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Abstract

We present a hidden Markov model (HMM) for discovering stellar flares in light-curve data of stars. HMMs
provide a framework to model time series data that are nonstationary; they allow for systems to be in different
states at different times and consider the probabilities that describe the switching dynamics between states. In the
context of the discovery of stellar flares, we exploit the HMM framework by allowing the light curve of a star to be
in one of three states at any given time step: quiet, firing, or decaying. This three-state HMM formulation is
designed to enable straightforward identification of stellar flares, their duration, and associated uncertainty. This is
crucial for estimating the flare's energy, and is useful for studies of stellar flare energy distributions. We combine
our HMM with a celerite model that accounts for quasiperiodic stellar oscillations. Through an injection
recovery experiment, we demonstrate and evaluate the ability of our method to detect and characterize flares in
stellar time series. We also show that the proposed HMM flags fainter and lower energy flares more easily than
traditional sigma-clipping methods. Lastly, we visually demonstrate that simultaneously conducting detrending
and flare detection can mitigate biased estimations arising in multistage modeling approaches. Thus, this method
paves a new way to calculate stellar flare energy. We conclude with an example application to one star observed by
TESS, showing how the HMM compares with sigma clipping when using real data.

Unified Astronomy Thesaurus concepts: Stellar flares (1603); Bayesian statistics (1900); Astrostatistics tools
(1887); Time series analysis (1916); M dwarf stars (982); Stellar activity (1580); Low mass stars (2050);
Astrostatistics techniques (1886); Credible region (1962)

1. Introduction

Almost all stars in the Universe with convection zones produce
stellar flares—bursts of energy emitted from the star that are
thought to be caused by magnetic reconnection (see, e.g.,
T. Forbes 1991; J.-F. Donati & J. Landstreet 2009). Properly
estimating the energy distribution of flares as a function of a stars’
mass, age, and other characteristics is fundamental for under-
standing (i) the evolution of stellar magnetic fields, (ii) stellar
rotation and mass-loss rates, and (iii) the highly energetic radiation
environment to which planets orbiting these stars are subjected.
Past studies have found relationships between flare energies and
decay times, frequency of flares and stellar rotation rates, and flare
duration and peak luminosity (e.g., see S. W. Chang et al. 2015;
J. R. A. Davenport 2016; T. V. Doorsselaere et al. 2017;
A. A. Medina et al. 2020; S. Raetz et al. 2020).

Flares are detected in the time series data of a star's
brightness measurements—a sudden, sharp increase in bright-
ness followed by a slower decay usually indicates a stellar flare.
However, detecting stellar flares is complicated by the fact that
most stars also exhibit small, quasiperiodic oscillations in their
brightness over time.

It is common practice to identify flares in time series data
using nonparametric models, before assuming anything about

their time series signature or shape (S. W. Chang et al. 2015).
Current methods to detect stellar flares in time series data rely
on multistage data processing and “sigma clipping”; after the
stationary and quasiperiodic part of the time series is modeled
and removed (called detrending), points lying outside a
predefined confidence interval are highlighted as potential
flares (e.g., L. M. Walkowicz et al. 2011; R. A. Osten et al.
2012; S. L. Hawley et al. 2014; J. R. A. Davenport 2016;
H. Yang et al. 2017; M.N. Günther et al. 2020). A. A. Medina
et al. (2020) also note that in the 3σ approach to flare detection
and flare energy estimation, the largest source of uncertainty
comes from defining the end of the flare. The sigma-clipping
approach may also struggle to identify compound flares,
although change-point detection does not suffer from this
problem (S. W. Chang et al. 2015).
After the flares’ locations in the time series are detected, a

template or model for flare shape (e.g., J. R. Davenport et al.
2014) is often used to estimate flare parameters. The detrending
process is often done using a flexible model, such as Gaussian
processes (GPs; e.g., celerite) (D. Foreman-Mackey et al.
2017). However, detrending methods are typically done before
the flare detection step, and this preprocessing may absorb
lower energy flares in the time series data, and bias the energy
profile. Therefore, it would be beneficial to model the trend of
the time series and the flares simultaneously.
Other methods, such as change-point detection, have also

been explored to identify potential flares (S. W. Chang et al.
2015). While this approach detects the most energetic flares, it
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can struggle to detect the medium- to low-energetic flares that
are part of the flare energy distribution. The STELLA software,
which uses a convolutional neural network to find flares in
TESS data, is an efficient tool for finding flares, but still relies
on a probability threshold for flare detection (A. D. Feinstein
et al. 2020). Moreover, STELLA needs labeled data to be
trained on, so its accuracy is dependent on the precision of the
pipeline used to label these training data.

In this work, we introduce a new approach to stellar flare
detection using hidden Markov models (HMMs). The advantage
of using HMMs in the context of stellar flare detection is that they
are more likely to detect lower energy flares than traditional sigma-
clipping methods. HMMs are flexible time series models that are
popular in many domains, including ecology (V. Leos-Barajas
et al. 2017; T. Adam et al. 2019; B. T. McClintock et al. 2020),
health (J. P. Williams et al. 2020), and sports (M. Ötting et al.
2021). Within astronomy, A. Stanislavsky et al. (2020) used a two-
state HMM to model daily solar X-ray flux emissions, aiming to
predict future solar flares.

HMMs provide a way to model different states underlying a
time series, with a probability associated with the transitions
between them (W. Zucchini et al. 2017). This is a very natural
scheme to approach the detection of stellar flares—a star may
be in a “quiet,” “flare-firing,” or “flare-decaying” state. Thus, if
an HMM is fit to the light curve of a star, every point in that
time series can be estimated to come from one of these three
states. This allows one to discover both the firing and decaying
phases of each flare. The decaying state is particularly helpful,
as it helps characterize the end of a flare as the star transitions
back to the quiet state.

