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Abstract: The recently proposed L-lag coupling for unbiased Markov chain Monte

Carlo (MCMC) calls for a joint celebration by MCMC practitioners and theoreti-

cians. For practitioners, it circumvents the thorny issue of deciding the burn-in

period or when to terminate an MCMC sampling process, and opens the door

for safe parallel implementation. For theoreticians, it provides a powerful tool to

establish elegant and easily estimable bounds on the exact error of an MCMC ap-

proximation at any finite number of iterates. A serendipitous observation about

the bias-correcting term leads us to introduce naturally available control variates

into the L-lag coupling estimators. In turn, this extension enhances the gains of

L-lag coupling, because it results in more efficient unbiased estimators, as well as a

better bound on the total variation error of any MCMC iteration, albeit the gains

diminish as L increases. Specifically, the new upper bound is theoretically guaran-

teed to never exceed the one given previously. We also argue that L-lag coupling

represents a coupling for the future, breaking from the coupling-from-the-past type

of perfect sampling, by reducing the generally unachievable requirement of being

perfect to one of being unbiased, a worthwhile trade-off for ease of implementation

in most practical situations. The theoretical analysis is supported by numerical

experiments that show tighter bounds and a gain in efficiency when control variates

are introduced.

Key words and phrases: Coupling from the Past, maximum coupling, median abso-

lute deviation, parallel implementation, total variation distance, unbiased MCMC.

1. If Being Perfect is Impossible, Let’s Try Being Unbiased

1.1. Perfect coupling – too much to hope for?

We thank Pierre Jacob and his team for a series of articles (e.g., Jacob,

O’Leary and Atchadé (2020); Jacob, Lindsten and Schön (2020); Heng and Jacob

(2019); Biswas, Jacob and Vanetti (2019)) that revitalized our experience (e.g.,

Murdoch and Meng (2001); Meng (2000); Craiu and Meng (2011); Stein and Meng

(2013)) of working on coupling from the past (CFTP; Propp and Wilson (1996,

1998)) and, more generally, perfect sampling. The clever “cross-time coupling”
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idea of Glynn and Rhee (2014), which can be considered a form of coupling for

the future (CFTF), allows us to move away from the CFTP framework, which

became popular around the turn of the century with its promise of providing per-

fect/exact Markov chain Monte Carlo (MCMC) samplers (e.g., see the annotated

bibliography of Wilson (1998)). However, research progress on perfect or exact

samplers has slowed significantly since then, because they are very challenging,

if not impossible, to develop for many routine Bayesian computational problems

(e.g., see Murdoch and Meng (2001)).

In its most basic form, a CFTP-type perfect sampler couples a Markov chain

{Xt, t ≥ 0} with itself, but from different starting points, and runs two or more

chains until they coalesce at a time τ . This apparent convergence does not

guarantee, in general, that Xτ is from the desired stationary distribution π(x).

By shifting the entire chain to “negative time”(i.e., the past), {Xt, t ≤ 0}, Propp

and Wilson (1996) have shown that if we follow this coalescent chain until it

reaches the present time, that is, t = 0, then the resulting X0 will be exactly

from π(x). Perhaps the most intuitive way to understand this scheme is to realize

that running a chain from its infinite past (t = −∞) to the present (t = 0) is

mathematically equivalent to running the chain from the present (t = 0) to the

infinite future (t = +∞). The CFTP is a clever way of realizing this seemingly

impossible task, relying on the fact that if the coalescence occurs regardless of

how we have chosen the starting point, then the chain has “forgotten” its origin,

and hence has settled in the perfect asymptotic distribution.

However, being perfect is never easy, especially in the mathematical sense.

No error of any kind is allowed, and this requirement has manifested in two

ways that greatly limit the practicality of perfect sampling. First, constructing

a perfect sampler, especially for distributions with continuous and unbounded

state spaces—which are ubiquitous in routine statistical applications—is a very

challenging task in general, despite its great success for problems with some spe-

cial structures, such as certain monotonic properties (see Berthelsen and Møller

(2002); Corcoran and Tweedie (2002); Huber (2004, 2002); Ensor and Glynn

(2000); Huber (2004); Murdoch and Takahara (2006)). Second, even if a perfect

sampler is devised, it can be excruciatingly slow, because it refuses to deliver an

output until it can guarantee its perfection, and one must devise problem-specific

strategies to speed this up (e.g., Thönnes (Thönnes(1999); Dobrow and Fill

(2003); Møller (1999); Dobrow and Fill (2003); Corcoran and Schneider (2005)).
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1.2. Unbiased coupling – a new hope?

A relaxation of the exact sampling paradigm with important practical con-

sequences has been proposed by Glynn and Rhee (2014) and Glynn (2016), who

put forth strategies for the exact estimation of integrals using MCMC. The dif-

ference between exact sampling and exact estimation is a large conceptual leap

that allows us to bypass most of the difficulties of perfect sampling, while main-

taining some of its important benefits. Building on the work of Glynn and

co-authors, the L-lag coupling of Biswas, Jacob and Vanetti (2019) and Jacob,

O’Leary and Atchadé (2020) aims to deliver unbiased estimators of E[h(Xπ)],

for any (integrable) h, where Xπ denotes a random variable defined by π(X).

