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Abstract

The Multiple-Try Metropolis is a recent extension of the Metropolis algorithm in

which the next state of the chain is selected among a set of proposals. We propose a

modification of the Multiple-Try Metropolis algorithm which allows the use of corre-

lated proposals, particularly antithetic and stratified proposals. The method is partic-

ularly useful for random walk Metropolis in high dimensional spaces and can be used

easily when the proposal distribution is Gaussian. We explore the use of quasi-Monte

Carlo (QMC) methods to generate highly stratified samples. A series of examples is

presented to evaluate the potential of the method.

Key words and phrases: Antithetic variates, Markov chain Monte Carlo, Extreme antithesis,

Korobov rule, Latin Hypercube sampling, Quasi-Monte Carlo, Sobol’ sequence, Multiple-Try

Metropolis, Random-Ray Monte Carlo.
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1 Introduction

Is is well recognized that the Markov Chain Monte Carlo (MCMC) methods provide huge

support for realistic statistical modelling. In recent years, as the statistical models have

increased in complexity and size, there is a greater demand for fast MCMC algorithms

and more reliable convergence diagnostics. A promising direction is represented by the

so-called local search samplers and adaptive algorithms. For examples, we refer to the

papers by Atchade and Perron (2005), Atchade and Rosenthal (2005), Liu, Liang and Wong

(2000), Gilks, Roberts and George (1994), Chen and Schmeiser (1993). In this paper we

discuss possible accelerations of the Multiple-Try Metropolis (MTM) of Liu, Liang and Wong

(2000, henceforth denoted LLW) via correlated proposals. LLW introduce the MTM as

a generalization of the classical Metropolis algorithm which allows one to select at each

update among multiple proposals. The main advantage of the MTM is that it explores a

larger portion of the sample space resulting in better mixing and shorter running times. In

addition, LLW propose the use of MTM with the Adaptive Direction Sampling of Gilks et

al. (1994) as well as the hit-and-run algorithm (Chen and Schmeiser, 1993) and the griddy

Gibbs sampler (Ritter and Tanner, 1992). The modifications we propose here for the MTM

can be used directly in all of the above.

Recent approaches to the acceleration of MCMC algorithms have included the use of

antithetic variates (Frigessi, G̊asemyr and Rue, 2000; Craiu and Meng, 2005), and quasi-

Monte Carlo (QMC) methods (Owen and Tribble, 2004; Lemieux and Sidorsky, 2006), in

which highly-uniform point sets—such as the one shown on Figure 3.2—are used to produce

structured sampling schemes meant to improve upon random draws. The combination of

MCMC and QMC is still at an early stage, but it seems like a promising approach since QMC

methods have been shown to be very successful in the context of multivariate integration,

especially in the area of finance (see, for example, Paskov and Traub, 1995; Caflisch, Morokoff

and Owen, 1997).

Antithetic coupling has proven to be particularly effective in MCMC algorithms with

monotone kernels, such as Gibbs and slice samplers, or in perfect sampling processes in

which the updating function is monotone in all arguments. The Metropolis-Hastings algo-
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rithm, one of the most frequently used MCMC algorithms in practice, does not have the

monotone properties required for an efficient antithetic coupling. We propose the use of an-

tithetic and stratified variates for Metropolis algorithms via the MTM. The new algorithm,

Multiple Correlated-Try Metropolis (MCTM) selects among correlated proposals instead of

independent ones. Section 2 contains the general construction of MCTM. Correlation among

the proposals can be introduced in various ways but in this paper we study the antithetic

and stratified approaches. Both are detailed in Section 3 in the context of a random-walk

Metropolis with either a) univariate proposal distribution for which the inverse cumulative

distribution function is available, or b) multivariate Gaussian proposals. Section 4 contains

three examples for which we compare the performances of MCTM and MTM. We end with

discussions in Section 5.

2 Multiple correlated-try Metropolis

Suppose we want to draw samples from a target distribution characterized by the density

function π(x). Metropolis algorithms do that by first choosing a proposal transition rule

T (x; y), which gives the density function for the future state y given the current state x. In

the MTM algorithm proposed by LLW, a weighting function w(x, y) defined by

w(x, y) = π(x)T (x; y)λ(x, y),

is also specified, where λ(x, y) is a nonnegative symmetric function (in x and y) that can be

chosen by the user. (To simplify the arguments, unless otherwise stated we take λ(x, y) = 1

throughout this paper.) To update the current state x, the MTM performs the following

steps.

1. Draw k trial proposals y1, . . . , yk from T (x; y). Compute w(yj, x) for each j;

2. Select y among the k proposals with probability proportional to w(yj, x), j = 1, . . . , k.

3. Draw x∗1, . . . , x
∗
k−1 variates from the distribution T (y; x) and let x∗k = x;
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4. Accept y with generalized acceptance probability

rg = min

{

1,
w(y1, x) + . . . + w(yk, x)

w(x∗1, y) + . . . + w(x∗k, y)

}

.

While it is obvious that the proposals do not need to be independently generated, some

care is required in implementing the MTM with correlated proposals, especially if we want

to maintain the reversibility of the Markov chain. Consider the MTM algorithm in which the

proposals are generated jointly from T̃ (x; y1, . . . , yk) and are exchangeable. In other words,

the transition rule now specifies how to generate a (correlated) sample y1, . . . , yk of future

states given the current state x, and T̃ (x; y1, . . . , yk) is the conditional joint density function

of that sample given x. Furthermore, we assume that the marginal transition kernel is equal

to the original existing kernel T (x; y) that is used to generate independent trials, i.e.