In addition to using an HMM, we simultaneously fit
celerite to model the quasiperiodic trend in the star's light
curve. We show that this simultaneous fitting of celerite and the
HMM not only removes the need for iterative fitting when
searching for flares, but also improves the celerite fit overall.
That is, celerite does not as easily absorb small flares nor
the decaying portion of larger flares. For our entire analysis, we
adopt a Bayesian approach.

This paper presents our HMM for the detection of stellar flares,
shows its merits, and applies it to a stellar light curve measured
from TESS. Our paper is organized as follows: In Section 2, we
describe the data that motivated this study. In Section 3, we
thoroughly describe our method; we begin with a quick overview
of celerite (Section 3.1), followed by an introduction to
HMMs (Section 3.2); then we proceed to describe our
observational model (Section 3.3), our particular HMM
(Section 3.4), our model fitting techniques (Section 3.5), how
we identify and characterize flares (Section 3.6), and the injection
recovery experiments performed (Section 3.7). The results of our
injection recovery experiments and the application of our HMM
to TESS data are presented in Section 4. We conclude with a
discussion and a summary of future research directions in
Sections 5 and 6.

2. Data

To test and demonstrate our HMM approach, we use M
dwarf TIC 031381302 2 minute cadence data measured by
TESS, available on the MAST webpage.8 We use this star's
Pre-search Data Conditioning Simple Aperture Photometry
(PDCSAP) light curve for both our injected flare tests

(Section 3.7) and for a case study demonstration detecting real
flares (Section 4.2). This star was chosen because it has long
portions of the time series undergoing quiescent oscillations, in
which simulated flares could be injected to test our method. At
the same time, there are parts of the time series for this star that
have known flare events—these portions of the light curve are
used to demonstrate that our HMM can recover the same flares
as other methods.

3. Methods

To identify flares in a stellar brightness time series, we
simultaneously model the quasiperiodic changes of the star and
the star's flares. For the former, we use celerite (D. Foreman-
-Mackey et al. 2017), and for the latter, we use the HMM
described in this paper. Readers familiar with celerite may
want to skip ahead to Section 3.2. Those readers familiar with
HMMs may want to skip to our particular setup in Section 3.4.
For quick reference, a list of our mathematical notation is

shown in Table 1.

3.1. Celerite and Detrending

To account for the star's quasiperiodic changes as well as the
mean brightness, we use celerite, a physically motivated
GP widely used to model the trend of stellar light curves
(D. Foreman-Mackey et al. 2017). In principle, one could use
any kernel provided in celerite, but in this study, we use
the rotation kernel, the same one used in A. A. Medina et al.
(2020), which consists of a sum of two simple harmonic
oscillators.
For the GP, let μ, , and f denote the mean function, the

kernel parameter, and the (latent) trend, respectively. The value
of f at time t is denoted ft. For a single star, the observed light
curve Yt is modeled as the sum of the trend ft and a flaring
channel Zt,

∣ ( )
( )

 m m~
= +

f
Y f Z

, celerite ,
. 1t t t

We use priors for the parameters of μ and  recommended in
D. Foreman-Mackey et al. (2017). The HMM for the flaring
channel Zt is described in Section 3.4.

Table 1
Notations Used in This Paper

Meaning

Yt Observed brightness of star at time t
f Quasiperiodic trend of the time series (modeled with

celerite)
ft Celerite-modeled trend at time t
Zt Flaring channel (time series without trend)
μ Mean flux in quiet state
 Kernel for celerite
σ2 Variance of measurement noise
St State of time series at time t
Q Quiet state
F Firing state
D Decay state
log(λ) Log average flux increase during firing state
logit(r) Logit of the decay rate
pQ|Q, pF|Q Transition probabilities from quiet state
pF|F, pD|F Transition probabilities from firing state
pQ|D, pF|D, pD|D Transition probabilities from decay state

8 doi:10.17909/kk7d-hg51
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3.2. An Introduction to HMMs

In its basic form, an HMM is a doubly stochastic process
composed of an observable, state-dependent process { }=Zt t

T
1

and a state process { }=St t
T

1. At each point in time, t, the time
series is assumed to be in one of N possible states (i.e., the time
series follows a state process S1, S2,..., St). The states are taken
to be discrete latent variables generated from a first-order
Markov chain that evolves over time according to an N × N
transition probability matrix with entries pi,j = Pr(St =
j|St−1 = i), for i, j ä {1,K, N}. The state at time t = 1 is
taken to be generated according to an initial state distribution.

The observations are modeled assuming they are emitted
from a set of state-dependent distributions, i.e.,

( ) ( | ) { } ( )= = Î ¼g Z g Z S n n N, for 1, , . 2n t t t

For example, if the HMM is a three-state model (N = 3), then
there would be three different distributions g, which describe a
different data-generating process conditioned on each state n.
In practice, the number of states N and the distributions g are
defined using scientific domain knowledge. The parameters of
these distributions may be estimated within the model or fixed.
The N × N matrix describing the probability of transition
between states is also estimated in practice.

When fitting an HMM to real time series data, one can use
the estimated model to obtain the state sequence ˆ ˆ¼s s, , T1 ; the
most likely, under the assumed model to underlie the
observations. This is known as state decoding and can be
efficiently carried out through the Viterbi algorithm
(A. J. Viterbi 1967; see also G. D. Forney 1973 for a detailed
description).

The latter uses the estimated state-dependent distributions ĝn
to compute the probability density ˆ ( )g zn t of each observation
when a specific state n ä {1,K, N} is active. The algorithm
combines these probability densities with the estimated
transition probabilities to recursively determine the most likely
sequence leading to each possible state n, at each time t ä {1,
K, T}. This is done through recursively computing the
quantities

( )( ˆ ) ˆ ( )x x= - p g zmaxt n
i

t i i n n t, 1, ,

for t = 2,K, T, initialized with ( ) ˆ ( )x = =S n g zPrn n1, 1 1 . i.e.,
ξt,n corresponds to the likelihood of the state sequence from
time 1 to t − 1 most likely to lead to state n being the one active
at time t, given the observations between 1 and t. The most
likely full state sequence is then determined by recursively
maximizing over these likelihoods, starting with

^ x= = ¼s n Nargmax 1, , ,T T n,

and setting

^ ^ ^x= = ¼
+

s n N pargmax 1, , ,t t n n s, , t 1

for t = T− 1, T − 2,K, 1.
Additional references and some foundational papers about

HMMs are L. E. Baum et al. (1970), L. R. Rabiner (1989), and
W. Zucchini et al. (2017).

