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SUMMARY

X-chromosome is often excluded from the so called “whole-genome” association studies due to the
differences it exhibits between males and females. One particular analytical challenge is the unknown
status of X-inactivation, where one of the two X-chromosome variants in females may be randomly
selected to be silenced. In the absence of biological evidence in favor of one specific model, we consider
a Bayesian model averaging framework that offers a principled way to account for the inherent model
uncertainty, providing model averaging-based posterior density intervals and Bayes factors. We examine
the inferential properties of the proposed methods via extensive simulation studies, and we apply the
methods to a genetic association study of an intestinal disease occurring in about 20% of cystic fibrosis
patients. Compared with the results previously reported assuming the presence of inactivation, we show
that the proposed Bayesian methods provide more feature-rich quantities that are useful in practice.

Keywords: Bayes factors; Bayesian methods; Bayesian model averaging; Genome-wide association studies; Markov
chain Monte Carlo; Model uncertainty; Ranking; X-chromosome.

1. INTRODUCTION

In the search for genetic markers that are responsible for heritable complex human traits, whole-genome
scans including the genome-wide association studies (GWAS) and the next generation sequencing (NGS)
studies have made tremendous progress; see www.genome.gov/gwastudies for the most recent
summary of GWAS findings by the National Human Genome Research Institute (Welter and others,
2014). The “whole-genome” nature of these studies, however, is often compromised by the omission of
the X-chromosome (Heid and others, 2010; Teslovich and others, 2010). In fact, it was found that “only
33% (242 out of 743 papers) reported including the X-chromosome in analyses” based on the NHGRI
GWAS Catalog (Wise and others, 2013). The exclusion of X-chromosome from GWAS and NGS is due to
it being fundamentally different between females and males. In contrast to the 22 autosomal chromosomes
where both females and males have two copies, females have two copies of X-chromosome (XX), whereas
males have only one X coupled with one Y-chromosome (XY). Thus, statistical association methods well
developed for analyzing autosomes require additional considerations for valid and powerful application
to X-chromosome.
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320 B. CHEN AND OTHERS

Focusing on the single nucleotide polymorphisms (SNPs) as the genetic markers of interest here and
without loss of generality, let d and D be the two alleles of a SNP and D be the risk allele.An X-chromosome
SNP in females has three possible (unordered) genotypes, dd, dD, and DD, in contrast to d and D in males.
Suppose each copy of the D allele has an effect size of β on the outcome of interest; this β is the coefficient
in linear regression for studying (approximately) normally distributed outcomes, or the log odds ratio in
logistic regression for analyzing binary traits. To ensure “dosage compensation for X-linked gene products
between XX females and XY males”, X-chromosome inactivation (XCI) may occur so that one of the
two alleles in females is randomly selected to be silenced (Gendrel and Heard, 2011). In other words,
the effects of dd, dD, and DD in females are now respectively 0, β/2 and β on average after XCI vs.
0, β and 2β without XCI. However, without collecting additional biological data the status of XCI is
unknown.

Previous work on developing association methods for X-chromosome SNPs mostly focused on issues
other than XCI, including the assumptions of Hardy–Weinberg equilibrium (HWE) and equal allele fre-
quencies or sample sizes between females and males (Zheng and others, 2007; Clayton, 2008). In his
classic review article, Clayton (2009) also discussed analytical strategies for multi-population or family-
based studies. In each of these cases, either the XCI or no-XCI model is assumed, and naturally, these
methods work well only if the underlying assumption about the XCI status is correct (Hickey and Bahlo,
2011; Loley and others, 2011; Konig and others, 2014).

More recently, Wang and others (2014) recognized the problem and proposed a maximum likelihood
approach. In essence, the proposed method calculates multiple association statistics for testing the effect of
a X-chromosome SNP under XCI and no-XCI models, then uses the maximum. To adjust for the inherent
selection bias, the method uses a permutation-based procedure to obtain the empirical distribution for
the maximal test statistic and assess its significance. Although Wang and others (2014) method appears
to be adequate in terms of association testing, in the presence of model uncertainty it is not clear how
to construct a point estimate or confidence interval for effect size β, or, what is a suitable measure of
evidence for supporting one model over the other. Thus, an alternative paradigm that directly accounts for
the inherent model uncertainty is desirable.

To close this gap, we propose a Bayesian approach that can handle in a principled manner the uncertainty
about the XCI status. The use of Bayesian methods for genetic association studies is not new. Stephens
and Balding (2009) and Craiu and Sun (2014) provide reviews in the context of studying autosome SNPs.
Herein, we consider the posterior distributions generated from Bayesian regression models for analyzing
X-chromosome SNPs under the XCI and no-XCI assumptions. We combine the estimates from the two
models following the Bayesian model averaging (BMA) principle that has long been recognized as a
proper method for incorporating model uncertainty in a Bayesian analysis (Draper, 1995; Hoeting and
others, 1999). We calculate the BMA-based highest posterior density (HPD) region for the parameter of
interest. The BMA posterior distribution is directly interpretable as a weighted average for β, averaged
over the XCI and no-XCI models with more weight given to the one with stronger support from the data.
To rank multiple SNPs, we compare the lower bounds of the HPD regions for each SNP.