∫

T̃ (x; y1, . . . , yk)dy1 . . . dyi−1dyi+1 . . . dyk = T (x; yi), ∀ 1 ≤ i ≤ k.

We call this approach the Multiple correlated-try Metropolis (MCTM) algorithm. The

motivation here is that by carefully choosing the joint distribution of the correlated sample

y1, . . . , yk, we hope to sample the state space in a more structured way than by using a set

of independent proposals, as done in the MTM. The new MCTM algorithm is as follows:

1. Draw k trial proposals y1, . . . , yk from T̃ (x; y1, . . . , yk). Compute w(yj, x) = π(yj)T (yj; x),

for each j;

2. Select y among the k proposals with probability proportional to w(yj, x), j = 1, . . . , k.

3. Draw (x∗1, . . . , x
∗
k−1) variates from the conditional transition kernel T̃ (y; x1, . . . , xk−1|xk =

x) and let x∗k = x;

4. Accept y with generalized acceptance probability

rg = min

{

1,
w(y1, x) + . . . + w(yk, x)

w(x∗1, y) + . . . + w(x∗k, y)

}

.

Proposition 2.1 The Markov chain defined with the algorithm above has stationary distri-

bution π and satisfies the detailed balance condition.
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Proof. The proof follows closely from the one given by LLW for the original MTM. If A(x, y)

is the actual transition probability and I(·) is the indicator function that shows which yj has

been selected at step 2, then

π(x)A(x, y) = π(x)P [∪k
j=1{Yj = y} ∩ {I = j}|x] = kπ(x)P [{Y1 = y} ∩ {I = 1}|x]

= kπ(x)

∫

T̃ (x; y, y2, . . . , yk)
w(y, x)

w(y, x) +
∑k

i=2 w(yi, x)
×

min

{

1,
w(y, x) +

∑k
i=2 w(yi, x)

w(x, y) +
∑k

i=2 w(x∗i , y)

}

T̃ (y; x∗2, . . . , x
∗
k|x)dy2 . . . dykdx∗2 . . . dx∗k

= k
w(y, x)w(x, y)

λ(y, x)

∫

min

{

1

w(y, x) +
∑k

i=2 w(yi, x)
,

1

w(x, y) +
∑k

i=2 w(x∗i , y)

}

×

T̃ (y; x∗2, . . . , x
∗
k|x)T̃ (x; y2, . . . , yk|y)dy2 . . . dykdx∗2 . . . dx∗k = π(y)A(y, x).

In the above derivation we have used T̃ (x; y, y2, . . . , yk) = T (x; y)T̃ (x; y2, . . . , yk|y).

3 Correlated proposals

An open question that we try to answer here is what type of correlation between proposals

will result in improvement in efficiency over the original MTM. To simplify the exposition,

consider first the situation in which the proposals are exchangeable univariate random vari-

ables, say Y1, . . . , Yk with distribution function F . Without loss of generality we can assume

that E[Yi] = 0. Intuitively, we would like the proposals to be “well distributed” in the sam-

ple space. There is not a single comprehensive mathematical definition of what we mean by

“well distributed” but two possible approaches can be outlined. First, one could consider

proposals that are, on average, as far away from one another as possible with respect to a

particular distance. If we consider the Euclidean distance d(Yi, Yj) =
√

(Yi − Yj)2, then we

need to consider the pairwise correlation between proposals since E[d2(Yi, Yj)] = 2σ2(1− ρ)

where σ2 = Var(Yi) for all i and ρ = corr(Yi, Yj) for all i 6= j. Therefore, the largest distance

is achieved on average by proposals that are extremely antithetic (EA) (Craiu and Meng,

2005), i.e. they achieve the smallest possible pairwise correlation ρ = corr(Yi, Yj), subject
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to the constraint that the random variables Y1, . . . , Yk are exchangeable and marginally dis-

tributed with distribution function F . However, having a larger distance between proposals

is not always the most efficient implementation of the MTM. An alternative is to stratify

the sample of proposals. In this case of interest is the stratification of the proposals in the

sample space. In recent years the literature on quasi-Monte Carlo algorithms has explored a

wide variety of methods for producing stratified samples that are equidistributed in the unit

hypercube (e.g. L’Ecuyer and Lemieux, 2002) and we investigate some of these techniques

in the context of MCTM.

3.1 Extremely antithetic proposals

We limit our discussion of the antithetic approach to MCTM to the situation in which the

proposals are multivariate normals and the MTM is implemented within a Random-Walk

Metropolis algorithm. This is one of the most common instances in which the Metropolis-

Hastings is used when the stationary distribution of interest is multivariate. Proposition 2.1

is particularly attractive in the case of Gaussian proposals since the conditional kernel is

easy to compute and to sample from.

More precisely, consider an r-dimensional sample space for the Markov chain Xt con-

structed via MTM with multivariate Gaussian proposals. More specifically, the original

MTM algorithm generates k proposals from Nr(x̃, Σ) whenever the current state is x̃. A

general version of the original MTM uses at each step k proposals which are jointly normal

from Nkr(x̃k, Σkr). To simplify the notation we assume that r = 2 but the discussion is true

in general.