One may question if this is really a weaker requirement because the fact that

E[h(Xπ)] = E[h(Xπ̃)] for all (integrable) h immediately implies that π(X) = π̃(X)

(almost surely). This is where the innovation of L-lag coupling lies, because it

does not couple a chain with itself from two or more starting points [e.g., two

extreme states, as with monotone coupling; see Propp and Wilson (1996)]. In-

stead, it couples two chains that have the same transition probability and start

from the same starting point or, more generally, the same initial distribution π0,

but are time-shifted by an integer lag, L > 0.

To illustrate, consider the case of L = 1, which was the focus of Jacob,

O’Leary and Atchadé (2020). Two chains X = {Xt, t ≥ 0} and Y = {Yt, t ≥ 0}
are coupled in such a way that both of them have the same transition kernel (and,

hence, the same target stationary distribution), and there exists with probability

one a finite stopping time τ , such that Xt = Yt−1, for all t ≥ τ . This construction

allows them to show that the following estimator based on both X and Y,

Hk(X ,Y) = h(Xk) +

τ−1∑
j=k+1

[h(Xj)− h(Yj−1)], (1.1)

is an unbiased estimator for E[h(Xπ)], for any k ≥ 0 (under mild conditions).

Heuristically, this is because the sum in (1.1) is the same as
∑∞

j=k+1[h(Xj) −
h(Yj−1)], because any term with j ≥ τ must be zero, by the coupling scheme.

Furthermore, for the purpose of calculating expectations, we can replace h(Yj−1)

with h(Xj−1), for any j, because Xj−1 and Yj−1 have identical distributions,

by construction. However, h(Xk) +
∑

j=k+1[h(Xj) − h(Xj−1)] is nothing but

limt→∞ h(Xt), which has the same distribution as h(Xπ).

The cleverness of constructing an estimator based on both X and Y to ensure

E[Hk(X ,Y)] = E[h(Xπ)], for any h, bypasses the requirement that Xτ itself must



4 CRAIU AND MENG

be perfect. The series of illustrative and practical examples in Jacob, O’Leary and

Atchadé (2020) and in Jacob, Lindsten and Schön (2020), Heng and Jacob (2019),

and Biswas, Jacob and Vanetti (2019) provide good evidence of the practicality

of this approach. The use of parallel computation for estimating I = Eπ[h(X)]

supports using E[Eπ[h(x)|Uj ]], where the inner expectation is the estimate ob-

tained from the jth parallel process, Uj , and the outer mean averages over all

processes. However, if each inner mean is a biased estimator for I, then the ac-

cumulation of errors can be seriously misleading. This has been documented in

the Monte Carlo literature extensively, for instance, in Glynn and Heidelberger

(1991) and Nelson (2016). Hence, unbiased MCMC designs allow one to take full

advantage of parallel computation strategies, without having to worry about the

accumulation of bias as the number of parallel processes increases.

1.3. Using control variates – even higher hope?

The expression (1.1) also opens a path to explore further improvements, and

that is the starting point of our exploration. In Craiu and Meng (2020), we

noticed that (1.1) can be expressed equivalently as

Hk(X ,Y) = h(X(τ−1)∨k) +

τ−2∑
j=k

[h(Xj)− h(Yj)], (1.2)

where A ∨ B = max{A,B}. Expression (1.1) renders the insight underlying

Jacob, O’Leary and Atchadé (2020), which is that Hk(X ,Y) achieves the desired

unbiasedness by providing a time-forward bias correction to h(Xk), whenever

τ > k+1; hence coupling for the future. (No correction is needed when τ ≤ k+1.)

The dual expression (1.2) indicates that Hk(X ,Y) can also be viewed as a time-

backward bias correction to h(Xτ−1) for its imperfection, because k < τ − 1.

Most intriguingly, each correcting term ∆j ≡ h(Xj)−h(Yj) in (1.2) has mean

zero, by the construction of {X ,Y}. However, the sum
∑τ−2

j=k [h(Xj)−h(Yj)] does

not necessarily have mean zero, because τ is random and it depends critically

on {X ,Y}. Indeed, if this sum had mean zero, then X(τ−1)∨k would have been

a perfect draw from π(X), because then E[h(X(τ−1)∨k)] = E[h(Xπ)], for any

(integrable) h, which would imply that X(τ−1)∨k ∼ π.

However, the fact that E(∆j) = 0 suggests that we can use any linear combi-

nation of ∆j as a control variate for Hk(X ,Y). Using control variates to reduce

estimation errors is a well-known technique in the literature on improving MCMC

samplers and estimators by using efficiency swindles, such as antithetic and con-

trol variates, Rao–Blackwellization, and so on, some of which we have explored
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in the past (e.g., Van Dyk and Meng (2001); Craiu and Meng (2001, 2005); Craiu

and Lemieux (2007); Yu and Meng (2011)). For example, for any finite constant

η > k + 1, the estimator

H∗k(X ,Y; η) = Hk(X ,Y)−
η−2∑
j=k

∆j = h(X(τ−1)∨k) +

τ−2∑
j=k

∆j −
η−2∑
j=k

∆j (1.3)

shares the mean of Hk(X ,Y), but can have a smaller variance, with a judicious

choice of η. Intuitively, this reduction of variance is possible because of the poten-

tial partial cancellation (on average) of the ∆j terms in the last two summations

in (1.3).