In Section 2, we present the theory of BMA for handling the XCI uncertainty issue. We first consider
linear regression models for studying continuous traits where closed-form solutions can be derived. We
then discuss extension to logistic models for analyzing binary outcomes where Markov chain Monte
Carlo (MCMC) methods are used for inference. In this setting, the calculation of Bayes factors is no
longer possible analytically so we implement numerical approximations that have been reliably used
in computing ratios of normalizing constants. In Section 3, we conduct extensive simulation studies to
evaluate the performance of the proposed Bayesian approach comparing with Wang and others (2014)
method. In Section 4, we apply our method to a X-chromosome association study of meconium ileus, an
intestinal disease present in cystic fibrosis patients, providing further evidence of method performance.
In Section 5, we discuss possible extensions and future work.
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2. METHODS

2.1. Normally distributed outcomes

The methodology development here focuses on linear models, studying association relationship between
a (approximately) normally distributed trait/outcome Y and a X-chromosome SNP. Let (dd, dD, DD) and
(d, D) be the genotypes of a SNP, respectively, for females and males. For autosome or X-chromosome
SNPs in females, genotypes dd, dD, and DD are typically coded additively as 0, 1, and 2, representing
the number of copies of a reference allele, assumed to be D here. Under the X-chromosome inactivation
(XCI) assumption, one of the two alleles of a female is randomly selected to have no effect on the outcome.
Thus, the XCI (M1) and no XCI (M2) assumptions lead to two different coding schemes, respectively, G1

and G2 as summarized below.

Female Male
Model Coding dd dD DD d D
M1: XCI G1 0 0.5 1 0 1
M2: no XCI G2 0 1 2 0 1

Let Y be the vector of outcome measures of sample size n, and Gk be the vector of genotype values
for the n individuals coded under the two models Mk , k = 1 and 2. In addition, sex may have an effect
on the outcome and should be included as a covariate in X-chromosome association studies. We use
S to denote sex, where S = 0 for females and = 1 for males as in convention. For each model Mk ,
we consider a linear regression model Y = Xkθ k + εk , where Xk = (1n, Gk , S) is the design matrix,
θ k = (αk , βk , γk)

′ and εk ∼ N (0, σ 2In). Here, βk represents the genetic effect of one copy of D under
model Mk , k = 1, 2, accounting for the effects of sex and other covariates Z ∈ Rp such as age, smoking
status, and population information. For notation simplicity but without loss of generality for implementing
the following Bayesian model average framework, the additional covariate Z vector is omitted from the
regression model. The coding of 0.5 for genotype dD under M1 reflects the fact that the effect of dD under
the XCI assumption is the average of zero effect of d (if D was silenced) and β effect of D (if d was
silenced). In addition, ε1 and ε2 have the same variance σ 2In because both models are based on same
response variable Y .

Before we present the Bayesian approach, we make several important remarks here. First, the regression
model above studies the genotype of a SNP, thus it does not require the assumption of HWE; only
methods based on allele counts are sensitive to the equilibrium assumption (Sasieni, 1997). Similarly,
allele-frequency affects only the efficiency of genotype-based association methods but not the accuracy.
In addition, although other types of genetic architecture are possible, e.g. dD and DD having the same
effect as in a dominant model or dd and dD having the same effect as in a recessive model, the additive
assumption has its theoretical justification and sufficiently approximates many other models (Hill and
others, 2008). Therefore, we focus on the additive models in this section and the simulation studies. In
application study, however, we will study the genotypic model and compare the results with that obtained
from the additive assumption.

2.2. A Bayesian model averaging approach

In practice, it is unknown which of the two models (M1 for XCI and M2 for no XCI ) is true. Instead
of performing inference based on only one of the two models or choosing the maximum one, the BMA
framework naturally aggregates information from both M1 and M2. Central to BMA is the Bayes factor
(BF) defined as

BF12 = P(Y |M1)

P(Y |M2)
,
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322 B. CHEN AND OTHERS

where P(Y |Mk) = ∫
f (Y |θ , σ 2, Mk)π(θ |σ 2, Mk)π(σ 2|Mk)dθdσ 2 is the marginal probability of the data

under model Mk . Herein, we used the outcome variable Y to denote all available data; meaning should be
clear from the context.

We consider conjugate priors for π(σ 2|Mk ) and π(θ |σ 2, Mk) for each model, π(σ 2|Mk) = π(σ 2) =
IG(a0, b0) where IG(a0, b0) is the inverse gamma distribution with density function

p(σ 2) = ba0
0

�(a0)
(σ 2)−a0−1 exp

(
− b0

σ 2

)
.

As noted before, Y is common between M1 and M2 so the prior distributions of σ 2 for the two models are
the same. For π(θ |σ 2, Mk) = π(θ k),

π(θ k) = N (μ0, σ 2	−1
0k ),

where 	0k is the precision matrix (Wright, 2008). For hyperparameter 	0k , we adopt the g-prior (Zellner,
1986) that has 	0k = λ

n X ′
kXk . We note that here the female component of G1 is half of that of G2. Thus,

if we naïvely use π(θ k) = N (μ0, σ 2λ−1I2), this scaling factor can affect the Bayes factor and the ensuing
model average quantities; the model with smaller covariate values is always preferred even if rescaling is
the only difference. We discuss further in Section 5 the importance of using the g-prior in this setting.

When estimating the posterior distribution of θ under each model, we find the hyperparameters, namely
λ, μ0, a0, and b0, have little effects on the posterior distributions in general. We use λ = 1 for precision
parameter following the recommendations in Kass and Raftery (1995). For other hyperparameters, nat-
urally μ0 = 0 unless there is prior information about association between the SNP under the study (or
sex) and the trait of interest. In the absence of additional information for σ 2, we let a0 = b0 = 0.1;
setting a0 = b0 = 0 in our simulation studies did not lead to noticeable numerical difference compared to
a0 = b0 = 0.1.