If the independent proposals are sampled from N2

(

(x, y)T , Σ
)

, then a pair of correlated

proposals is

(x1, y1, x2, y2)
T ∼ N4



(x, y, x, y)T ,





Σ Ψ

Ψ Σ







 ,

where Σ =





σ2
1 ρσ1σ2

ρσ1σ2 σ2
2



 and Ψ =





ρ1σ
2
1 ρ2σ1σ2

ρ2σ1σ2 ρ1σ
2
2



 . We seek a correlation struc-

ture, as determined by (ρ1, ρ2), so that the average Euclidean distance between propos-
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als is maximized. It can be assumed without loss of generality that Σ is diagonal, say

Σ = diag(σ2
1, σ

2
2). Otherwise one can apply an orthogonal transformation (x′1, y

′
1)

T =

C(x1, y1)
T and (x′2, y

′
2)

T = C(x2, y2)
T so that, if d((x, y), (x′, y′)) =

√

(x− x′)2 + (y − y′)2,

then d((x′1, y
′
1), (x

′
2, y

′
2)) = d((x1, y1), (x2, y2)) and x′i is independent of y′i. The marginal

distribution of




x1 − x2

y1 − y2



 ∼ N



(0, 0)T ,





2σ2
1 − 2ρ1σ

2
1 −2ρ2σ1σ2

−2ρ2σ1σ2 2σ2
2 − 2ρ1σ

2
2







 .

Therefore

E[d((x1, y1), (x2, y2))] = 2(σ2
1 + σ2

2)(1− ρ1)

is maximized when ρ1 is equal to its smallest possible value. In our experience, the choice

of ρ2 does not influence the efficiency of the MCTM. In addition, any choice different than

ρ2 = 0 increases the complexity of the constraint on ρ1 since the covariance matrix of

all the proposals must be positive definite. In our applications we used ρ2 = 0. There-

fore, for the MCTM with Gaussian proposals, yi ∼ Nr(x̃, Σ), one can use (yT
1 , . . . , yT

k )T ∼
N((x̃T , x̃T , . . . , x̃T )T , Σkr) with

Σkr =

















Σ Ψ . . . Ψ

Ψ Σ Ψ Ψ

. . . . . . . . . . . .

Ψ Ψ Ψ Σ

















where Ψ = diag(ρσ2
1 , . . . , ρσ2

r) ∈ Rr×r and ρ = −1/(k − 1). The lower bound ρ = − 1
k−1

is

obtained from the constraint that the joint correlation matrix of all the proposals, Σkr, is a

positive semi-definite matrix.

3.2 Quasi-Monte Carlo proposals

A situation in which it is straightforward to implement MCTM is one in which the proposals

are univariate and can be generated using the inverse cumulative distribution function. In

such a case the stratified sample of proposals can be obtained from a stratified sample in

the unit interval. One of the most widely used techniques to obtain the latter is the Latin
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Hypercube Sampling (LHS) which has been introduced by McKay, Beckman and Conover

(1979) and has been studied intensively in the literature ever since (see also Stein, 1987;

Owen, 1992; Loh, 1996; Craiu and Meng, 2005). The generation of k uniform variates via

LHS involves the following three steps.

Step I Generate independently v1, . . . vk ∼ Uniform(0, 1).

Step II Select a random permutation τ of {0, . . . , k − 1}.

Step III Construct ui = (vi + τ(i))/k, for all 1 ≤ i ≤ k.

It can be noticed that the LHS adds little computational overhead when compared to

the independent generation of samples. In addition, there is no requirement for a symmetric

distribution of the proposals. It is easy to use LHS within MCTM as described in Figure 1.

1. Draw k proposals using the uniform deviates u1 . . . , uk constructed via the LHS algo-

rithm using permutation τ .

2. Assuming that y = yj0 is selected, generate x∗i = F−1
y (u∗i ) where the u∗i ’s are sampled

using the LHS construction by ensuring that the balance condition is satisfied. More

precisely, take j0 = τ−1[k ∗ Fy(x)] (where [u] is the integer part of u) and for all

0 ≤ j ≤ k − 1, j 6= j0 construct u∗j = (τ(j) + wj)/k where the wj ∼ Uniform(0, 1) are

independent.

3. For each j 6= j0, x∗j = F−1
y (u∗j) and x∗j0 = x.

Figure 1: MCTM with LHS proposals

While the LHS method can be extended to generation of multivariate uniforms, a better

way of producing a correlated set of proposals is to use a randomized quasi-Monte Carlo

(RQMC) method. These methods are often used in the context of high-dimensional numer-

ical integration to provide more accurate estimators than the Monte Carlo method, which

corresponds to using independent sampling. When not randomized, QMC methods offer
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a deterministic approximation that can be proved to be asymptotically better than Monte

Carlo for some classes of functions (Niederreiter, 1992), but their performance on specific

problems with a fixed sample size is difficult to assess because no error estimate comes with

them. Their randomized versions, RQMC methods, avoid this problem by using the fol-

lowing idea: suppose we want to generate a sample y1, y2, . . . , yk with the requirement that

each yi has a given marginal distribution. (Note that we do not specify what should be

the joint distribution of the sample, which means the yi’s could be independent or corre-

lated.) Assume the sampling space for each yi has dimension r, and that we have a function