3.3. Observational Model

In our application, we assume an observational model for the
random variable Yt at a given state St:

∣ ∣ ( )= +Y S f Z S , 3t t t t t

where ft is the celerite-modeled trend at time t (note that it
does not depend on the underlying state), and Zt is the flaring
channel. The latter's distribution depends on whether the star is
in a quiet, firing, or decaying state, and is described next.

3.4. A Quiet-firing-decay HMM for Flare Events

We propose a three-state autoregressive HMM (J. D. Hamil-
ton 1990) for modeling flare events in the detrended light
curve. Each point in the time series can result from one of three
(hidden, unobservable) states: quiet, firing, or decay (denoted
as Q, F, and D, respectively). The Q state is used to model the
time series when the star is not in any flare event, while the F
and D states are used to model the increasing and decreasing
phases of a flare.
Recall the probabilities

-
pS S,t t1

of switching between states at
each step in the time series (akin to a Markov Chain); they are
conditional probabilities of the form ∣ -

pS St t 1
, where St−1 is the

previous state; for example, pF|Q denotes the probability of
transitioning to state F given that the star is in state Q. The
interpretation given to each of these transitions is illustrated in
Table 2.
The transition from Q to F accounts for the firing rate of

flares from the star's quiet state. Once the star is in the flaring
state, the transition from F to F accounts for the increasing
phase of a flare, while the transition from F to D accounts for
the decay of the flare. When the time series is in the decay state,
transiting from D to F corresponds to a compound flare. Note
that we forbid the transition from Q to D (i.e., when the star is
quiet, it will not suddenly “decay”) and from F to Q (i.e., when
the star is flaring, the flare will not spontaneously disappear).
All other transitions are allowed, and are each modeled with
parameters that account for different physical characteristics.
We model the flaring channel Zt at time t given the state

St ä {Q, F, D} and the previous step Zt−1 as follows:

∣( ) ( )
∣( ) ( ) ( )
∣( ) ( ) ( )







s s
l s s l

s s

= ~
= ~ +
= ~

-

- -

- -

Z S Q Z

Z S F Z Z

Z S D Z r rZ

, , 0, ,

, , , , Exp ,

, , , , . 4

t t t

t t t t

t t t t

1
2 2

1
2

1
2

1
2

1
2

The distributions above are the gn distributions mentioned in
Section 3.2 and Equation (2). Note that the value of the time
series at time t is always dependent on the current state of the
star St and on the value of the time series in the previous step
(Zt−1) when in states F or D. The Q state is modeled as an

Table 2
Interpretation of Transitions between States

to
Q F D

Q Remain quiet Start firing Forbidden
from F Forbidden Increased firing Start decaying

D Return to quiet Start compound flare Decaying continues
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independent normal random variable with variance σ2. When
formulating the distributions in Equation (4), we assume that
when quiet, the flaring channel will just be measurement noise
on top of the quiescent trend; when firing, the flaring channel
will be around the previous channel plus an independent flux
increase exponentially distributed; and when decaying, the
flaring channel will be centered around a scaled value of the
previous channel.

Recall that the model for the observed light curve yt is the
combination of the trend and flaring channel; that is, celerite
and the HMM are fit simultaneously, such that f is a latent variable
(Figure 1). We call this combined model celeriteQFD. A
summary of the HMM parameters, their prior distributions, and
hyperparameter values can be found in Table 3. invGamma is the
inverse Gamma distribution, and the transition probabilities (e.g.,
pQ|F, pF|D, etc.) use Dirichlet prior distributions. This setting is used
for all injection recovery and real data examples.

3.5. Computation, Model Fitting, and State Decoding

For computational purposes, we split each time series { }=yt t
T

1
into smaller chunks of 2000 time steps. We subtract the overall
mean from the light curve to center it around zero. Our model
was implemented in Stan (B. Carpenter et al. 2017), while the
C++ code for celerite was adopted from the Python library
EXO-PLANET. The posterior distributions of model parameters
and derived quantities are sampled using a dynamic Hamiltonian
Monte Carlo algorithm (M. D. Hoffman & A. Gelman 2014).
States are decoded using the Viterbi algorithm as described in
Section 3.2 (see also G. D. Forney 1973). The Stan
implementation, as well as the injection recovery tests, can be
found in the first author's GitHub repository: Esquivel-Arturo/
celeriteQFD.9

To obtain samples from the posterior distributions of the
model parameters, we use two Markov Chain Monte Carlo
(MCMC) chains and sample 1000 (2000 in total) posterior
values, after discarding the first 1000 samples obtained during
the warm-up period. For each joint posterior sample of the
parameters, we use the Viterbi algorithm to uncover the
most likely state sequence that could have generated the data.
In this manner, we are able to propagate the uncertainty around
our parameters to produce 2000 most likely state sequences and
capture the variability in state decoding results. Thus, for every
point in the time series, we have a “decoding distribution” (see
Figure 2 top panel) of the states (Q, F, D). For each point in the
time series, we estimate the state of the star to be the one that
appears most frequently across the 2000 decodings of that
time step.

Each celeriteQFD implementation on 2000 time steps took
between 1 and 4 hr to run using two cores of an M1 MacBook
Pro with 16 GB of memory. When running celerite alone and
under the same conditions, it usually took between 0.5 and
1.5 hr for the model to run.