The likelihood function is defined by f (Y |θ , σ 2, Mk) ∼ N (Xkθ , σ 2In), which yields a normal-inverse-
gamma posterior distribution for (θ , σ 2), and the corresponding marginal distributions of θ and σ 2 can be
derived. Specifically, π(θ , |Y , Mk), the posterior distributions for θ under each model Mk , is a multivariate
t distribution with 2a degrees of freedom (df henceforth), location parameter μk and scale parameter
bk
a 	−1

k , i.e. density function

π(θ |Y , Mk) ∝
[

1 + (θ − μk)
′	k(θ − μk)

2bk

]− 2a+2
2

,

and the posterior of σ 2 is π(σ 2|Y , Mk) = IG(a, bk), where

	k = X ′
kXk + 	0k (	0k = λ

n
X ′

kXk),

μk = 	−1
k (	0kμ0 + X ′

kY ),

a = a0 + n

2
, and bk = b0 + 1

2
(Y ′Y + μ0

′	0kμ0 − μ′
k	kμk).

Focusing on the primary parameter of interest here, we obtain the coefficient β from the posterior of
θ = (α, β, γ ) under each model Mk . If we let μk2 be the second element of μk , and (	−1

k )22 be the (2, 2)th

entry in 	−1
k , we obtain that β has univariate t distribution with 2a df and μk2 and bk

a (	−1
k )22, respectively,
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as the location and scale parameters, i.e.

π(β|Y , Mk) = μk2 + t2a

√
bk

a
(	−1

k )22, (2.1)

where t2a is the standard t distribution with 2a df. The normalizing constant for the posterior under model
Mk is then

P(Y |Mk) = f (Y |θ , σ 2, Mk)π(θ |σ 2, Mk)π(σ 2|Mk)

π(θ , σ 2|Y , Mk)
= 1

(2π)n/2

√
|	0k |
|	k |

ba0
0 �(a)

ba
k�(a0)

,

which leads to the Bayes factor between M1 and M2 as

BF12 =
√

|	2|
|	1| × |	01|

|	02|
(

b2

b1

)a

. (2.2)

The BMA (Hoeting and others, 1999) of the two models takes the form

π(θ , σ 2|Y ) = P(M1|Y )π(θ , σ 2|Y , M1) + P(M2|Y )π(θ , σ 2|Y , M2).

Let P(Y ) be the marginal probability of the data obtained after averaging over both models,

P(Y ) = P(Y |M1)P(M1) + P(Y |M2)P(M2). (2.3)

In the absence of prior information, it is customary to assume equal prior probabilities for the two models,
i.e. P(M1) = P(M2) = 0.5. Therefore, we have

π(θ , σ 2|Y ) = P(Y |M1)P(M1)

P(Y |M1)P(M1) + P(Y |M2)P(M2)
π(θ , σ 2|Y , M1)

+ P(Y |M2)P(M2)

P(Y |M1)P(M1) + P(Y |M2)P(M2)
π(θ , σ 2|Y , M2)

= BF12

1 + BF12
π(θ , σ 2|Y , M1) + 1

1 + BF12
π(θ , σ 2|Y , M2). (2.4)

Note that the posterior distribution π(θ , σ 2|Y ), which we call BMA posterior, is a mixture of the two
posterior distributions resulting from models M1 and M2. Because, it is not obtained from a given sampling
distribution and a particular prior, it may not be a canonical posterior.

The BMA posterior relies on the Bayes factor as the weighting factor, favoring one model over using
weights based on BF12. Given an established association, we expect the Bayes factor provide evidence
supporting one of the two models. Intuitively, if BF12 > 1 then we have more support for M1 from the
data and vice versa when BF12 < 1. For the priors considered here, we show that when data was generated
from M1, Y = X1θ 1 + ε1, BF12

p→ ∞ as n → ∞ for any values of the hyperparameters, and similarly
when Y = X2θ 2 + ε2, BF12

p→ 0 (Supplementary Materials available at Biostatistics online).
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2.3. BMA-based HPD interval for the genetic effect of a SNP

To assess the genetic effect of a SNP based on the posterior distribution of β, the simplest approach is
to use the posterior mode or mean of β as a point estimate. The HPD region, however, provides more
information with an interval estimate. To calculate BMA-based HPD, we note that the posterior density
of β from each of the M1 and M2 models is a univariate t with location and scale parameters as specified
in equation (2.1). The BMA posterior of β is therefore a mixture of two known t distributions with the
mixture proportion depending on BF12. It is thus possible to calculate the exact HPD region for β.

A (1 − α)% HPD is defined as R(cα) = {β : π(β|Y ) ≥ cα}, where π(β|Y ) is the BMA posterior
density of β and cα is the threshold such that the area under the posterior density is 1 − α. Depending
on the similarity between the two posterior distributions corresponding to M1 and M2 for a given credible
level α, a BMA HPD region can be either one single interval or made up of two disconnected intervals.
In all examples, we have studied the HPD region is a single interval at α = 0.05, due to the correlation
between the two models (Supplementary Materials available at Biostatistics online). Specifically, let βl

and βu to be the two solutions of π−1(cα). The 1 − α HPD region is then (βl , βu), where

∫ βu

βl

π(β|Y )dβ = 1 − α,

π(βl|Y ) = π(βu|Y ) = cα . (2.5)

The closed form of π(β|Y ) is in fact available, thus we can solve the equations defined in (2.5) numerically
to find cα as well as βl and βu, using function multiroot in R package rootSolve. Note that for
notation simplicity, we use α here to denote the desired credible level; its distinction from the intercept
parameter, also denoted by α, should be clear from the context.

In practice, besides assessing association evidence for a single SNP, scientists are often interested in
ranking multiple SNPs from a whole-genome scan and selecting the top ones for follow-up studies. The
lower bounds of the HPD intervals can be used for this purpose.We will demonstrate the performance of this
method in Section 3 using simulations, as well as in Section 4 where we rank over 14 000 X-chromosome
SNPs studying their association evidence with meconium ileus in cystic fibrosis patients. In each setting,
we compare the proposed ranking method with the frequentist method of Wang and others (2014) and the
more conventional Bayes factor-based approach.