Indeed, Section 2 investigates a more general class of control variates, and

derives the optimal choice by establishing the minimal upper bound within the

class on the total variation distance between the target π and πk, the distribution

of Xk. This leads to both an improved theoretical bound over that of Biswas,

Jacob and Vanetti (2019), as reported in Section 2, as well as a more efficient

estimator than (1.1) owing to a parallel implementation. Section 3 describes

the estimation methods and algorithms, and Section 4 provides examples and

illustrations of both kinds of gains. Section 5 discusses some future work.

2. Theoretical Gains from Incorporating Control Variates

2.1. L-lag coupling: An elegant and powerful method

The scheme of L-lag coupling extends the coupling of {Xk, Yk−1} to the more

general form of the coupling of {Xk, Yk−L}, for some fixed L ≥ 1, as detailed in

Biswas, Jacob and Vanetti (2019). The significance of this extension can be best

understood by expressing the L-lag coupling idea in its mathematically equivalent

form of seeking τL such that Xk+L = Yk, for all k ≥ τL, and letting L→∞ while

keeping k fixed. Heuristically, it is then clear that the larger L, the closer the

distribution of YτL is to the target, because XτL+L should converge to X∞ ∼ π

as L→∞, and X and Y share the same target π.

Indeed, by extending (1.1) to a general L, Biswas, Jacob and Vanetti (2019)

show that (under mild regularity conditions) the total variation distance between

πk, the distribution of Xk, and π is bounded by a very simple function of τL and

(k, L):

dTV(πk, π) ≤ E[Jk,L], with Jk,L = max

{
0,

⌈
τL − L− k

L

⌉}
, (2.1)
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where dae denotes the smallest integer that is no less than a. We can clearly see

the impact of increasing L or k, because larger values of either of them make it

more likely that τL−L−k < 0, and hence Jk,L = 0. Perhaps a clear demonstration

of this fact is when τL follows a geometric distribution with success probability

p and state space {L+ i, i ≥ 0} (because τL ≥ L, by definition) or, equivalently,

δ = τ − (L − 1) ∼ Geo(p). Then, letting q = 1 − p, we have (see Biswas, Jacob

and Vanetti (2019))

dTV(πk, π) ≤ E[Jk,L] =
qk+1

1− qL
. (2.2)

We see that the bound is a decreasing function of both k and L, though it

decreases much faster with k, which controls the rate of convergence, than it

does with L, which controls only the (constant) scaling factor. We also observe

that the bound can be trivial, because it can be larger than one for small k and/or

L, whereas dTV cannot, suggesting there is room for improvement. Nevertheless,

(2.1) is a remarkable bound because it encodes all the intricacies relevant for the

convergence speed of X , including the choice of X0, into a univariate (truncated)

coupling time Jk,L. In the case of (2.2), the bound also immediately establishes

the geometric ergodicity of X , and provides a rather practical way to assess the

bound by estimating p or, more generally, by assessing Jk,L directly, say, from a

parallel implementation (see Section 3).

It is perhaps even more remarkable to see that the left-hand side of (2.1)

is a property of the marginal chain X (and, equivalently, of the Y chain), but

its right-hand side depends on the construction of the joint chain {X ,Y}. This

suggests that we can seek improvement by better coupling. Furthermore, as we

establish below, even without changing the coupling scheme, we can still obtain

better bounds by using more efficient estimators than (1.1).

For a general L, the forward-correction expression in (1.1) becomes (Biswas,

Jacob and Vanetti (2019))

Hk,L(X ,Y) = h(Xk) +

Jk,L∑
j=1

[
h(Xk+jL)− h(Yk+(j−1)L)

]
, (2.3)

and it is easy to verify that the backward-correction expression (1.2) takes the

form

Hk,L(X ,Y) = h(Xk+LJk,L
) +

Jk,L−1∑
j=0

[h(Xk+jL)− h(Yk+jL)] . (2.4)

Remark 1. The (random) subscript in Xk+JL cannot be reduced to (τ −L)∨ k
when L > 1, the most obvious extension of the index (τ − 1)∨ k in (1.2). This is
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because k+Jk,LL ≥ (τ −L)∨k, but the inequality can be strict when τ > k+L.

For example, if τ = L+ k+M , where M is a positive integer less than L (which

does not exist when L = 1), k + Jk,LL = k + L, but (τ − L) ∨ k = k +M .

Remark 2. Whereas (2.3) and (2.4) are equivalent as equalities, they may lead

to different inequalities depending on how we bound their respective right-hand

sides. This is both a bonus and a trap, as we discuss below.

2.2. Deriving the optimal bound over choices of control variates

For notational simplicity, we drop the variables k, L from the notation of

Jk,L, and we let ∆k,j = h(Xk+jL)−h(Yk+jL). Then, we know ∆k,j has mean zero

for any {k, j} and L. This means that for any random sequence ~η ≡ {ηj , j ≥ 1}
such that: (A) it is independent of {X ,Y}, and (B)

∑
j=1 E~η|ηj | <∞, we can use

Cη =
∑

j≥1 ηj∆k,j as a control variate for Hk,L ≡ Hk,L(X ,Y), because E[Cη] = 0.

