−1∑
t=0

(1− α)M−t−1

=(1− α)M‖µ− ν‖TV + ε
1− (1− α)M

α
.

(9)

Finally we get the main result using that fact that µ is invariant for P (again using the
sum of finite geometric series)∥∥∥∥∥µ−

∑M−1
t=0 νP̂0 · · · P̂t

M

∥∥∥∥∥
TV

=

∥∥∥∥∥
∑M−1
t=0 µP t

M
−
∑M−1
t=0 νP̂0 · · · P̂t

M

∥∥∥∥∥
TV

≤ 1

M

M−1∑
t=0

‖µP t − νP̂0 · · · P̂t‖TV

≤ 1

M

M−1∑
t=0

(
(1− α)t‖µ− ν‖TV + ε

1− (1− α)t

α

)
=

(1− (1− α)M )‖µ− ν‖TV
Mα

− ε(1− (1− α)M )

Mα2
+
ε

α
.

(10)

Proof of Lemma 6.1. Without loss of generality we assume that k > j, next define:

f̃(θ(j)) = f(θ(j))− µjf,

g̃(θ(k)) = g(θ(k))− µkg,
so that E[f̃(θ(j))] = E[g̃(θ(k))] = 0. Then we get the following

cov(f(θ(j)), g(θ(k))) =E[f̃(θ(j))g̃(θ(k))] = E[E[f̃(θ(j))g̃(θ(k))|θ(j)]]

=E[f̃(θ(j))E[g̃(θ(k))|θ(j)]] = Eθ(j) [f̃(θ(j))δθ(j) P̂j+1 · · · P̂kg̃],
(11)

where δθ is point mass at θ and using our notation δθ(j) P̂j+1 · · · P̂k corresponds to the
conditional distribution of θ(k) given a fixed value of θ(j).
Using the general observation that for any two measures ν1 and ν2 and any bounded
function f the following inequality holds

|ν1f − ν2f | ≤ 2|f |‖ν1 − ν2‖TV , (12)
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we find that:

|δθ(j) P̂j+1 · · · P̂kg̃| =|δθ(j) P̂j+1 · · · P̂kg̃ − 0| = |δθ(j) P̂j+1 · · · P̂kg̃ − µkg̃|
=|δθ(j) P̂j+1 · · · P̂kg̃ − µjP̂j+1 · · · P̂kg̃| ≤ 2|g̃|‖δθ(j) P̂j+1 · · · P̂k − µjP̂j+1 · · · P̂k‖TV
≤2|g̃|(1− α∗)|k−j|

(13)

note that this result is for any θ(j) ∈ Θ. Returning to (11) we get that:

cov(f̃(θ(j)), g̃(θ(k))) ≤ 2|f̃ ||g̃|(1− α∗)|k−j|. (14)

Finally by the triangular inequality |f̃ | ≤ 2|f | for any j = 1, 2, · · · and similarly for |g̃|.
The desired result follows immediately.

Proof of Theorem 6.3. Using our standard notation νP̂0 · · · P̂tf = E[f(θ(t))], Theorem
6.2, Lemma 6.1 and properties of the double sum of geometric series we get

E

(µf − 1

M

M−1∑
t=0

f(θ(t))

)2
 = E

(µf − 1

M

M−1∑
t=0

νP̂0 · · · P̂tf +
1

M

M−1∑
t=0

νP̂0 · · · P̂tf −
1

M

M−1∑
t=0

f(θ(t))

)2


=

(
µf − 1

M

M−1∑
t=0

νP̂0 · · · P̂tf

)2

+ E

( 1

M

M−1∑
t=0

νP̂0 · · · P̂tf −
1

M

M−1∑
t=0

f(θ(t))

)2


≤
(

2|f |
(

(1− (1− α)M )‖µ− ν‖TV
Mα

− ε(1− (1− α)M )

Mα2
+
ε

α

))2

+
1

M2

M−1∑
j=0

M−1∑
t=0

cov(f(θ(j)), f(θ(t)))

≤ 4|f |2
(

(1− (1− α)M )

Mα
− ε(1− (1− α)M )

Mα2
+
ε

α

)2

+
8|f |2

M2

M−1∑
j=0

M−1∑
t=0

(1− α∗)|t−j|

= 4|f |2
(

(1− (1− α)M )

Mα
− ε(1− (1− α)M )

Mα2
+
ε

α

)2

+ 8|f |2
(

1

M
+

2

(α∗)2

(
(1− α∗)M+1 − (1− α∗)

M2
+

(1− α∗)− (1− α∗)2

M

))
.