2.4. Assessing genetic effect by Bayes factor

In Bayesian framework, Bayes factor (Kass and Raftery, 1995; Stephens and Balding, 2009) is another
important measure of evidence. In the presence of model uncertainty, we propose using the Bayes factor
calculated by comparing the averaging model between M1 and M2 with the null model of no effect, MN .
Under the null model of β = 0, let XN = (1n, S) be the corresponding design matrix. Using the same
prior distributions and hyperparameter values for the remaining parameters, σ 2, α, and γ , the calculation
of P(Y |MN ) is then similar to that of P(Y |M1) and P(Y |M2) as described in Section 2.2. Let

BF1N = P(Y |M1)

P(Y |MN )
, BF2N = P(Y |M2)

P(Y |MN )

be the Bayes factors comparing, respectively, the XCI M1 and no XCI M2 with the null model MN , the
Bayes factor for comparing the averaging model with the null model is defined as

BFAN = P(Y |M1)P(M1) + P(Y |M2)P(M2)

P(Y |MN )
.
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Because P(M1) = P(M2) = 0.5 in our setting, we thus have

BFAN = 1

2
(BF1N + BF2N ). (2.6)

The Bayes factor BFAN has similar asymptotic properties as BF12. We show in the Supplementary Materials
available at Biostatistics online that in our setting if λ > 0 (the precision parameter for β), then BFAN

converges in probability to either 0 or ∞, depending on whether β = 0 or not.
For finite sample, we find BFAN computed following Section 2.2 is highly sensitive to the choice

of λ. The sensitivity was noted by Raftery (1996, 1999). Because λ is often unknown in practice, we
recommend approximating Bayes factors by Bayesian information criterion (BIC). Raftery (1996, 1999)
has also noted that BIC provides a close approximation to the Bayes factor when λ = 1, which he called
“unit information prior”. If λ is known and not close to 1, BIC approximation may have an error of O(1)

(Kass and Raftery, 1995). Therefore, in practice, if there is sufficient evidence that λ should equal to
any specific value, we recommend following Section 2.2 to compute BF12 and BFAN . If there is little
information about λ, we recommend using BIC approximation to avoid the complexity of choosing λ. In
simulation and application studies below, we use BIC approximation for the more general case when λ is
unknown.

2.5. Binary outcomes

When we measure binary responses, M1 and M2 are logistic regression models. Assuming the prior
θ k ∼ N (μ0, 	−1

0k ), the BMA framework described above can still be used although computational com-
plexities arise due to the lack of conjugacy. We use the R package MCMCpack to draw samples from the
posterior distributions under M1 and M2. To obtain samples from the averaged model, we draw samples
from M1 with probability BF12/(1 + BF12) and from M2 with probability 1/(1 + BF12) based on equation
(2.4). And we use these samples to construct the 1 − α HPD interval via the function HPDinterval in
the R package coda.

The calculation of BF12 is based on the Bridge sampling method proposed by Meng and Wong (1996)
and further refined by Gelman and Meng (1998) which we delineate below. Suppose we have J posterior
samples, θkj , from the two models, k = 1 and 2 and j = 1, ..., J . For each parameter sample θkj , we can
calculate the corresponding unnormalized posterior density based on the logistic model under the M1 XCI
assumption,

q1(θkj) = π(θkj|M1)f (Y |θkj , M1)

= π1(θkj)

n∏
i=1

p1i(θkj)
Yi (1 − p1i(θkj))

1−Yi ,

where p1i(θkj) = [1 + exp(−X1iθkj)]−1, and X1i is the ith row of the design matrix X1 that contains the
genotype data coded under model M1 for the ith individual. π1 is the density function of N (μ0, 	−1

01 ).
Similarly, we obtain

q2(θkj) = π(θkj|M2)f (Y |θkj , M2)

= π2(θkj)

n∏
i=1

p2i(θkj)
Yi (1 − p2i(θkj))

1−Yi ,

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article-abstract/21/2/319/5105904 by Bora Laskin Law

 Library user on 08 April 2020

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy049#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy049#supplementary-data
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where p2i(θkj) = [1 + exp(−X2iθkj)]−1 under model M2, and π2 is the density function of N (μ0, 	−1
02 ).

We then define the ratio of unnormalized densities as lkj = q1(θkj)/q2(θkj) and compute the Bayes factor
iteratively. Specifically, we set BF (1)

12 = 1 and compute at the (t + 1)th iteration until convergence,

BF (t+1)

12 =
∑J

j=1
l2j

l2j+BF(t)
12∑J

j=1
1

l1j+BF(t)
12

. (2.7)

When comparing the averaged model vs. null model, the above procedure cannot be directly imple-
mented to calculate BF1N and BF2N , since the null model has different dimension of parameter θ . Instead
of finding the ratio of normalizing constants by the numerical method above, we find P(Y |M1), P(Y |M2),
and P(Y |MN ) by calculating the ratio between them and known quantities. The latter will be the normal-
izing constants corresponding to Gaussian approximations of the posterior distributions of interest. More
precisely, we use the following steps:

• To calculate P(Y |M1), we approximate the posterior under M1 using a multivariate normal distribu-
tion with independent components. So we find the sample mean and sample variance of posterior

sample θ1j = (α1j, β1j, γ1j), which are (ᾱ1, β̄1, γ̄1) and

⎛
⎝ s2

α1
0 0

0 s2
β1

0
0 0 s2

γ1

⎞
⎠.