That is,

H̃
(~η)
k,L(X ,Y) = Hk,L(X ,Y)−

∑
j≥1

ηj∆k,j (2.5)

is also an unbiased estimator of E[h(Xπ)]. Next, we examine how to choose η.

To choose ~η, instead of minimizing Var[H̃
(~η)
k,L], which is not an easy task and

will also likely produce an h-dependent solution, we first follow the argument

used by Biswas, Jacob and Vanetti (2019) with a given ~η. We then minimize a

class of bounds of dTV(πt, π) over the choice of ~η that satisfies (A) and (B). This

leads to a sharper bound than (2.1), a special case corresponding to ~η = 0, which,

in general, is not an optimal choice, as shown below.

We proceed by using the same argument as in Biswas, Jacob and Vanetti

(2019) for proving (2.1), but using (2.5) instead of (2.3). However, when applying

(2.5), we must retain the expression of Hk,L(X ,Y), as given by (2.3). (Interested

readers are invited to try using (2.4).) Specifically, the unbiasedness of (2.5)

implies that, for any k ≥ 1,

E[h(Xπ)− h(Xk)] = E


J∑
j=1

[
h(Xk+jL)− h(Yk+(j−1)L)

]
−
∑
j≥1

ηj∆k,j


= E

∑
j≥1

[
h(Xk+jL)− h(Yk+(j−1)L)

]
1{j≤J} −

∑
j≥1

ηj [h(Xk+jL)− h(Yk+jL)]


(2.6)
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= E

∑
j≥1

h(Xk+jL)[1{j≤J} − ηj ] +
∑
j≥1

h(Yk+jL)[ηj − 1{j+1≤J}]− h(Yk)1{0<J}

.
The interchanges of sum and expectation in the (infinite) sums hold under as-

sumption (B) and the additional assumption that the h function is bounded. To

compute the total variation distance, let h ∈ H = {h : supx |h(x)| ≤ 1/2}, as in

Biswas, Jacob and Vanetti (2019). Consequently, (2.6) implies

dTV(πk, π) ≤ 1

2

∑
j≥1

E|1{j≤J} − ηj |+
∑
j≥1

E|ηj − 1{j≤J−1}|+ Pr(0 < J)


=
∑
j≥1

E|1{j≤J̃} − ηj |+ 0.5 Pr(J > 0), (2.7)

where J̃ = J − ξ and ξ ∼ Bernoulli(0.5) is independent of J . Note that the

support for J̃ is {−1, 0, 1, . . .}. Set

Sj = Pr(J̃ ≥ j) = Pr(J > j) + 0.5 Pr(J = j), for any j ≥ 0. (2.8)

Recall that for any given random variable V , minU⊥V E|V − U | = E|V −mV |,
where mV is a median of V , and the notation minU⊥V means to minimize over

all U that are independent of V . Hence, in order to minimize (2.7) over ~η, we

should set ηj to be the median of the Bernoulli random variable 1{j≤J̃}, that is,

ηj = 1{Sj>0.5}.

Let mJ̃ be the smallest integer median of J̃ . Then, for any j > mJ̃ , Sj = 1−
Pr(J̃ < j) ≤ 1−Pr(J̃ ≤ mJ̃) ≤ 1/2 because Pr(J̃ ≤ mJ̃) ≥ 1/2, by the definition

of mJ̃ , implying ηj = 0. Therefore, we know the maximal number of nonzero

ηj cannot exceed mJ̃ . However, other than the ideal case with Pr(J = 0) = 1,

mJ̃ can be zero, but not −1, because Pr(J̃ = −1) = 0.5 Pr(J = 0) < 0.5. This

automatically implies that condition (B) is trivially satisfied. For this choice of

~η, (2.7) yields our new bound for dTV(πk, π):

Bk,L =
∑
j≥1

min{Sj , 1− Sj}+ 0.5 Pr(J > 0) (2.9)

=
∑
j≥1

min {Pr(J ≥ j),Pr(J ≤ j)} . (2.10)

In deriving the last equality, we use the fact that Sj + 0.5 Pr(J = j) = Pr(J ≥ j)
and 1− Sj + 0.5 Pr(J = j) = Pr(J ≤ j), and Pr(J > 0) =

∑
j≥1 Pr(J = j).
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2.3. Understand and compare the bounds

It is immediate from expression (2.10) that our new bound cannot exceed

the bound of Biswas, Jacob and Vanetti (2019), as given in (2.1), because (2.10)

obviously cannot exceed
∑

j≥1 Pr(J ≥ j), which is E[J ]. The next result reveals

alternative forms for the new bound, providing additional insights, including the

optimality of the choice ηj = 1{j≤mJ̃}.

Theorem 1. Under the same regularity conditions as in Biswas, Jacob and

Vanetti (2019), we have

Bk,L = E |J̃k,L −mJ̃k,L
|+ Pr(Jk,L > 0)− 0.5 (2.11)

= E |Jk,L −mJk,L
|+ Pr(Jk,L > 0)− Sk,L (2.12)

= 0.5
∑
j≥1

[1− |Pr(τ > k + (j + 1)L) + Pr(τ > k + jL)− 1|]

+ 0.5 Pr(τ > k + L), (2.13)

where Sk,L = max{Pr(Jk,L > mJk,L
),Pr(Jk,L < mJk,L

)} ≤ 0.5, and mJ̃k,L
and

mJk,L
are the smallest integer medians of J̃k,L and Jk,L, respectively.