(15)

Proof of Theorem 6.6. First by (B1) - (B4), Theorem 6.5 guarantees the uniform er-

godicity of the exact chain P with β = minθ∈Θ
q(θ)

p(θ)h(θ)/c where c is the normalizing

constant of the posterior. Note that β > 0 since Θ is compact, the ratio is continu-
ous and never zero. Therefore P satisfies Doeblin Condition. Next from (B1), (B4)

and (B5), Theorem 6.4 implies that supθ∈Θ ‖ĥ(θ;ZN ) − h(θ)‖ → 0 with probability

1. Hence by Theorem 6.1 the perturbed kernel P̂N can be made arbitrary close to the
exact kernel P for sufficiently large N . Note that the total variation distance between
P̂N and P decreases to zero as N increases. Finally, the assumptions (and therefore
conclusions) of Theorems 6.2 and 6.3 follow trivially.
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Proof of Corollary 6.1. First by (B1), (B2), (B3), (B4) and (B8), Theorem 6.5 guar-

antees the uniform ergodicity of the exact chain P with β = minθ∈Θ
q(θ)

p(θ)h(θ)/c where c is

the normalizing constant of the posterior. Note that β > 0 since Θ is compact, the ratio
is continuous and never zero. Therefore P satisfies the Doeblin Condition. Next from
(B1), (B5), (B6) and (B7), Theorem 6.4 implies that supθ∈Θ ‖ĥ(θ;ZN )− h(θ)‖ → 0

with probability 1. Hence by Theorem 6.1 the perturbed kernel P̂N can be made arbi-
trary close to the exact kernel P for sufficiently large N . Note that the total variation
distance between P̂N and P decreases to zero as N increases. Finally, the assumptions
(and therefore conclusions) of Theorems 6.2 and 6.3 follow trivially.
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Algorithm 1 Approximated Bayesian Synthetic Likelihood (ABSL)

1: Given s0, constant c, burn-in period B, J number of adaption points during
burn-in , required number of samples M , initial pseudo data simulations ZN =

{ζ̃n, {s̃(j)
n }mj=1}Nn=1 with ζ̃n ∼ p(ζ), ỹ

(j)
n ∼ f(y|ζ̃n) and s̃

(j)
n = S(ỹ

(j)
n ).

2: Get initial θ(0).
3: Let µ̃ be expectation of prior distribution and Σ̃ = cΣ where Σ is covariance of the

prior p(θ).
4: Define, b = b(B/J)c and define sequence (a1, · · · , aJ) = (b, 2b, · · · , Jb)
5: for t = 1, · · · ,M do
6: if t = aj for some j = 1, · · · , J then

7: Find µ̃ as mean of θ(t) t = 1, · · · , (aj − 1) and Σ̃ = cΣ where Σ is covariance
of θ(t) t = 1, · · · , (aj − 1).

8: end if
9: Generate ζ∗, ζ̃∗

iid∼ N (·; µ̃, Σ̃).
10: Simulate ỹ∗(j) ∼ f(y|ζ̃∗) and let s̃∗(j) = S(ỹ∗(j)) for 1 ≤ j ≤ m.
11: Add simulated parameter and statistics to the past set: ZN = ZN−1 ∪
{ζ̃∗, {s̃(j)

n }mj=1}} and set N = N + 1.
12: Calculate:

µ̂ζ∗ =

∑N
n=1[WNn(ζ∗)

∑m
j=1 s̃

(j)
n ]

m
∑N
n=1WNn(ζ∗)

Σ̂ζ∗ =

∑N
i=1[WNn(ζ∗)

∑m
j=1(s̃

(j)
n − µ̂ζ∗)(s̃

(j)
n − µ̂ζ∗)T ]

m
∑N
i=1WNn(ζ∗)

13: Calculate:

µ̂θ(t) =

∑N
n=1[WNn(θ(t))

∑m
j=1 s̃

(j)
n ]

m
∑N
n=1WNn(θ(t))

Σ̂θ(t) =

∑N
i=1[WNn(θ(t))

∑m
j=1(s̃

(j)
n − µ̂θ(t))(s̃

(j)
n − µ̂θ(t))T ]

m
∑N
i=1WNn(θ(t))

.

14: ĥ(ζ∗) = N (s0; µ̂ζ∗ , Σ̂ζ∗).

15: ĥ(θ(t)) = N (s0; µ̂θ(t) , Σ̂θ(t)).

16: Calculate α = min
{

1, p(ζ
∗)ĥ(ζ∗)N (θ(t);µ̃,Σ̃)

p(θ(t))ĥ(θ(t))N (ζ∗;µ̃,Σ̃)

}
.

17: Generate independent U ∼ U(0, 1).
18: if U ≤ α then
19: θ(t+1) = ζ∗.
20: else
21: θ(t+1) = θ(t).
22: end if
23: end for
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