G : [0, 1)r → R
r such that for a random vector u uniformly distributed over [0, 1)r, G(u)

has the desired distribution for yi. In other words, G(·) represents the transformation used

to generate observations yi’s having the desired distribution. Now, let Pk = {u1, . . . ,uk}
be a deterministic highly-uniform point set such as those used by QMC methods, and as-

sume P̃k = {ũ1, . . . , ũk} is a randomized version of Pk such that (i) each ũi is uniformly

distributed over [0, 1)r, and (ii) P̃k has the same highly-uniform properties as Pk (examples

of such constructions are given below). Then one can generate the sample y1, . . . , yk by

letting yi = G(ui), i = 1, . . . , k and in this way, each yi has the desired distribution, and the

structure of Pk induces correlation among the yi’s.

The sample y1, . . . , yk thus obtained can then be used to estimate quantities of the form

µ = E(f(Y )), where f is some real-valued function, by the unbiased estimator

µ̂RQMC =
1

k

k
∑

i=1

f(yi),

whose variance can be estimated by generating m independent randomizations of Pk.

Before we explain how to use RQMC methods in the context of the MCTM algorithm, let

us give an example illustrating how the above procedure can be applied in practice. Suppose

each yi is multinormal. More precisely, assume our goal is to have yi ∼ N((µ1, . . . , µr)
T , Σ),

where Σ is an r × r covariance matrix that we assume can be written as Σ = AAT , with

A a lower-triangular matrix. Let Φ(·) be the CDF of a standard normal random variable.

If u = (u1, . . . , ur)
T is uniformly distributed over [0, 1)r, then yi = (yi,1, . . . , yi,r)

T can be
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obtained as follows:










yi,1

...

yi,r











=











µ1

...

µr











+ A











Φ−1(u1)
...

Φ−1(ur)











. (3.1)

In other words, the function G(u) in this case is given by the right-hand side of (3.1).

For the highly-uniform point set, let us use a Korobov rule, which is defined as follows:

choose an integer a ∈ {1, . . . , k − 1}, and let

Pk =

{

i− 1

k
(1, a, . . . , ar−1) mod 1, i = 1, . . . , k

}

.

Figure 3.2 gives an example of a Korobov rule with k = 1024 and a = 139. As suggested

in Cranley and Patterson (1976), this type of point set can be randomized by generating a

random vector v uniformly in [0, 1)r, and adding it to each point of Pk (modulo 1). That is,

let P̃k = {ũi, i = 1, . . . , k}, where

ũi = (ui + v) mod 1.
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Figure 2: Two-dimensional Korobov rule with k = 1024 and a = 139.

Putting everything together, the sample y1, . . . , yk can be generated by a randomly-shifted

Korobov rule as follows:

1. Generate a uniform vector v over [0, 1)r.

10



2. For each i = 1, . . . , k:

(a) Let ui = (i− 1)(1, a, . . . , ar−1)/k mod 1, and ũi = (ui + v) mod 1.

(b) Let yi = G(ũi), where G(·) is defined on the right-hand side of (3.1).

In the context of the MCTM algorithm, RQMC methods can be used in a way that

mimics the LHS implementation described at the beginning of this section. In Figure 3,

we describe an implementation based on a randomly-shifted highly-uniform point set (not

necessarily a Korobov rule). In what follows, we assume Gx(·) is such that y = Gx(u) has

distribution T (x; y) for a uniform u, and Gy(·) is such that x = Gy(u) has distribution

T (y; x).

1. Draw k trial proposals y1, . . . , yk using a randomly-shifted point set P̃k. More precisely,

let yi = Gx(ũi), for i = 1, . . . , k. Compute w(yj, x) = π(yj)T (yj; x).

2. Select y = yj among the k trials with probability proportional to w(yj, x).

3. Let x∗1 = x and find w such that Gy(w) = x.

4. Set x∗j = Gy((uj + w) mod 1) for j > 1.

Figure 3: MCTM with QMC proposals

In other words, once we have our set of trial proposals y1, . . . , yk and one of them,

yj, is chosen, we fix x∗1 to be the current state x, find the shift w such that the first point

(corresponding to the origin) of a point set randomized by that shift w would have generated

x, and then we generate the other x∗’s using the remaining points of that point set. By doing

so, the joint distribution of x∗1, . . . , x
∗
k given y is the same as the joint distribution of y1, . . . , yk

given x, which is required for the balance condition to hold. Note that technically, for this

method to produce exchangeable proposals, one should first randomly permute the order

of the points in P̃k. However, as explained in the next proposition, in practice this is not

necessary since the order in which the proposals yi are produced is not important.

11



Proposition 3.1 Let MCTM1 be a version of the MCTM algorithm based on an unpermuted

randomly-shifted point set, and MCTM2 be based on a randomly permuted version of the

same randomly-shifted point set. Then for a given input x, MCTM1 and MCTM2 can be

implemented so that they produce the same output y.