Proof. To reduce the notation overload, we drop the k, L for J , J̃ , mJ , and mJ̃ .

We have already established that the optimal ~η must be of the form ηj = 1{j≤m},

for some m ≥ 0. Note here that the use of m = 0 permits ~η = 0 because j ≥ 1.

This is also consistent with setting η0 = 1. We can minimize the right-hand side

of (2.7) with respect to such a class, that is, with respect to the choice of m.

However, it is easy to see that∑
j≥1

E|1{j≤J̃} − ηj | =
∑
j≥0

E|1{j≤̃J} − 1{j≤m}| − E[1− 1{0≤J̃}]

=
∑
j≥0

E
[
1{min{J̃ ,m}<j≤max{J̃ ,m}

]
− Pr(J̃ = −1)

= E
[
max{J̃ ,m} −min{J̃ ,m}

]
− 0.5 Pr(J = 0)

= E|J̃ −m| − 0.5 Pr(J = 0). (2.14)

It is clear from (2.14) that the optimal m must be an integer median of J̃ , and

we choose the smallest one, mJ̃ . With this choice of ~η, substituting (2.14) into

(2.7) yields the expression

Bk,L = E|J̃ −mJ̃ | − 0.5 Pr(J = 0) + 0.5 Pr(J > 0) (2.15)
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= Pr(J > 0) + E|J̃ −mJ̃ | − 0.5, (2.16)

which proves (2.11).

In order to prove (2.12), we start from (2.10). Let

G(j) = Pr(J ≤ j)− Pr(J ≥ j) = Pr(J < j)− Pr(J > j), (2.17)

for j ≥ 0. Then, it is easy to verify that G(j) is a monotone increasing func-

tion, which means G(j) − G(mJ) share the same sign with j − mJ , for all

j 6= mJ . It follows that the sum in (2.10) can be decomposed into three parts,

A =
∑mJ−1

j=1 Pr(J ≤ j), B = 1{mJ>0}min{Pr(J ≤ mJ),Pr(J ≥ mJ)}, and

C =
∑

j≥mJ+1 Pr(J ≥ j). When mJ = 0, C = E[J ], B = 0 because 1{mJ>0} = 0,

and A = 0 by convention because mJ − 1 < 1. If pj = Pr(J = j), then it is easy

to see that whenever mJ ≥ 1,

A =

mJ−1∑
j=1

j∑
h=1

ph + (mJ − 1)p0 =

mJ−1∑
h=1

mJ−1∑
j=h

ph + (mJ − 1)p0

=

mJ−1∑
h=1

(mJ − h)ph + (mJ − 1)p0 =

mJ−1∑
h=0

(mJ − h)ph − p0; (2.18)

C =

∞∑
j=mJ+1

∞∑
h=j

ph =

∞∑
h=mJ+1

h∑
j=mJ+1

ph =

∞∑
h=mJ+1

(h−mJ)ph. (2.19)

Noting that (mJ − h)ph = 0 when h = mJ , we see that when mJ ≥ 1,

A+B + C = E|J −mJ | − p0 + min{Pr(J ≥ mJ),Pr(J ≤ mJ)}
= E|J −mJ |+ Pr(J > 0) + min{Pr(J ≥ mJ),Pr(J ≤ mJ)} − 1

= E|J −mJ |+ Pr(J > 0)−max{Pr(J < mJ),Pr(J > mJ)}. (2.20)

When mJ = 0, A = B = 0, and C =
∑

h≥1 hph = E[J ], which is (2.12) because

Sk,L = Pr(J > 0), cancelling exactly the Pr(J > 0) term. This completes the

proof of (2.12).

The proof of (2.13) also follows from (2.10), using the identities max{a, b} =

0.5[a + b + |a− b|] and Pr(J ≥ j) + Pr(J ≤ j) = 1 + Pr(J = j), for any j. This

leads to ∑
j≥1

min {Pr(J ≥ j),Pr(J ≤ j)}
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= 0.5
∑
j≥1

[1 + Pr(J = j)− |Pr(J ≥ j)− 1 + Pr(J > j)|]

= 0.5
∑
j≥1

[1− |Pr(J > j) + Pr(J > j − 1)− 1|] + 0.5 Pr(J > 0).

Expression (2.13) then follows because {J > j} = {τ > k + (j + 1)L}.
The above result tells us that, whenever mJ = 0, our bound is identical to

the one given by Biswas, Jacob and Vanetti (2019). From (2.10), the two bounds

are the same if and only if G(1) ≥ 0, which is the same as 2p0 ≥ 1 − p1, where

pk = Pr(J = k). Clearly, this inequality is satisfied when mJ = 0, that is, when

p0 ≥ 1/2. It also implies that mJ ≤ 1, because for any j < mJ ,

G(j) = Pr(J < j) + Pr(J ≤ j)− 1 ≤ 2 Pr(J < mJ)− 1 < 0, (2.21)

as Pr(J ≤ mJ − 1) < 0.5, because mJ is the smallest integer median. Therefore,

we have the following theorem.

Theorem 2. Under the same regularity conditions as those of Theorem 1, a

sufficient and necessary condition for the bound in Theorem 1 to equal E[J ] is

2p0 ≥ 1− p1.