• We simulate α′
1j, β ′

1j and γ ′
1j from the above multivariate approximation to the posterior whose

normalizing constant is c1 = (2π)3/2sα1sβ1sγ1 and set θ ′
1j = (α′

1j, β
′
1j, γ

′
1j).

• We use the iterative approach in equation (2.7) to compute the ratio of normalizing constants
between the posterior under M1 and the corresponding approximation, BF1 = P(Y |M1)/c1. Since
c1 is known, we can easily derive the normalizing constant P(Y |M1).

• To calculate P(Y |MN ), we repeat the procedure used for P(Y |M1) but this time the dimension of
the parameter is two instead of three.

• The unnormalized posterior density for MN is

qN (θNj) = π(θNj|MN )f (Y |θNj , MN )

= πN (θNj)

n∏
i=1

pNi(θNj)
Yi (1 − pNi(θNj))

1−Yi ,

where pNi(θNj) = [1 + exp(−XNiθNj)]−1, and πN is the prior density of N (0, 	−1
0N ).

• We then use equation (2.7) to compute BFN = P(Y |MN )/cN , where cN = 2πsα1sγ1 , and we obtain
BF1N as

BF1N = BF1

BFN
× c1

cN
.

• We repeat the above steps for M2 to calculate BF2N .

• Finally, we use equation (2.6) to calculate BFAN by averaging BF1N and BF2N .

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article-abstract/21/2/319/5105904 by Bora Laskin Law

 Library user on 08 April 2020
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2.6. Revisit the maximum likelihood approach

Let Z1 and Z2 be the frequentist’s test statistics for testing βk = 0 derived from the two regression models,
Y = αk + βkGk + γkS + εk , k = 1 and 2, respectively under the XCI M1 and no XCI M2 assumptions.
The maximum likelihood approach of Wang and others (2014), in essence, uses Zmax = max(|Z1|, |Z2|)
as the test statistic and calculates the p-value of Zmax empirically via a permutation-based procedure. We
note that the significance of Zmax can be obtained more efficiently by recognizing that Z1 and Z2 have
an approximate bivariate normal distribution under the null hypothesis of no association (Supplementary
Materials available at Biostatistics online). This principle has been used in another setting where for an
un-genotyped SNP, instead of imputing the missing genotype data, the association statistic is directly
inferred based on the association statistic at a genotyped SNP and the correlation between the two SNPs
estimated from a reference sample (Lee and others, 2013; Pasaniuc and others, 2014). In the simulation
study below and in the application study of Section 4, for each simulated SNP and each of the 14 000 or so
SNPs analyzed, we will obtain the corresponding p-value using this method because of the computational
cost for assessing p-values less than 10−6.

3. SIMULATION STUDY

We conduct simulation studies to evaluate the performance of the proposed BMA methods and the fre-
quentist method of Wang and others (2014), for studying both normally distributed traits and binary
outcomes.

3.1. Simulation settings

In our simulations, we vary the sample size n, proportion of males and frequencies of allele D for males
and females (pm and pf , respectively). In each case, we first generate data for G, where we simulate female
genotypes using a multinomial distribution with probabilities of (1−pf )

2, 2pf (1−pf ) and p2
f , respectively,

for dd, dD, and DD, and we simulate male genotypes using a binomial distribution with probabilities of
(1 − pm) and pm, respectively, for d and D.

We then generate outcome data for Y based on the simulated G coded under the XCI M1 or no XCI
M2 assumption, and various parameter values of the regression models. For linear models we fix α = 0
and γ = 0; the intercept parameter has negligible effects on result interpretation (e.g. α = 1 lead to
similar conclusion). Since the effect of sex is not of primary interest here, we set γ = 0 without loss of
generality. We also fix σ 2 = 1. Under the null model, β = 0 and Y does not depend on the XCI and no
XCI assumptions, i.e. Y ∼ N (0, σ 2In). Under alternatives and for each Mk , method performance depends
on both genetic effect size β and allele frequencies pm and pf , via the quantity EV , the variation of Y
explained by genotype, where EV = Var(E(Y |G))/Var(Y ). Although allele frequency affects method
performance as we will see in the application study below, fixing EV instead of β has the benefit of
not requiring specification of the relationship between β and allele frequency (e.g. variants with lower
frequencies tend to have bigger effects or smaller effects, vs. β and allele frequency are independent of
each other); Derkach and others (2014) explored this in a frequentist setting for jointly analyzing multiple
autosome SNPs. For linear models, it is easy to show that EV = β2σ 2

G/(β2σ 2
G + σ 2), where σ 2

G is the
variance of G depending on pm and pf . Thus, for a given EV value we obtain β = σ/σG ·√EV/(1 − EV )

for different values of pm, pf and codings of G based on the M1 XCI or M2 no XCI assumption. We then
simulate Y for continuous outcomes from N (Xkθ , σ 2In) based on θ = (α, β, γ ) and Xk = (1n, Gk , S).

For studying binary outcomes using logistic regression, we assume the typical study design of equal
numbers of cases and controls. Under the null of β = 0, we randomly assign Y = 0 to half of the sample
and Y = 1 to the other half. Under alternatives, the derivation of β given EV and allele frequencies is
a bit more involved, and we outline the details in the Supplementary Materials available at Biostatistics
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online. We then simulate Y from Bino(n∗, (1 + exp(−Xkθ))−1), n∗ > n, until n/2 numbers of cases and
controls are generated.

To summarize, the parameters involved in the simulation studies include the sample size (n and the
proportion of males), allele frequencies in males and females (pm and pf ), the variation of Y explained by
genotype (EV and in turn β; without loss of generality, α = 0, γ = 0, σ 2 = 1), as well as equal numbers
of cases and controls for studying binary traits. The number of MCMC samples for analyzing each binary
dataset is J = 1000.