3.6. Identifying and Characterizing Flares

To identify flares after fitting celeriteQFD, all consecu-
tive points decoded in a non-Q state (i.e., the rise F and fall D
of the flare) are used to define the duration of a flare. A flare is
considered over once the time series returns to state Q. In other
words, the duration of a flare is defined as the time elapsed
from when the star enters the flaring state (Q to F) to when the
star reenters the quiet state (D to Q). For example, in Figure 2
the flare was estimated to commence with the peak red point
and end right before time 1331.30.
This method also allows us to find compound flares (e.g., the

time series could be in the decaying phase of a flare, and then start
firing again). As the state decoding of a compound flare will have
multiple peaks we skip any peaks identified in a flare's duration
when searching for the next flare. We can also quantify
uncertainty around the Viterbi “decoding distributions.” For
example, Figure 3 shows two flares detected very close to each
other. From the decoding proportions, we can see that about 10%
of the Viterbi state decodings point to a compound flare
instead of two separate flares.

Table 3
Prior Setting of the QFD Part of the Model

Parameter Meaning Prior Distribution Hyperparameter Used

μ Mean flux at quiet ( )m sN ,0 0
2 m s s= =0, 1000 0

2 2

σ2 Variance of measurement noise invGamma(α, β) α = 0.01, β = 0.01
( )llog Log average flux increasing during firing ( )m sl lN , 2 m s= =l l e0, 1 32

logit(r) Logit of decay rate ( )m sN ,r r
2 m s= = e0, 1 3r r

2

pQ|Q, pF|Q Transition probabilities from quiet state Dir(αQ) αQ = (1, 0.1)
pF|F, pD|F Transition probabilities from firing state Dir(αF) αF = (1, 1)
pQ|D, pF|D, pD|D Transition probabilities from decay state Dir(αD) αD = (1, 0.1, 1)

Figure 1. Graphical representation of our complete model for observed
brightness decomposed into its various parts. The quasiperiodic trend reflects
the average brightness of the star when it is not flaring. The flaring channel
represents the extra brightness due to the state of the star. The hidden flaring
state represents the (unobserved) state of the star (Q, F, or D).

9 https://github.com/Esquivel-Arturo/celeriteQFD
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Figure 2. Detected flare example from implementing celeriteQFD on the real time series of TIC 031381302. Top panel: state “decoding distributions” per
observation across all Viterbi sequences. Second panel: shows the fit of celeriteQFD, the estimated trend (purple curve) and assigned state to each point (black
points are state Q, red points F, and orange points are D).

Figure 3. Example of two flares detected from implementing celeriteQFD on the real time series of TIC 031381302. Top panel: state “decoding distributions” per
observation across all Viterbi sequences. Second panel: shows the fit of celeriteQFD, the estimated trend (purple curve) and assigned state to each point (black
points are state Q, red points F, and orange points are D).

5

The Astrophysical Journal, 979:141 (14pp), 2025 February 1 Esquivel et al.



3.7. Injection Recovery Experiment

To test the ability of our HMM to detect stellar flares, we
perform an injection recovery experiment: we inject simulated
flares into a real stellar time series, apply our HMM algorithm
to detect the simulated flares, and compare our results to the
ground truth and those of using a sigma-clipping approach.

We use the mean-centered flux time series data from one star
as the base time series for our injection recovery experiment
and randomly inject Kepler flares following the procedure
outlined in J. R. Davenport et al. (2014). We use
TIC 031381302 (from day 1325.292 to day 1327.377 in
Barycentric Julian Date (BJD), n= 1500). This time segment
was chosen to avoid already-discovered natural flares.

We inject five flares, both “small” and “large,” at randomly
chosen points in the time series. The timescale of our Kepler-
like flares, t1/2, is proportional to its peak flux. The peak fluxes
of the injections are i.i.d. Pareto (i.e., they follow a truncated
power-law distribution):

( ) ( )k
=

k

k+
p x

x

x
, 5m

1

where xm and κ are the distribution parameters.
We use different parameter values (t1/2, xm, κ, δ, ν) to

simulate small and large flares. The parameter δ serves as an
offset added to the simulated peak fluxes, ensuring that their
brightness always exceeds this threshold. Similarly, ν is used as
an upper limit; we truncate the Pareto distribution to prevent
the simulated values from exceeding the specified maximum ν.
We use (5 × 10−5, 10, 1, 30, 150) for small flares, and
(5 × 10−5, 50, 1, 0, 300) for large flares. These parameters
were chosen because they result in significant size differences
of the simulated flares while still allowing for a certain degree
of variation within each group. Among the small simulated
flares, their equivalent durations (EDs; see Section 3.8) vary
from 7.28 to 109 s, with a median of 13.4 s. For large flares,
their EDs span from 10.9 to 486 s, with a median of 41.3 s.

For each set of parameter values, we separately simulate and
inject five flares into the time series, and perform our analysis of
flare recovery. We repeat the procedure 100 times for each
parameter scheme. Although we do not explicitly study our
method's ability to recover compound flares, we do allow the
simulated flares to overlap in time and form compound flares in
the base time series.

3.8. Flare Detection Evaluation

For each simulated time series, we run celeriteQFD and
obtain a Bayesian estimate of the state of the star (Q, F, or D) at
every time step (see Section 3.5 and Figure 2). Once we have
the estimated states for all points in a time series, flares are
identified as described in Section 3.6.

To evaluate the accuracy of flare detection using our HMM
framework, we compare the number of detected flares to the
ground truth (i.e., flares injected). We also compare our results
to those obtained with the more commonplace sigma-clipping
a–bσ rule, where a is the number of consecutive points in the
time series that are bσ away from the mean flux μ of the
detrended time series (i.e., the rule outlined in S. W. Chang
et al. 2015 and used in, e.g., A. A. Medina et al. 2020; E. Ilin
et al. 2019). In particular, we compare against using a 1–3σ
approach, and with celerite for detrending. We use the
same priors and kernel as with celeriteQFD.