Remark 3. Theorem 2 implies that mJ = 0 is a sufficient condition and mJ ≤
1 is a necessary condition for the two bounds to be the same. However, the

condition mJ = 1 itself is not sufficient.

Remark 4. An intriguing new insight provided by bound (2.12) is that not

only the average coupling time matters, but the variation of the coupling time

is important too. The Sk,L term also suggests that even the symmetry matters,

because Sk,L achieves its maximum when the distribution is symmetrical locally

around the median.

Let ζ = τ − t, which is the number of steps needed after time t in order to

couple (assuming the coupling has not already happened by time t). Then, the

sufficient and necessary condition in Theorem 2 is the same as

Pr(ζ ≤ L) ≥ Pr(ζ > 2L), (2.22)

suggesting that the new bound is more useful when the distribution of ζ places

more mass on the right side of the coupling interval (L, 2L] than it does on its left

side, that is, when (2.22) is violated. The implication is that the improvement of

the new bound, if any, will more likely come from those situations where either t

is small or τ is large (for fixed L), that is, when the mixing is poor.
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3. Estimation and Practical Implementation

We assume that Q > 1 coupled processes {(X(q)
t , Y

(q)
t ) : 1 ≤ q ≤ Q} are run

in parallel and that, for all 1 ≤ q ≤ Q, X (q) = {X(q)
k }k≥1 and Y(q) = {Y (q)

k }k≥1
have been successfully L-coupled. The latter implies that the chains X (q) are run

L more steps than the Y(q) chains, and there exists a stopping time {τ (q) : q =

1, . . . , Q} such that X
(q)
t+L = Y

(q)
t , for all t ≥ τ (q).

3.1. Control variate estimators

We work with a modified version of (2.4) that incorporates control variates:

H
∗(q)
k,L (X (q),Y(q)) = h

(
X

(q)

k+J
(q)
k,LL

)
+

J
(q)
k,L−1∑
j=0

[
h(X

(q)
k+jL)− h(Y

(q)
k+jL)

]

−

m
J̃
(q)
k,L∑

j=0

[
h(X

(q)
k+jL)− h(Y

(q)
k+jL)

]
, (3.1)

where mJ̃ denotes the smallest integer median of J̃ . Henceforth, in order to

simplify the notation, we use m
(q)
k,L and m̃

(q)
k,L to denote mJ

(q)
k,L

, and mJ̃
(q)
k,L

, respec-

tively. An unbiased estimator for H
∗(q)
k,L (X (q),Y(q)) is straightforward to produce,

but additional care must be paid to maintain the independence between the esti-

mator for m̃
(q)
k,L (or m

(q)
k,L) and (X (q),Y(q)). To satisfy the latter, we construct the

unbiased estimators m
(q)
k,L and m̃

(q)
k,L from all coupled processes but the qth one,

as described in Algorithm 1.

Algorithm 1 Algorithm for computing m
(q)
k,L and m̃

(q)
k,L for a fixed k and all q ∈

{1, 2, . . . , Q}.

1. Compute J
(q)
k,L;

2. Sample independently ζ(q) ∼ Bernoulli(0.5) and set J̃
(q)
k,L = J

(q)
k,L − ζ(q);

3. Set m
(q)
k,L = bmed({J (h)

k,L : 1 ≤ h ≤ Q, h 6= q}c and m̃
(q)
k,L = bmed({J̃ (h)

k,L : 1 ≤ h ≤
Q, h 6= q}c, where med(A) denotes the median of the values in set A and b·c is the
floor function.

When L = 1, in order to reduce the variance of the unbiased estimator Hk in

(1.1), Jacob, O’Leary and Atchadé (2020) recommend using the time-averaging
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estimator

Hk:r(X ,Y) =
1

r − k + 1

r∑
t=k

Ht(X ,Y).

We follow the same strategy, and consider the time-averaging version of (2.4)

H
(q)
k:r;L(X (q),Y(q)) =

1

r − k + 1

r∑
t=k

h(X
(q)

t+J
(q)
t,LL

)

+
1

r − k + 1

r∑
t=k

J
(q)
t,L−1∑
j=0

[
h(X

(q)
t+jL)− h(Y

(q)
t+jL)

]
, (3.2)

and the average estimator that includes the control-variate swindle is then

H
∗(q)
k:r;L(X (q),Y(q))

= H
(q)
k:r;L(X (q),Y(q))− 1

r − k + 1

r∑
t=k


m̃

(q)
k,L∑
j=0

[
h(X

(q)
t+jL)− h(Y

(q)
t+jL)

] . (3.3)

Note that the original versions are obtained when k = r. Because each term in the

control-variate term above, h(X
(q)
t+jL)− h(Y

(q)
t+jL), has mean zero, we expect that

the gain from the control variate swindle diminishes when r increases owing to

the law of large numbers, leading to the overall control-variate term approaching

zero. We see this phenomenon in Section 4.

3.2. Estimating the total variation bound

When estimating Bk,L, we can use (2.11), (2.12), or (2.13). In our numerical

experiments we use (2.12), along the steps described in Algorithm 2.

In the next section, we investigate the performance of the control variate

swindle and compare the new total variation bound with (2.1) provided by Biswas,

Jacob and Vanetti (2019).