3.2. Results

Figure 1 shows representative results when n = 1000 (and assuming the proportion of males is half), and
the minor allele frequency (MAF) of the associated SNP ranges from 0.01 to 0.5. The top panel shows
the results when β, the regression coefficient in the linear model (also known as the genetic effect size)
is set to be 0.3. In that case, the ability of a method (frequentist or the proposed BMA) to identify an
associated SNP depends on the MAF of the SNP. Indeed, results in the top panel of Figure 1 show that as
the MAF increases, −log10 p-value (top left graph) and log10BFAN (top middle graph) increase, and the
BMA-based 95% HPD intervals (top right graph) become narrower and the corresponding lower bounds
are further away from zero. Note that for easy of presentation, the results here are the averages across
100 independently simulated datasets; results of each of the 100 simulation replicates are provided in
the Supplementary Materials available at Biostatistics online. Results for no XCI, binary traits and other
parameter values (i.e. different β and MAF values) are also provided in the Supplementary Materials
available at Biostatistics online.

When β is fixed, we observed that rankings of SNPs based on frequentist p-values or the proposed
lower bounds of BMA HPD intervals are quite similar (top panel of Figure 1). However, this is not the case
when EV , the phenotypic variation explained by SNP genotype, is fixed (bottom panel of Figure 1). When
EV is fixed, SNPs with lower allele frequencies have stronger effects (larger β) and intuitively they should
be ranked higher. However, the p-values (bottom left graph) are quite similar across the allele frequencies.
This is also the case for BFAN (bottom middle graph) if we use the Bayes facto to rank SNPs. On the
other hand, method based on the BMA HPD intervals (bottom right graph) exhibits superior performance,
where the lower bound is further away from zero for larger effect size β while a smaller MAF is reflected
by a wider interval. A frequentist confidence interval can be easily constructed under one given model,
but an weighted average CI is inherently difficult to derive under the frequentist paradigm.

An astute reader may notice that the true value of β is not in the center of each BMA-based HPD
interval. When data are simulated from X-inactivated models, β is to the right of the center (Figure 1);
when the simulation model is X not inactivated, β is to the left (Supplementary Materials available at
Biostatistics online). This is because these HPD intervals are computed under the averaged model rather
than the true simulation model. When n = 1000, BF12 is not close to 0 or ∞ and both XCI and no XCI
models have non-zero weights. As we show in the Supplementary Materials available at Biostatistics
online, BF12 converges to either 0 or ∞ as n → ∞, which implies the averaged HPD intervals also
converges to the HPD intervals under the true model. This theoretical justification further supports the use
of BMA-based HPD intervals for inference of β and ranking of SNPs.

4. APPLICATION STUDY

Sun and others (2012) performed a whole-genome association scan on meconium ileus, a binary intesti-
nal disease occurring in about 20% of the individuals with cystic fibrosis. Their GWAS included
X-chromosome but assumed the inactivation M1 model. They identified a gene called SLCA14 to be
associated with meconium ileus, and in their Table 2 they reported p-values in the range of 10−12, 10−8,
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Fig. 1. Simulation results averaged across 100 independently simulated datasets. Left panel: frequentist −log10 p-
values of Zmax (based on the approximate asymptotic distribution in Section 2.6 instead of the original permutation
method of Wang and others (2014) because of the prohibitive computational cost in this setting). Middle panel: the
log10BFAN , comparing the Bayesian averaged model with the null model of no association. Right panel: BMA-based
95% HPD intervals for β, the genetic effect size of the associated SNP. The allele frequency of the SNP ranges from
0.01 to 0.5, shown in the Y -axis. Top row: the effect size is fixed at β = 0.3. Bottom row: the explained variance by
the SNP is fixed at EV = 0.02, and thus the corresponding effect size varies depending on the allele frequency. The
circles mark the true values of the β in each setting. The outcome here is a normally distributed trait simulated under
the true model of X-chromosome inactivation (XCI). Results for no XCI, binary traits and other parameter values are
provided in the Supplementary Materials available at Biostatistics online.

and 10−6, respectively, for rs3788766, rs5905283, and rs12839137 from the region. We revisited this data
by applying the maximum likelihood approach and the proposed Bayesian model average method.

The data consists of n = 3199 independent CF patients, and there are slightly more males (nm = 1722,
53.8%) than females (nf = 1477, 46.2%). Among the study subjects, 574 are cases with meconium ileus
and 2625 are controls, and the rates of meconium ileus do not appear to differ between the male and
female groups (17.7% vs. 18.3%). Genotypes are available for 14 280 X-chromosome SNPs, but 60 are
monomorphic (no variation in the genotypes within the sample). Thus, the association analyses were
performed between 14 220 X-chromosome SNPs and the binary outcome of interest. By convention, for
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Fig. 2. QQplots of −log10 p-values of analyzing association evidence between 14 220 X-chromosome SNPs and
meconium ileus in 3199 cystic fibrosis patients, under the XCI M1 assumption (left), the no-XCI M2 assumption
(middle), and using Zmax (right). Circle (•) for rs3788766, up-pointing triangle (�) for rs5905283, square (�) for
rs12839137, and down-pointing triangle (�) for rs5905284.

each SNP we assumed the minor allele as the risk allele D and we used the two coding schemes of G1 and
G2 under the XCI M1 and no XCI M2 models.