An example of one injection recovery experiment under the
small flare scheme is shown in Figure 4. The flux was centered,
i.e., it is the raw flux data from which we subtracted the grand
mean. It shows the estimated trend and state sequence from our
HMM (second panel), along with the ground truth (top panel),
and with the result of using the 1–3σ approach (third panel).
We use 1–3σ because it is more sensitive than the usual 3–3σ
and so it is more likely for it to detect small injections.
For each fitted model (100 per method and flare scheme), we

calculate the true positive, false positive, and false negative
rates of detection, as well as the sensitivity and the positive
predictive value (PPV):

( )=sensitivity
TFD

TFT
, 6

( )=PPV
TFD

FD
, 7

where TFD is the number of true flares detected; TFT the total
number of true flares; and FD the total number of flares
detected. We also assess flare detection in terms of the full
duration of the flaring processes, i.e., we compute the per
observation sensitivity and PPV:

( )=sensitivity
TFD

TFT
, 8o

o

( )=PPV
TFD

FD
, 9o

o

where TFDo is the number of observations part of a true flare
correctly identified; TFTo is the total number of observations that
are part of a true flare; and FDo is the total number of observations
identified to be part of a detected flare. Note that sensitivity and
PPV (Equations (6) and (7)) should each be 1 if we perfectly
identify all true flares. Similarly, the per observation metrics
(Equations (8) and (9)) should be 1 if the entire duration of every
flare is correctly identified and no point is wrongly identified as
part of a flare.
Lastly, we evaluate our method's energy recovery performance

on the injected flares. For that, we compare the ED of every
injected flare with that of the corresponding recovered flare. The
ED is understood as the amount of time (in seconds) that a
quiescent star requires to emit as much energy as that emitted
during the flaring event (L. M. Walkowicz et al. 2011). Following
R. Gershberg (1972) and T. J. Moffett et al. (1974), we determine
each ED by numerically integrating the expression:

( )
( )

( )ò= -
I t

I t
dtED 1 , 10f

f

0
⎜ ⎟
⎛
⎝

⎞
⎠

where I0 is the flux of the star before the flare injections and If the
resulting flux within the injected flare f. The ED of recovered
flares is determined by the flux of the observations correctly
recovered within the duration of the injected flare. We assess the
relationship between the energy (as measured by the ED) of a flare
and the amount (percentage) recovered by our model.

3.9. More Complicated Flares

As a final exploration, we challenge our HMM with a
well-studied, but more complicated flare from the light curve
of TIC 129646813, during days 1341 and 1342 (BJD).
M. N. Günther et al. (2020) discuss the complicated nature of
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this flaring outburst, demonstrating it can be difficult to identify
the most suitable model to describe it. Their approach consists of a
sigma-clipping method which, by employing the Bayes factor
(R. E. Kass & A. E. Raftery 1995), sequentially evaluates the
improvement in model fit when an additional flare is incorporated
into the outburst. This process continues until the inclusion of
further flares no longer produces a significant improvement in the
model's fit. They mention that a regular sigma-clipping pipeline
detects a single flaring peak, while the Bayesian evidence from
their approach favors a model with two flares.

Through an exploratory analysis and application of the
HMM approach on TIC 129646813, we stretch the limits
of our method, compare our results to those shown by

M. N. Günther et al. (2020), and discuss the potential of
HMMs in these extraordinary cases (Section 4.3).

4. Results

4.1. Injection Recovery

From the example in Figure 4, it can be seen how, through
state D, the HMM directly identifies a larger proportion of
flaring events than sigma clipping. Moreover, note that
celerite on its own can absorb part of the flares into the
estimated trend of the time series, and so reduce the chance that
a flare is detected by sigma-clipping rules.

Figure 4. An example of one injection recovery simulation in the small flare scheme. Top panel: ground truth—the real time series for TIC 031381302 with five
simulated flares injected (their real states color-coded). Second panel: shows the fit of our proposed algorithm that simultaneously models the trend with celerite
(purple curve) and assigns states to each point in the time series (black points are state Q, red points F, and orange points are D). Third panel: the sigma-clipping
approach that uses celerite alone to model the trend (purple curve), with outliers beyond 3σ (red points) used to identify flares. Bottom panel: the flare channel that
was injected into the time series.
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The results of the injection recovery experiments are
presented in Figure 5. The box plots show a comparison of
our method's detection performance with that of 1–3σ clipping
for small and large flares' schemes. They show the sensitivity
and PPV distributions across the 100 simulations of each
setting. e.g., the first (light-blue) box on the top-left panel
corresponds to the distribution of the per flare sensitivity (see
Equation (6)) across all 100 sigma-clipping models fitted to the
100 injections of five small flares simulated.

From part (a) of Figure 5, it can be seen that both methods
perform almost ideally when it comes to detecting the
occurrence of large and small flaring events. Flare detection
sensitivity, i.e., the probability of correctly detecting a flare was
computed to be 1 in almost all the 100 simulations. They also
achieve similar performance in terms of the PPV (see
Equation (7)), i.e., the probability of an identified flare indeed
being a flare. However, under the large flares scheme,
celeriteQFD often performed slightly better, achieving
PPVs of 1 (it was 0.8 almost always with sigma clipping). This
indicates that our method is less susceptible to producing false
detections.

These results suggest our proposed HMM framework is at
least as good as sigma clipping for flaring events detection
tasks. But the meaningful difference of our method consists of
its ability to directly provide an estimate of the full duration of
flaring events. Figure 5(b) contains the distributions of the per
observation performance metrics (see Equations (8) and (9)),
i.e., the metrics are computed using all points identified as part
of a flare by the methods, as compared with all the points that
truly belong to injected flares. The plots show that both
methods very rarely flagged observations outside of a real flare
(PPVs are concentrated very close to 1). Also, one can clearly
see the difference between methods when it comes to spotting
all light-curve points that are part of a flare; celeriteQFD
consistently identified more than 50% of the observations
forming part of a small flare and close to 70% for large flares.