Proof: First, note that under MCTM2, the proposals are exchangeable. Let yi = Gx(ũi)

for i = 1, . . . , k and let zi = Gx(ũπ(i)), i = 1, . . . , k, where π is a random permutation of

[1, . . . , k]. So the yi are the proposals used in MCTM1 and the zi are the ones used in

MCTM2. Note that the samples {y1, . . . , yk} and {z1, . . . , zk} are the same.

Let us introduce some notation: for i = 1, . . . , k, let

wi =
w(yi, x)

∑k
i=1 w(yi, x)

, Wi =
i

∑

j=1

wj, and W0 = 0.

Note that wi = w(zπ−1(i), x).

Now suppose that in MCTM1, we choose yj0 as our proposal using the following proce-

dure: generate U ∼ U(0, 1), let j0 be such that Wj0−1 < U ≤ Wj0. For MCTM2, assume

that zi0 is chosen as follows: generate U ∼ U(0, 1), let l0 be such that Wl0−1 < U ≤ Wl0 ,

and then let i0 = π−1(l0). In other words, in MCTM2, the bins used to choose the index i0

are ordered according to the unpermuted sample {y1, . . . , yk}. It is clear that in MCTM1,

the probability of choosing index I is proportional to wI = w(yI, x), and for MCTM2, this

probability is proportional to wπ(I) = w(yπ(I), x) = w(zI, x), as desired. We can also see that

for a given value u for U , l0 = j0 above and so if MCTM1 chooses yj0, then MCTM2 chooses

the sample point zi0 = zπ−1(j0) = yj0, i.e., both implementations choose the same y.

For the rest of the MCTM step, if we assume that the first point ũ1 in the randomly-

shifted point set corresponds to the non-randomized point u1 = 0, then the only difference

between MCTM1 and MCTM2 is that in the latter, we would set x∗π−1(1) = x and let x∗j =

Gy((uπ(j)+w) mod 1) for j 6= π−1(1), instead of having x∗1 = x and x∗j = Gy((uj+w) mod 1).

Hence for a given x and y (which are the same for MCTM1 and MCTM2), the sample

{x∗1, . . . , x∗k} will be the same under MCTM1 and MCTM2, which means the probability

rg of acceptance is the same under both approaches. Hence if we use the same uniform

V ∼ U(0, 1) in both MCTM1 and MCTM2 to decide whether we keep y or not (based on

12



whether V ≤ rg or not), then the decision of keeping y or not will be the same under both

MCTM1 and MCTM2.

Note that similar arguments can be used to show that, in practice, it is not necessary to

randomly permute the order of the points in the one-dimensional LHS approach outlined at

the beginning of this section.

3.2.1 Transformations over the unit hypercube

As we will see in Section 4.2, for some problems it might be helpful to transform the points

of the randomized QMC point set to be used in the MCTM algorithm before generating the

QMC proposals. The intuition here is that in some cases, we may be interested in having

more points in some regions of the unit hypercube, which essentially amounts to performing

importance sampling. For instance, if the proposals are multivariate gaussian variables, then

perhaps we would like to generate more proposals in the tails of the gaussian distribution,

which means we would like to have more points in the “corners” (0, . . . , 0) and (1, . . . , 1) of

the unit hypercube. Here, we explain how this can be achieved in the context of the MCTM

algorithm.

Suppose g : [0, 1] → [0, 1] is a bijection, and let g(u) = (g(u1), . . . , g(ur)). Now let

Qk = g(P̃k) = {g(ũ1), . . . , g(ũk)}. That is, Qk is the point set obtained after applying g to

each point of a randomized point set P̃k. Let T̂ (x; y) be the probability density function of

Gx(y), where y = g(u). Similarly, T̂ (y; x) is the density function of Gy(x). Note that since

we assumed that g(·) was a bijection, T̂ (·; ·) is indeed a probability density function.

If we assume that the ratio

`(x; y) =
T (x; y)

T̂ (x; y)

is symmetric in x and y, then we can set λ(x, y) = `(x; y) in the MCTM algorithm based on

the point set Qk, which is then performed as shown in Figure 4.

In the above algorithm, we choose the shift ŵ so that if we had used the first point

(corresponding to the origin) of Pk to generate x∗1, then after the shift and the transformation,

we would have obtained x, i.e., Gy(g(ŵ)) = x. Also, the reason why we used λ(x, y) = `(x; y)

is two-fold: first, doing so prevents us from having to evaluate T̂ (y; x), which typically is

13



1. Draw k trial proposals y1, . . . , yk using the randomized (and transformed) point set

Qk. More precisely, let yi = Gx(g(ũi)), for i = 1, . . . , k, where P̃k = {ũi, i = 1, . . . , k}
is a randomly-shifted QMC point set. Compute w(yj, x) = π(yj)T̂ (yj; x)λ(yj, x) =

π(yj)T (yj; x).

2. Select y = yj among the k trials with probability proportional to w(yj, x).

3. Let x∗1 = x and find w such that Gy(w) = x. Let ŵ = g−1(w).

4. Set x∗j = Gy(g((uj + w) mod 1)) for j > 1, where Pk = {ui, i = 1, . . . , k} is the

non-randomized QMC point set.

Figure 4: MCTM with QMC proposals to which a transformation has been applied

harder to compute than T (y; x); second, numerical experiments suggested that when using

this type of transformation, better results were obtained by choosing this λ(x, y) instead of

just taking λ(x, y) = 1.