Figure 2 shows the QQplots of p-values obtained using the frequentist framework. The left graph is under
the XCI M1 assumption as in the original analysis of Sun and others (2012). The middle graph is under
the no XCI M2 assumption, and the right one is based on the adjusted minimal p-value of the maximum
likelihood approach (Wang and others, 2014). It needs to be noted that the original permutation-based
is computationally prohibitive for estimating p-values as small as 10−12 as in our case. Alternatively,
we used the approximate asymptotic distribution for Zmax (Section 2.6 and Supplementary Materials
available at Biostatistics online). As expected, most of the SNPs are from the null, but there are four
clear outliers/signals with evidence for association with meconium ileus regardless of the methods used.
Contrasting the left graph with the middle one in Figure 2 shows that the XCI M1 assumption lead to
smaller p-values for these four SNPs than the no XCI M2 assumption.

Figure 3 presents the Bayesian results for the top 50 ranked SNPs, as well as the corresponding p-values.
Similarly to the presentation of the simulation results in Section 3, the left graph shows the −log10 p-values
of Zmax, while the middle one is for log10BFAN , and right one is for the BMA-based 95% HPD intervals.
Note that for ease of presentation and without loss of generality, we mirrored all negative intervals to
positive ones. Table 1 provides results for the first 15 of the top 50 ranked SNPs.

Several important remarks can be made here. First, the proposed Bayesian method clearly identifies
the four SNPs suggested by the p-value approach. Second, the Bayesian framework in this setting pro-
vides more feature-rich quantities such as the BMA-based HPD intervals, and it pinpoints additional
SNPs that merit follow-up studies. Note that although p-values lead to similar rankings between the two
models themselves, they could miss potentially important SNPs. Taking rs12689325 as an example, this
SNP is ranked 331 based on the p-value of 0.0268, the p-value of the maximum test statistic calculated
under M1 and M2. However, this SNP is ranked second based on the lower bounds of the BMA-based
HPD intervals averaged over M1 and M2 (the first set of red thick lines in Figure 3). The wide BMA
HPD interval is a result of small MAF (1.3%) coupled with a moderate effect size. Similar results are
obtained for rs12845594, the fourth ranked SNP based on the BMA-based HPD intervals. This result
is consistent with that of simulations in Section 3, where we demonstrated that the HPD intervals may
have stronger ability to identify truly associated SNPs with large effect sizes but small MAFs. Also con-
sistent is the observation that the conventional Bayes factor is one single measure of evidence that can
be complemented by an interval measure. Given a trait of interest in practice, if genetic etiology implies
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BMA for the XCI dilemma in GWAS 331

Fig. 3. Application results for 50 top ranked SNPs, selected from analyzing association evidence between 14 220
X-chromosome SNPs and meconium ileus in 3199 cystic fibrosis patients. SNPs are ordered by their lower bounds of
the BMA-based HPD intervals. Left panel: frequentist −log10 p-values of Zmax (based on the approximate asymptotic
distribution in Section 2.6 instead of the original permutation method of Wang and others (2014) because of the
prohibitive computational cost in this setting). Middle panel: the log10BFAN , comparing the Bayesian averaged model
with the null model of no association. Right panel: BMA-based 95% HPD intervals for β, the genetic effect size of
the associated SNP. The four top SNPs identified by p-values are marked here using the same symbol: black circle
(•) for rs3788766, up-pointing triangle (�) for rs5905283, square (�) for rs12839137, and down-pointing triangle
(�) for rs5905284. SNP rs12689325 (the second ranked SNP) and rs12845594 (the fourth ranked SNP) discussed in
Section 4 are marked in thick lines.

Table 1. Summary of frequentist and Bayesian analysis of the 15 top ranked SNPs, selected from analyzing
association evidence between 14 220 X-chromosome SNPs and meconium ileus in 3199 cystic fibrosis
patients

Log odds ratios Frequentist P-values BMA

SNPs MAF M1 M2 M1 M2 Zmax HPD interval BF12 BFAN

rs3788766 0.388 −0.798 −0.484 8.50e−12 2.20e−09 1.61e−11 (0.572–1.033) 271 5.84e+08
rs12689325 0.013 −1.615 −1.386 4.02e−02 1.99e−02 2.68e−02 (0.405–3.118) 0.377 7.56e−01
rs5905283 0.487 −0.586 −0.326 4.79e−08 9.64e−06 8.88e−08 (0.379–0.784) 201 3.58e+04
rs12845594 0.047 −0.990 −0.546 2.73e−03 1.08e−02 3.93e−03 (0.344–1.700) 7.23 2.61e+00
rs12839137 0.237 −0.611 −0.360 7.55e−06 1.43e−04 1.25e−05 (0.307–0.884) 22.5 4.77e+02
rs5905284 0.249 −0.592 −0.358 8.61e−06 1.21e−04 1.43e−05 (0.302–0.830) 18.3 3.99e+02
rs579854 0.136 −0.642 −0.424 3.31e−04 5.66e−04 5.08e−04 (0.266–0.932) 1.88 1.70e+01
rs5955417 0.030 −1.229 −0.710 6.42e−03 1.25e−02 9.02e−03 (0.260–2.130) 3.28 1.50e+00
rs12720074 0.100 −0.715 −0.529 6.61e−04 3.49e−04 5.29e−04 (0.237–0.943) 0.533 1.84e+01
rs1921965 0.091 0.611 0.440 1.57e−04 2.30e−04 2.41e−04 (0.228–0.893) 1.34 1.22e+01
rs6623182 0.036 0.867 0.552 3.32e−04 1.28e−03 4.97e−04 (0.217–1.216) 2.89 4.17e+00
rs3027514 0.015 0.976 0.740 5.41e−03 4.58e−03 6.46e−03 (0.209–1.496) 0.834 6.23e−01
rs17338514 0.099 0.574 0.419 2.46e−04 3.07e−04 3.75e−04 (0.201–0.821) 1.19 9.00e+00
rs11797786 0.068 0.618 0.383 8.17e−04 5.29e−03 1.21e−03 (0.191–0.947) 4.68 1.96e+00
rs1921967 0.122 0.531 0.393 2.67e−04 2.12e−04 3.26e−04 (0.190–0.756) 0.750 1.07e+01