Sigma clipping alone is never used for a full characterization
of a flare, which is usually done through further data modeling

steps (see S. W. Chang et al. (2015) for example). Still, this
experiment demonstrates the capacity our method has to
describe the entire duration of detected flares without the need
for extra steps.
Another crucial difference of our method is that it

simultaneously carries out detrending and flare detection. By
considering the light-curve observations to be a combination of
the long-term trend and a flaring channel (see Equation (3)),
both components are modeled, accounting for the effects of the
other part on the observational process, i.e., the posterior
distributions of the celerite parameters contain information
on the HMM parameters and vice versa.
Figure 6 illustrates the effect of simultaneous detrending and

detection. It provides a zoomed-in view of a flare from the
example in Figure 4 that was detected by both methods. The
first thing to note is that, overall, the celerite-estimated
trend is considerably less affected by light-curve variability
when fitted simultaneously with the HMM. Moreover, in the
zoomed flare, note that celerite, when used alone, can
absorb part of the flares into the trend. Since the data points
correspond to an injected flare, we know the increased flux of
those observations is not part of the long-term pattern of the
light curve and that detrending should ideally ignore it.
celeriteQFD, is not only able to estimate the trend
unaffected by the increased flux, it is also capable of
identifying many of the observations as part of the decaying
phase of a flare. This result is critical, suggesting that better
detrending can be achieved, further leading to less biased
estimates of the flares’ energies.

4.2. Case Study: Photometric Data from the TESS Mission

As a demonstration of real flares' detection, we apply our
HMM method to a large portion of the TIC 031381302 light
curve. The time series was sliced into pieces of 2000 time steps
to more efficiently fit the models and conduct flare detection.
Trace plots of the MCMC sub chains of the parameters

Figure 5. Flare recovery sensitivity and PPV distributions across 100 small and large flare injections, using the 1–3σ rule and celeriteQFD (HMM). (a) shows
results from detecting flare occurrences (Equations (6) and (7) are used). (b) shows results on a per observation basis (Equations (8) and (9) are used).
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sampled were produced and inspected without any indication
of lack of convergence.

A large portion (from day 1325.292 to day 1353.177 (BJD))
of TIC 031381302 PDCSAP mean-centered flux, along with
the resulting fit and state decoding, are shown in Figure 7.
During the period observed, a total of 11 flares were detected,
with an average duration of 10.3 observations (approximately
0.01545 days or 1334.88 s). The estimated (using the posterior
median) transition probability (pF|Q) was 0.00170, with a 95%
credible interval of (0.00007, 0.00820). i.e., the estimated
probability that this star starts firing at any particular time,
given that it was quiet in the previous time step, is 0.17%.

A smaller portion of the TIC 031381302 light curve (from
day 1333.627 to day 1336.404 (BJD)) and the resulting fit of
both models is shown in Figure 8. The right-hand side shows a
zoom-in into a portion containing what both methods identified
as a flare event. Note the similarity with many aspects of the
flare shown in the right-hand side of Figure 6. The trend
modeled using celerite only (bottom row) gets distorted,
absorbing observations of higher brightness. Given that these
points follow two observations of peak brightness, it is rather
likely that at least some of them correspond to the decaying
phase of a flare. This is precisely the kind of case in which flare
energies could be underestimated. Also note that using our
approach, the estimated trend remained unaltered in this

window, and the HMM identified multiple observations to be
in a decaying state (the same way as in the synthetic case).
By comparing the simulation results, where the ground truth

is known, with real data results, it seems celeriteQFD can
in fact better model the long-term trend of a light curve.
Additionally, these results indicate the model is capable of
directly identifying light points conforming the decaying phase
of a real flare, determining the duration of flaring events.
Moreover, through the “decoding distributions” it directly
provides a way to quantify the uncertainty about the estimated
durations of the flares. For example, in Figure 2, top panel, it
can be seen that almost 20% of the Viterbi sequences estimated
the decaying phase of the flare detected extends up until time
1331.35. Similarly, it can be seen that around 10% of them
identified the flare to end nine time steps earlier than estimated
using the majority state. This uncertainty can be easily
propagated into the final goal of producing energy distribu-
tions, potentially leading to more reliable and comprehensive
distributions.

4.3. Case Study: A More Complicated Flare

The results above indicate our method can perform well on
classic one-peak flares. However, flares composed of multiple
impulsive events sometimes exhibit more complex structures.
Sometimes it is not easy to determine the number of peaks

Figure 6. An example comparison of celeriteQFD and standard sigma clipping for identifying the injected flares to part of the TIC 031381302 light curve. Top
row: celeriteQFD, which simultaneously models the trend with celerite and assigns states to each point in the time series. Bottom row: the sigma-clipping
approach that uses celerite alone to model the trend, with outliers beyond 3σ used to identify flares. The right-hand column shows a zoomed-in portion of one of
the flares identified by both methods.
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Figure 8. An example comparison of our HMM approach and standard sigma clipping for identifying flares, using real data part of the TIC 031381302 light curve.
Top row: celeriteQFD, which simultaneously models the trend with celerite and assigns states to each point in the time series. Bottom row: the sigma-clipping
approach that uses celerite alone to model the trend, with outliers beyond 3σ used to identify flares. The right-hand column shows a zoomed-in portion of one of
the flares identified by both methods.

Figure 7. TIC 031381302 mean-centered light curve along with the fit of celeriteQFD that simultaneously models the trend using celerite and assigns states to
each point in the time series using the HMM.
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involved in an outburst. Methodologies that make use of stellar
flare templates require the number of flares to be correctly
specified to produce the best results.

As a testbed and proof of concept of celeriteQFD’s
flexibility, and to investigate how it performs in a more
complicated setting, we apply our HMM approach to TIC
129646813. As described in Section 3.9, this star exhibits a
multi-peak flaring outburst between days 1341 and 1342
(BJD). Figure 9 shows the results of applying celeriteQFD
to this event.