Example 3.1 In Section 4.2, we will be using the transformation

g(u) =
sin((u− 0.5)π) + 1

2
(3.2)

illustrated on Figure 5.

One can easily verify that g(·) is a bijection with the following properties: g(0) = 0,

g(1) = 1, g(1/2) = 1/2, and g(u) + g(1− u) = 1 for any u ∈ (0, 1).

These properties imply that, if U ∼ Uniform(0, 1) then the density function of Φ−1(g(U))

is symmetric around 0 – just like that of a standard N(0, 1) given by Φ−1(U) – but with

fatter tails than the N(0, 1) distribution.

The inverse of g is given by

g−1(z) =
arcsin(2z − 1)

π
+ 0.5,

14



u
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1.00

Figure 5: Transformation g(u) used in Section 4.2.

and we can show that if Zj = Φ−1(g(Uj)), j = 1, . . . , r, where the Uj’s are i.i.d. Uniform(0, 1),

then Z1, . . . , Zr has joint density

fZ1,...,Zr
(z1, . . . , zr) =

r
∏

j=1

e−z2

j /2

√
2π

1

π
√

Φ(zj)(1− Φ(zj))
.

Thus if T (x; y) is a multivariate gaussian with no correlation (as in Section 4.2) given by

T (x; y) =
r

∏

j=1

e−(yj−xj)
2/2σ2

j

√

2πσ2
j

then

T̂ (x; y) =

r
∏

j=1

e−(yj−xj)2/2σ2

j

√

2πσ2
j

1

π
√

Φ(
yj−xj

σj
)(1− Φ(

yj−xj

σj
))

and thus

`(x; y) =
T (x; y)

T̂ (x; y)
=

r
∏

j=1

1

π
√

Φ(
yj−xj

σj
)(1− Φ(

yj−xj

σj
))

=
r

∏

j=1

1

π
√

(1− Φ(
xj−yj

σj
))Φ(

xj−yj

σj
)
,

which means `(x; y) is symmetric, as required.

One may wonder whether the transformation defined by (3.2) is optimal in its class. More

precisely, suppose we are interested in studying a general transformation of the form

fα(u) =
sin[(uα − 1/2)π] + 1

2
.
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Figure 6: Plot of αopt(t).

If Zα = Φ−1(fα(U)), with U ∼ Uniform(0, 1), then

P (Zα ≤ t) =

[

arcsin(2Φ(t)− 1)

π
+

1

2

]1/α

has density gα(z) = d P (Zα≤z)
d z

. Unless α = 1 the density gα is not symmetric. One can study

the tail probability of gα in comparison to the tail probability of g1 by looking at the ratio

gα(z)/g1(z) for large values of z. It turns out that

gα(t)

g1(t)
=

1

α

[

arcsin(2Φ(t)− 1)

π
+

1

2

]
1−α

α

.

Maximizing the previous ratio with respect to α yields:

αopt(t) = − log

[

arcsin
2Φ(t)− 1

π
+ 1/2

]

.

The function αopt(t) is plotted in Figure 6 for various values of t. It is seen that for |t|
moderately large the value of αopt seem to stabilize around limt→∞ αopt(t) ≈ 0.1937 and

limt→−∞ αopt(t) ≈ 1.737. In our applications we will use the symmetric gα given by α = 1.
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4 Examples

We examine three instances for which the performance of the MCTM is compared to MTM.

In all examples shown the MTM is doing better than the classical Metropolis-Hastings al-

gorithm with only one proposal.

4.1 MCTM for local search MCMC

We begin with a simple example in which the MCTM algorithm is used with univariate

proposals in combination with a random-ray Monte Carlo algorithm. LLW have shown that

MTM can be used within the random-ray Monte Carlo, the hit-and-run algorithm (Chen and

Schmeiser, 1993) or the Adaptive Direction Sampling algorithm (Gilks, Roberts and George,

1994). The random-ray Monte Carlo is a modified form of the hit-and-run algorithm and is

especially effective when the distribution of interest is multimodal and the modes are aligned

on a direction which is not parallel to any of the coordinate axes. We consider here one target

density from a bimodal family of bivariate distributions constructed by Gelman and Meng

(1991). More precisely, the density

f(x1, x2) ∝ exp{−(9x2
1x

2
2 + x2

1 + x2
2 − 8x1 − 8x2)/2} (4.1)

has the property that the two conditional densities f(x1|x2) and f(x2|x1) are normal but

the joint density is not normal. A three-dimensional plot of the density f(x1, x2) is shown

in Figure 7.

The construction of the random-ray Monte Carlo via MTM has been detailed by LLW and

is followed here. Specifically, at each iteration t of the algorithm, a random direction, say

e, is generated and then, along direction e, the proposals y1, . . . , yk are generated from the

distribution T e(x, ·) where x is the state of the chain at time t. The proposals are generated

using yi = x+ rie where r1, . . . , rk are sampled from Uniform[−σ, σ]. In our implementation

of MCTM, we use k antithetic variates ri . The parameters chosen here are σ ∈ {3, 4, 5} and
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Figure 7: Random-ray Monte Carlo. The bivariate density f(x1, x2).

k ∈ {3, 4, 5, 6}. Due to the stratification induced by the hypercube sampling the MCTM has

a higher acceptance rate and thus mixes better than the original MTM.