MAF is the pooled estimate of the frequency of the minor allele (frequencies do not differ between males and females); log odds ratio
estimates under the XCI M1 and no XCI M2 assumptions. Frequentist results includes p-values corresponding to M1 and M2, and the
bias-adjusted p-value of Zmax of the maximum likelihood approach (Wang and others, 2014). The adjusted p-values were obtained
using the approximate asymptotic distribution (Section 2.6) instead of the original permutation-based because of the prohibitive
computational cost in this setting. Results of the proposed approach include BMA-based 95% HPD intervals, Bayes factors BF12

comparing the XCI M1 model with the no XCI M2 model, as well as BFAN comparing the average model with the null model.
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the involvement of rare variants, the Bayesian results suggest that these two SNPs warrant additional
investigation.

5. DISCUSSION

We propose a Bayesian approach to address the ambiguity involved in GWAS and NGS studies of SNPs
situated on the X-chromosome. Depending on whether X-inactivation takes place or not, there are two
regression models that can be used to explore the genetic effect of a given SNP on the phenotype of interest.
The proposed method allows us to produce posterior-based inference that incorporates the uncertainty
within and between genetic models. While the former is quantified by the posterior distribution under
each model, the latter can be properly accounted for by considering a weighted average of the model-
specific estimators. Following the Bayesian paradigm, the weights are proportional to the Bayes factor
comparing the two competing models. The asymptotic properties of the Bayes factors considered in this
article for linear models are included in the Supplementary Materials available at Biostatistics online. In
the binary response case, the theoretical study is difficult due to the intractable posteriors, but the Monte
Carlo estimators exhibit good properties in all the numerical studies performed.

The use of g-priors in this study setting is essential in that it allows us to avoid the effect of covariate
rescaling on the Bayes factors, yet maintain results interpretation. In regression models, we know that
the effect size β is inversely proportional to the size of the covariate value/genotype coding. Given
a set of data, using X /2 or X should lead to identical inference. However, without g-priors, a model
with smaller covariate value would be preferred based on BF . In our setting, the female component
of the design matrix under the XCI M1 coding is only half of that no XCI M2 coding; male codings
are the same for the two models. Consider the null case of β = 0 when the two competing models
are identical. Using 	0k = λI for the precision of θk , we observed in our simulations that 80% of
BF12 are greater than one, suggesting M1 is preferred simply because of its smaller genotype coding.
One statistical solution is to rescale the design matrix prior to the Bayesian inference. However, it is
important to note that the coding difference for females is driven by a specific biological consideration,
thus rescaling leads to difficulties in results interpretation. Instead, we use a g-prior in Section 2. Indeed,
simulation results for the null case show that BF12 > 1 in about 50% of replicates, indicating proper
calibration.

In our application, we did not observe a significant effect of sex. However, we note that the sex covariate
S should be always included in association analysis of SNPs from the X-chromosome. Besides genetic
epidemiological arguments, there is a strong statistical justification. For autosomes, the choice of the
reference allele for coding of G only changes the sign of β but does not affect statistical significance.
However, we note that this is not the case for analyzing X-chromosome SNPs under the no XCI M2 model
assumption; inference is identical under the XCI M1 model. Interestingly, we can show that including S
as a covariate resolves the issue. To see this, let G∗

2 be the new coding of G2 when the reference allele is
switched. Because G∗

2 = 2 − G2 − S, switching reference allele in a regression model that includes S is
then equivalent to changing the sign of β.

In our simulation and application studies, we focused on additive genetic models because of the earlier
literature, most notably the work by Hill and others (2008). Both the frequentist and the proposed Bayes
methods, however, can be readily applied to other genetic models such as the dominant, recessive and
genotypic models. Consider the most general two degrees of freedom of the genotypic model, Y ∼
GA + GD + S, where GD represents the dominant effects, equal to 1 for genotype dD and 0 otherwise,
and GA has the same additive coding under XCI and no XCI assumptions as before. Supplementary
Figures E.1 available at Biostatistics online show that results of the genotypical and additive genetic
models are largely consistent in the application study, where rs3788766, rs5905283, rs12839137, and
rs5905284 remain clearly associated. However, results also show differences for some of the lower ranked
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SNPs, suggesting that the conventional choice of additive genetic model needs future investigations for
both the X-chromosome and autosomes.

When the allele frequency is on the boundary, we have commented that the resulting HPD intervals
can be quite wide as seen in the application above, e.g. rs12689325 with MAF of 1.3%, the second
ranked SNP in Figure 3; ranked 331 by the minimal p-value approach. Among the 14,220 X-chromosome
SNPs analyzed in Section 4, 829 SNPs have MAF less than 1%. In that case, there is little variation in
the genotype variable thus limited information available for inference. The top ranked SNPs thus were
chosen from the remaining 13 391 SNPs with MAF greater than 1%. In recent years, joint analyses
of multiple rare (or common) variants (also known as the gene-based analyses) have received much
attention but only for autosome SNPs (Derkach and others, 2014). Extension to X-chromosome SNPs
remain an open question. Similarly, additional investigations are needed for X-chromosome SNPs in the
areas of family-based association studies (Thornton and others, 2012), direct interaction studies (Cordell,
2009), as well as indirect interaction studies via scale-test for variance heterogeneity (Soave and Sun,
2017).

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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