In the top panel of Figure 9, three points in the time series are
unambiguously identified as being in the firing state (the solid
red bars, without any orange or black). They correspond to the
points of highest brightness within the window of time shown.
The first two of these are sequential, and the third is separate. In
between these two flaring peaks, there is also an unambiguous
decaying state (the solid orange bar). Together, this sequence of
observations corresponds to the same first and second flare
originally identified by M. N. Günther et al. (2020).

In the bottom panel of Figure 9, each time point is given the
color corresponding to the majority state in the top panel. From
here, we also can see that celeriteQFD identifies both peaks
originally detected by M. N. Günther et al. (2020). Thus, a
potential advantage of our HMM approach is the detection of
multiple peaks in complicated events without the need for an
iterative process and/or prior assumptions about the flare
count. Moreover, it seems that celeriteQFD has enough
flexibility to accurately capture the complex structure of this
outburst more generally, as described next.

The volatile classification by celeriteQFD during the
prolonged decay of the flare is particularly noteworthy in the
classification across posterior samples (Figure 9, top panel).
The proportion of samples assigned to the most frequent state is

lower compared to other observations, where the decoding is
more consistent across posterior samples (e.g., all quiet or all
firing). Moreover, these states are highly uncertain as the
outburst dies down, fluctuating almost periodically between
firing and decaying. In M. N. Günther et al. (2020), after fitting
their two-flare model, the residuals show what could be an
oscillatory pattern. Thus, it is possible that our model’s high
uncertainty state fluctuations are the result of true but small
oscillations in the data. In other words, there could be an
extra layer of complexity to this flaring event that is not being
considered. e.g., sometimes some peaks within a flare
display quasiperiodic pulsations (QPPs; W. S. Howard &
M. A. MacGregor 2022). However, we warn that one should
not draw strong conclusions from these exploratory results.
Currently, our method is not meant to describe such

complicated mechanisms. The interpretations of states in our
particular HMM model are not necessarily applicable to
observations such as those in Figure 9. As mentioned above,
there could be an extra underlying mechanism other than the
star alternating between the firing and decaying phases. As it
stands, using our model to capture the behavior of processes as
complicated as potential flare QPPs would not be sensible.
However, it seems our method could at least hint at the
possibility of the existence of such additional processes. As
shown with this example, celeriteQFD identified a structure
incompatible with the one assumed through the state-dependent
distributions. It informs about the increased uncertainty that
surrounds the observations of the decaying phase of the
outburst.
To fully explore cases like this is beyond the scope of this

study. However, the flexibility of our method shows potential
and it would be relatively easy to expand it to better
accommodate these more complicated patterns. For example,

Figure 9. Results obtained through implementing celeriteQFD on the real time series of TIC 129646813. Top panel: state “decoding distributions” across all
Viterbi sequences per observation. Second panel: shows the fit of celeriteQFD, the estimated trend (purple curve) and assigned state to each point (black points
are state Q, red points F, and orange points are D).
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an additional state could be included with state-dependent
distributions that impose a different structure that accounts for
possible flare QPPs. This additional state could be considered
only during flaring events and could be modeled using simple
harmonic oscillators different from the ones used for the
celerite trend.

4.4. Energy Recovery

To inspect what the detection performance of our method
implies in terms of energy estimation, we look at the proportion
of ED our model recovered for each injected flare (across the
200 simulation experiments). Figure 10 shows how this
proportion is distributed across all the flares from each flaring
scheme. The plot shows that celeriteQFD energy recovery
is generally better on large flares. The recovered ED was at
least 75% of the true ED for most large flares, being higher than
90% for more than half of them. In contrast, only in about 50%
of the small flare cases, the percentage of recovered ED was
found to be 80% or higher. Nevertheless, even for small flares,
our model successfully recovered at least 60% of the true ED
most of the time.

Figure 11 was produced to further inspect the relationship
between the energy of a flare and our method's capacity to
recover it. It shows every flare injected in terms of their
recovered ED and the corresponding true value. Points are
colored according to the percentage of real ED recovered by
celeriteQFD. The black line is the identity line, which
denotes the perfect recovery threshold. Overall, the points are
fairly close to the line. Based on the pattern of the points, and
their color, the model's performance does not seem to be
strongly impacted by the energy of the flare. Except for
extremely small cases; almost all flares for which the recovered
ED was less than 75% had an ED of less than 50 s.

A comparison between Figures 10, 11, and 5(b) shows that
the majority of the points missed by the model tend to be of
very low energy or luminosity. For instance, in the case of
small flares, the per observation sensitivity had a median near
0.50, meaning that in about half of the experiments, 50% or
more of the flare-related points were not detected by the model.

However, the median of recovered ED for small flares was nearly
0.80, indicating that the missed points generally accounted for
only about 20% of the total ED. Even in the worst performance
cases, energy was underestimated by 20%–35%, and this
underestimation was primarily associated with extremely low-
energy flares. To contextualize, A. A. Medina et al. (2020)
identified 1392 flares using TESS observations, of which fewer
than 3% had an estimated ED of 50 s or less.