Table 1 offers support to the previous observations. We look at the Monte Carlo MSE

reduction factor, R, for different choices of σ and k. In each case we perform 1000 updates

with each algorithm and we replicate the analysis 500 times. The starting points are the same

for the two algorithms. The numbers reported in each cell represent the estimates of R. The

true marginal mean of X can be computed via numerical integration and is approximately

equal to 1.83. In this example, the acceptance rates are different for the MTM and the

MCTM so are also reported in Table 2.

Table 1: Values of the MSE reduction factor R =
MSEanti
MSEind

.

σ\k 3 4 5 6

3 0.35 0.53 0.64 0.81

4 0.31 0.42 0.58 0.76

5 0.29 0.40 0.49 0.62
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Table 2: Probability of acceptance for MTM/MCTM.

σ\k 3 4 5 6

3 26.5/46.1 31.2/47.8 35.2/50.3 38.7/49.7

4 24.5/40.9 26.6/41.8 29.8/44.5 32.3/46.2

5 18.8/35.4 22.7/37.6 26.2/40.3 29.4/42.4

4.2 Lupus Data

The random-walk Metropolis is a useful method in multivariate settings in which the in-

formation about the stationary distribution is not concrete enough to help us build a good

proposal distribution. We apply our method to data from van Dyk and Meng (2001) consist-

ing of measurements on 55 patients of which 18 have been diagnosed with latent membranous

lupus. Table 3 shows the data with two clinical covariates, IgA and IgG, that measure the

levels of immunoglobulin of type A and of type G, respectively. Of interest is the prediction

of disease occurrence using the two covariates IgG3 − IgG4 and IgA. We consider a logit

regression model in which

logit P (Yi = 1) = β0 + β1X1i + β2X2i

where XT
i = (1, Xi1, X2i) is the vector of covariates for the i-th individual. We follow Tan

(2006) and consider that the prior for β = (β0, β1, β2)
T is trivariate normal with zero mean

and variance diag(1002, 1002, 1002). The posterior density is then proportional to

π(β|x, y) ∝
2

∏

j=0

e−0.5βj/1002

100
√

2π

55
∏

i=1

[

exp(XT
i β)

1 + exp(XT
i β)

]yi
[

1

1 + exp(XT
i β)

]1−yi

.

The random walk Metropolis is used with multiple proposals, antithetic, QMC, and

independent. The proposal T (·|β) is trivariate normal with mean β and variance Σ =

diag(σ2, σ2, σ2). All chains are started from β = 0.

In Table 4 we report, for β1 and p25 = 1{β1>25}, the ratios R =
MSEanti
MSEind

and R =

MSEqmc
MSEind

, where MSE represents the Monte Carlo mean squared error, and the index refers
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Table 3: The number of latent membranous lupus nephritis cases, the numerator, and the

total number of cases, the denominator, for each combination of the values of the two co-

variates.

IgA

IgG3-IgG4 0 0.5 1 1.5 2

-3.0 0/ 1 - - - -

-2.5 0/ 3 - - - -

-2.0 0/ 7 - - - 0/ 1

-1.5 0/ 6 0/ 1 - - -

-1.0 0/ 6 0/ 1 0/ 1 - 0/ 1

-0.5 0/ 4 - - 1/ 1 -

0 0/ 3 - 0/ 1 1/ 1 -

0.5 3/ 4 - 1/ 1 1/ 1 1/ 1

1.0 1/ 1 - 1/ 1 1/ 1 4/ 4

1.5 1/ 1 - - 2/ 2 -
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to the method of generating the proposals, i.e., independently, antithetically or with QMC

sampling. To be more specific, we replicated M = 5000 samples, each of N = 1000 draws. If

we denote by bij the jth sample point drawn in the ith replicate from the posterior distribution

of β1 then, using b̄·· =
P

ij bij

MN
and b̄i· =

P

j bij

N
for all i = 1, . . . , M the MSE is defined as

MSE = (b̄·· − E[β1|data])2 +

∑

i(b̄i· − b̄··)
2

(M − 1)
.

Similar calculations can be done for p25. Numerical integration yields E[β1|data] ≈ 13.57

and E[p25|data] ≈ 0.073 (see Tan, 2006).

The QMC sampling is based on a randomly-shifted Korobov point set to which the trans-

formation described in Example 3.1 has been applied. Note that while inversion of the normal

CDF is used to generate the QMC proposals, both independent and antithetic proposals use

instead Marsaglia’s polar method (Marsaglia, 1962) to generate normal variates.

It is seen that the use of antithetic proposals is more effective when the number of streams

is average (k = 8). But the larger savings are obtained with the QMC stratified samples.

When the number of proposals is very large (k = 16) the benefit of antithetic or stratified

proposals diminishes as the independent MTM has already very good properties. However,

in practical applications one may not have the computational power to generate a large

number of proposals so the improvement brought in by the MCTM can be important.

On the root scale, the reduction in RMSE obtained with QMC correspond to savings

between 20-25%. In none of the situations explored has the use of antithetic proposals been

inflating the MSE. For the QMC proposals, we only give results for k = 8 and k = 16 since

smaller values of k make it difficult for the high-uniformity of the QMC point set to be

significant. However, we see that for those values, the MSE reductions are quite good, with

values below 0.6 in some cases, and never much more than 0.8. We should also point out that

the transformation we used for the QMC proposals has the effect of making the acceptance

rate smaller in this case than with independent proposals. When using QMC without the

transformation, we get larger acceptance rates than for independent sampling, but the MSE

reduction factors are not as good as when the transformation is used. Antithetic proposals

give acceptance rates that are about the same as for independent proposals.