4. Examples and Illustrations

4.1. A theoretical comparison of the bounds: The geometric case

The distribution of the coupling time τL is, in general, unknown. However,

there is one instance in which the distribution of τL is exactly geometric. Specifi-

cally, when coupling two independent Metropolis samplers, the maximal coupling

procedure uses the same proposal for both transition kernels, and coupling occurs

when both chains accept it. The tractability of derivations in the geometric case
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Algorithm 2 Algorithm for estimation of Bk,L, for any given k and L.

1. Compute J
(q)
k,L and m

(q)
k,L, for all q = 1, . . . , Q;

2. Compute the empirical means

ek,L =
1

Q

Q∑
q=1

∣∣∣J (q)
k,L −m

(q)
k,L

∣∣∣ , pk,L =
1

Q

Q∑
q=1

1{J(q)
k,L>0},

ak,L =
1

Q

Q∑
q=1

1{J(q)
k,L>m

(q)
k,L}, bk,L =

1

Q

Q∑
q=1

1{J(q)
k,L<m

(q)
k,L};

3. Compute
B̂k,L = ek,L + pk,L − ak,L ∨ bk,L,

where a ∨ b denotes the maximum between a and b.

allow us to better understand theoretically the relationship between the bound

in Biswas, Jacob and Vanetti (2019) and ours.

We consider the case in which δ = τ − (L − 1) ∼ Geo(p). Because J =

max {0, d(δ − k − 1)/Le}, we see that

Pr(J = 0) = Pr(δ ≤ k + 1) = 1− qk+1,

Pr(J > j) = Pr(δ > k + 1 + Lj) = qk+1+Lj , j = 0, 1, . . . , (4.1)

where q = 1− p. That is, the distribution of J is a mixture of (i) the Dirac point

measure δ{0} with mixture proportion 1− qk+1, and (ii) a geometric distribution

with probability of success 1 − qL with weight qk+1. This implies immediately

that the bound given in Biswas, Jacob and Vanetti (2019) has the expression

(2.2).

For our new bound, in this case, it is easier to use expression (2.10) directly.

Let m be the largest integer such that Pr(J ≥ m) ≥ Pr(J ≤ m); that is, m is the

largest integer that ensures

qk+1+L(m−1) + qk+1+Lm ≥ 1 ⇐⇒ m =

⌊
L− k − 1

L
− log[1 + qL]

L log(q)

⌋
. (4.2)

Clearly, when m ≤ 0, our Bk,L(p) is the same as the old bound (2.2). When

m ≥ 1, we have
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Bk,L(p) =

m∑
j=1

Pr(J ≤ j) +

∞∑
j=m+1

Pr(J ≥ j)

{by (4.1)} =

m∑
j=1

[
1− qk+1+Lj

]
+

∞∑
j=m+1

qk+1+L(j−1)

= m− qk+1+L[1− qmL]

1− qL
+
qk+1+mL

1− qL

= m− qk+1+L[1− qmL − q(m−1)L]

1− qL
. (4.3)

We can also compute Bk,L(p) directly from (2.13) as an infinite sum

Bk,L(p) = 0.5
∑
j≥1

[1− |qk+1+L(j−1) + qk+1+Lj − 1|] + 0.5qk+1. (4.4)

Figure 1 compares the bounds (2.2) (dashed line) and (4.4) (solid line) for

different values of p, L, and t. One can see that the new bound is sharper,

and that only for larger values of p, corresponding to fast-mixing chains, are the

two bounds indistinguishable. The horizontal line in Figure 1 marks the obvious

bound, because dTV ≤ 1. Note too that for very small values of p, both bounds

are vacuous, but the new bound has a larger range for being nonvacuous.

The simulations in the remaining two examples rely on the unbiasedmcmc

package of Pierre Jacob, available from: https://github.com/pierrejacob/

unbiasedmcmc/tree/master/vignettes. Additional programs for implement-

ing the new ideas in this paper are available as supplemental material from the

authors.

4.2. An empirical comparison of the bounds: Ising model

The Ising model example follows the setup in Biswas, Jacob and Vanetti

(2019). We consider a 32× 32 square lattice of pixels with values in {−1, 1}, and

with periodic boundaries. A state of the system is then x ∈ {−1, 1}32×32, and

the target probability is defined as πβ(x) ∝ exp(β
∑

i∼j xixj), where i ∼ j means

that xi and xj are pixel values in neighboring sites. This illustration uses the

parallel tempering algorithm (PT, see Swendsen and Wang (1986)) coupled with

a single site Gibbs (SSG) updating. It is known that larger values of β increase

the dependence between neighboring sites, and that this “stickiness” leads to slow

mixing of the SSG. The target of interest corresponds to β0 = 0.46 and we use

12 chains, each corresponding to a different πβ(x), with β values equally spaced

between 0.3 and β0 = 0.46. Figure 2 shows the total variation bounds, where that

https://github.com/pierrejacob/unbiasedmcmc/tree/master/vignettes
https://github.com/pierrejacob/unbiasedmcmc/tree/master/vignettes
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Figure 1. Comparison of the bound (2.1) provided by Biswas, Jacob and Vanetti (2019)
(dashed line), and the new bound given in (2.16) (solid line). Note that for small values
of p, both bounds are vacuous.

provided by (2.1) is shown as a dashed line and that from (2.16) is shown as a solid

line. The bounds are derived for 1 ≤ k < 25,000 and L ∈ {1000, 2000, 3000, 4000}.
For smaller values of L, the patterns are similar, but TV bounds are larger for

smaller values of k. The new bound, (2.16), is computed from Q = 50 parallel

runs, and is averaged over 20 independent replicates, while (2.1) is averaged over

1,000 independent replicates of a single coupled process.