We should also point out that in terms of computation time, the MCTM and MTM are
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Table 4: Values of R for β1/p25 in the logit example.

Antithetic QMC

k\σ 2 3 4 2 3 4

3 0.92/0.92 0.90/0.86 0.99/0.95 - - -

4 0.94/0.87 0.88/0.88 0.91/0.89 - - -

5 0.98/0.96 0.81/0.81 0.89/0.86 - - -

6 0.91/0.86 0.86/0.78 0.95/0.92 - - -

8 0.81/0.70 0.75/0.69 0.83/0.80 0.69/0.72 0.61/0.60 0.59/0.56

16 0.87/0.81 0.97/0.94 0.91/0.88 0.81/0.81 0.82/0.84 0.76/0.75

about the same: for instance, when k = 8, to run 100 replications of 1000 draws on a 2.0

GHz Pentium 4-M laptop computer, the MCTM based on the Korobov point set needs about

32 seconds, while the corresponding MTM version requires 34 seconds. Results are reversed

for the antithetic implementation, which needs about two seconds more than the MTM.

4.3 Orange tree data

We consider data on the growth of orange trees over time which was originally discussed by

Draper and Smith (1981) and later on by Lindstrom and Bates (1990). The data shown in

Figure 8 consists of circumference measurements Yij made for tree i at time xj, i = 1, . . . , 7

and j = 1, . . . , 5. We consider the logistic growth model in which Yij ∼ N(µij, σ
2
c ) where

µij =
exp(θi1)

1 + (exp(θi2)− 1) exp(− exp(θi3)xj)
,

for i = 1, . . . , 5 and j = 1, . . . , 7.

A priori the parameters (θ11, . . . , θ53) are independent and identically distributed as Gaus-

sian with mean zero and standard deviation σ = 10. For these experiments, we used an

inverse gamma prior with parameters (0.001,0.001) for σ2
c .
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Figure 8: Trunk circumference (in millimeters) of five orange trees data over up to 1600

days.

We implement a random walk Metropolis in which the proposals for θ are drawn from

a multivariate normal centered at the current state and the proposals for σc are drawn

independently from the proposal distribution which, in turn, does not depend on the current

state. This corresponds to a realistic scenario in which one cannot generate correlated

proposals for all the components of the Markov chain. For the stratified (QMC) sampling, we

used a 15-dimensional randomly-shifted Sobol’ point set (Sobol’, 1967) to construct proposals

for {θi1, θi2, θi3, i = 1, . . . , 5}. To illustrate our findings, we present the MSE reduction factors

for the three parameters of Tree 3 and Tree 4 in Table 5, for k = 4, 6 and 8 proposals. They

were obtained using 500 replications of 10 000 draws each. The acceptance rate was between

12% and 18%, depending on the number of proposals.

We also give the variance reduction factors (in parentheses) besides each MSE ratio. As

we can see from these results, the QMC sampler never does much worse than the independent

one, and in some cases reduces the MSE by factors of about 30%. The variance reduction

factors are in general smaller than the MSE ones, mostly because in some cases the bias is

quite large for both samplers. This suggests that the QMC sampler cannot solve completely

the slow mixing of the original chain. The results obtained in Section 4.2 seem to suggest
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as well that the performance of the sampler with correlated proposals builds upon the per-

formance of the one with independent proposals. The antithetic implementation does not

produce additional savings with the exception brought by extreme situations in which the

acceptance ratio for the original MTM is low (≈ 1%).

Table 5: Values of the MSE and variance (in parentheses) reduction factor R = MSEMCTM

MSEMTM

θ\k 4 6 8

θ31 0.99 (0.79) 0.99 (1.00) 0.98 (0.69)

θ32 0.97 (1.01) 1.08 (1.06) 0.96 (0.90)

θ33 0.98 (0.86) 0.83 (0.80) 1.01 (1.04)

θ41 0.95 (0.86) 0.89 (0.84) 0.71 (0.57)

θ42 0.83 (0.80) 0.80 (0.87) 0.88 (0.87)

θ43 1.04 (1.05) 0.95 (1.03) 1.17 (1.08)

5 Conclusions

The MCTM algorithm requires small modifications once an MTM is designed. Provided

the acceptance rates of the two are comparable, the MCTM is more efficient in either the

antithetic or the stratified implementation, especially if the number of proposals is increased.

Further research is necessary to understand possible relations between the acceptance rate

of MTM and the increase in efficiency brought by MCTM.

As for which version of the MCTM is better, what we could say is that for users who want

to work with a very small number of proposals, choosing the antithetic implementation is

probably best, since the stratified version requires about 7 or 8 proposals to start improving

upon the MTM. Beyond that point, the stratified implementation is probably a slightly

better choice than the antithetic one.

While the discussion of the present paper has focused on Multiple-Try Metropolis, we

believe that the idea of stratification and antithetic sampling can be further implemented in
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other local-search algorithms designed for Monte Carlo sampling.
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