Although the numerical results confirm that our new bound never exceeds

the bound of Biswas, Jacob and Vanetti (2019), unfortunately, in this case, the

improvement from our bound is visible only when it is not needed, that is, when

both bounds exceed one. Whereas this is a disappointment for our effort to

improve the bound with a real gain, it is good news for practitioners, because the

bound in Biswas, Jacob and Vanetti (2019) is a bit simpler to use.
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Figure 2. Ising Model: Comparison of TV bounds for the PT algorithm for SGS for
L ∈ {1000, 2000, 3000, 4000}. The dashed line shows the bound (2.1) derived in Biswas,
Jacob and Vanetti (2019), and the solid line shows the new bound given in (2.16).

4.3. Comparing bounds and estimators: A logistic regression example

To compare the bounds and the unbiased estimators, we follow Biswas, Jacob

and Vanetti (2019) and consider a Bayesian logistic regression model for the

German credit data of Lichman (2013). The data consist of n = 1000 binary

responses, {Yi : 1 ≤ i ≤ n} and d = 49 covariates, {xi ∈ Rd; 1 ≤ i ≤ n}. The

response Yi indicates whether the ith individual is fit to receive credit (Yi = 1) or

not (Yi = 0). The logistic regression model frames the probabilistic dependence

between the response and covariate as Pr(Yi = 1|xi) = [1 + exp(−xTi β)]−1. The

prior is set to β ∼ N(0, 10Id). Sampling from the posterior distribution is done

using the Pólya-Gamma sampler of Polson, Scott and Windle (2013), using the

R programs made available by Biswas, Jacob and Vanetti (2019) at https://

github.com/niloyb/LlagCouplings. In Figure 3, we compare the bound of

Biswas, Jacob and Vanetti (2019) (2.1) (dashed line) with our bound (2.16) (solid

 https://github.com/niloyb/LlagCouplings
 https://github.com/niloyb/LlagCouplings
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Figure 3. German credit Ddta: Comparison of TV bounds for the Pólya-Gamma sampler
for L ∈ {2, 5, 10, 20}. The dashed line shows the bound (2.1) derived in Biswas, Jacob
and Vanetti (2019), and the solid line shows the new bound given in (2.16). The bound
from (2.16) is obtained from running 50 coupled chains in parallel and averaging over
40 independently replicated experiments. The bound from (2.1) is averaged over 2,000
independent replicates.

line). The bound in (2.1) is averaged over 2,000 independent replicates. The new

bound is computed from running 50 coupled processes in parallel and averaged

over 40 replicates, yielding the same number of runs. The difference between the

two bounds is apparent for smaller values of L when the new bound is sharper

for small values of k, but the gain diminishes quickly as L increases.

We are also interested in the gains in efficiency for the Monte Carlo estimators

when implementing the control variate swindle. Using 500 independent replicates

of a single coupled process with lag L = 5, we obtain Monte Carlo estimates of the

posterior means for the regression coefficients. In Figure 4, we present the relative

reduction in variance (RRV), computed as RRV= VarMCCV (β̂)/VarMC(β̂), where

β̂ is the posterior mean of the regression coefficients, β ∈ R49, and VarMC and
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Figure 4. German credit data. Relative reduction in variance (RRV) for the 49 regression
coefficients. Top panels: the lag is L = 5. Bottom panels: the lag is L = 20. Left
panels: RRV is obtained from the single estimators without and with control variates,
respectively, using k = 5 in (2.4) and (3.1). Right panels: RRV is obtained from the
average estimators without and with control variates, respectively, using k = 5 and
r = 30 in (3.2) and (3.3).

VarMCCV denote the estimated Monte Carlo variances of β̂ obtained without and

with the control variates, respectively. The left panel shows the RRV when using

the single-run estimators (2.4) and (3.1), while the right panel plots the RRV for

the mean estimators (3.2) and (3.3). We see clearly that the gain is significant

for r = k = 5 (left panels), but diminishes when k = 5 and r = 30 (right panels),

as discussed in Section 3.

5. Can We Do Even Better?

The idea of L-lag coupling has opened multiple avenues for future research.

The use of control variates is just one of them. Although the practical gain is

small or possibly even negative when we take into account the increased com-
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putation when computing the control variates, the theoretical gain is intriguing,

because we obtain a theoretically superior bound without imposing any additional

assumptions. This naturally raises the question of whether our bound is the best

possible without further conditions. We do not know. We do not even know

how to study such a question theoretically, because to the best of our knowledge,

this is the first time a tighter theoretical bound has been obtained by a better

empirical estimator. Whereas seeking other more efficient estimators seems to be

a natural direction, we must keep in mind that they would likely incur additional

computational costs.

One plausible direction is to go beyond linearly combining mean-zero control

variates, although we had no success so far. However, even without seeking

better bounds, our current bounds already offer the opportunity to investigate

fresh perspectives for optimizing an MCMC kernel using adaptive ideas, and we

intend to pursue these in future research.
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