5. Discussion

As shown in this work, an advantage of having the HMM as
a flaring model is that we can identify the whole course of a
flare via states assigned to each time point. We no longer need
to cross-correlate the time series with stellar flare templates and
thus remove a step in the analysis process. The HMM approach
also allows us to detect compound flares more easily.
Moreover, it can be used to give a probabilistic sense of the
duration of the flares, making it possible to produce more
comprehensive distributions of the energies of the flares.
The inclusion of a state associated with decaying and the

capability to simultaneously perform detrending and state
decoding constitute a relevant benefit of our proposed method.
Through our injection recovery experiment and analysis of a
real star, we have shown that celeriteQFD can produce
better and more stable estimates of the long-term trend of a
light curve than celerite alone. The agreement between the
results obtained for synthetic cases (where the ground truth is
known) and real data cases indicates that biased estimation of
the trend is indeed an issue that can arise when detrending is
done prior to flare detection. It also provides some reassurance
that our model is better equipped to handle the problem and
prevent such bias. Further, we have shown that our HMM
method can detect flares of lower energy that might be missed
by other methods, even sensitive methods such as 1–3σ
clipping. Thus, the HMM approach to flare detection could be
well-suited for detecting flares in more “inactive” G-type stars.
It is worth mentioning that our flare recovery experiments

are in no way exhaustive of flare morphologies present in stars.
While it is true that stellar flare templates are more physically

Figure 10. Box plots showing the proportion of the true ED recovered by celeriteQFD, across all flares injected in all experiments using the small and large flares
schemes.
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motivated than celeriteQFD, and that celeriteQFD is
not a generative model, HMMs still classify states very well
even when the generative process is not specified correctly
(S. Ruiz-Suarez et al. 2022). Also, note that we do not make
any strong assumptions about the nature of flare events. The
few restrictions on the matter are made through the state-
dependent distributions, upon which parameters are estimated.
This provides flexibility for the model to produce different
results in different contexts. We intend to explore this further
and conduct detection and energy recovery experiments on
different types of simulated flares, assessing our method’s
performance and contrasting it with that of other methods.

Considering the ultimate goal of estimating flares’ energies
and their distributions, this method paves a new way to
calculate stellar flare energy. celeriteQFD could prove to be
generally applicable, versatile, and quantitatively reliable. We
plan to continue this work by using our model on other light
curves from different stars measured by TESS.

6. Conclusions and Future Work

In this paper, we have introduced an HMM for discovering
stellar flares in time series data of M dwarf stars. Our approach
has some notable advantages over previous approaches.

First, our method simultaneously fits a celerite model for the
quiescent state of the star and a three-state flaring model
through a hidden Markov process. With this approach, we not
only obtain a better estimate of the quiescent state of the star
but also eliminate the need for sigma-clipping approaches and
iterative fitting of time series data. Moreover, with the
combined approach of celerite and the HMM, celerite
does not absorb early or late parts of the flares. Concurrently,
the HMM better identifies the whole course of the flare and can
also identify compound flares easily.

Second, through our flare injection recovery experiment, we
find that our HMM method for flare detection achieves the
same or better sensitivity and positive predictive value
compared to sigma clipping (Figure 5). Our energy recovery
experiment demonstrated that even when the full duration of a
flare could not be detected, the missed observations contributed
minimally to the total energy. As a result, the estimated ED was
rarely as significantly impacted.

Third, our method enables a coherent path for uncertainty
quantification. Rather than providing a single most likely flare
state sequence for the time series, we obtain a posterior

distribution of most likely flare state sequences by propagating
the uncertainty from our parameter estimates. This allows us to
capture the variability and uncertainty of the duration of
each flare.
While our approach has significant advantages, one potential

disadvantage is computation time. Currently, it can take on the
order of a couple of hours to run the HMM model on a single
star's time series, as measured by TESS on modest resources
(see Section 3.5). We are currently exploring approaches to
overcome this challenge, as the advantages of our method seem
to outweigh this minor (and surmountable) drawback. Another
potential criticism of our approach is that we have not
developed the HMM to realistically simulate stellar time series
with flares. That is, in this work, we are measuring the capacity
of our proposed HMM plus the celerite model to identify
flares well, but we are not evaluating the model's generative
properties. This is something that could be improved upon and
explored in the future.
Overall, this work is a promising initial step and proof of

concept in developing a robust flare detection algorithm that
does not rely on sigma clipping or iterative approaches. There
are many avenues that we plan to explore in future work:

1. We aim to speed up the computation time so that we can
apply our HMM approach to a large sample of M dwarf
stars observed by TESS and recover stellar flares.

2. In a follow-up paper, we will estimate both the flare
energy distribution and flare frequency distribution (FFD)
through the posterior distribution of the Viterbi state-
decoded sequences. Through this approach, we will be
able to propagate the uncertainties in the duration of the
flare from the state sequences to the energy of the flare in
a coherent way. This, combined with the improved
sensitivity and PPV of our method in detecting small and
large flares, should produce better estimates and increase
our confidence regarding the FFD of M dwarf stars.

3. Ultimately, it could be fruitful to design a hierarchical
model that includes the FFD parameters at the population
level. In this way, many M dwarf stars could be fit with
our HMM approach simultaneously, and both their
individual parameters and the population-level para-
meters of the FFD would be modeled in a coherent way.

4. Extending the model into one with more states is
rudimentary. Using additional states to capture extra
phenomena, such as QPPs, the presence of transients, or
even extremely low-energy observations, could prove
useful and lead to better results.

5. After detecting stellar flares in a star, and obtaining the
state-decoded sequences that quantify the uncertainty in
the duration of each flare for that star, one could still use
stellar flare templates to model the flares and obtain
parameter estimates of interest. A study comparing this
approach with standard approaches in the literature could
provide further insight into the benefits (or not) of using
HMMs in this framework.

6. The HMM technique presented here could also be further
developed for time series data measured across multiple
bands, which is now becoming more commonplace (e.g.,
W. Joseph et al. 2024). This would allow an HMM
analysis of stellar flares measured by future data sets
(e.g., CubeSat; J. Poyatos et al. 2023).

Figure 11. Recovered vs. injected equivalent duration. Each point corresponds
to the values of one injected flare. Points are colored based on the proportion of
the true ED (x-axis value) accounted for by the recovered ED (y-axis value).
The black line indicates the ideal scenario where both values are the same.
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To our knowledge, this paper is one of the first applications
of HMMs to an astronomy problem, and the first to do so for
stellar flare detection. This statistical method has promise not
only for stellar flare detection but also for other areas in
astrophysics with time series data, such as gamma-ray bursts,
fast radio bursts, and quasars. Our hope is that this paper is
useful as a starting-off point for the astronomical community to
use this method in both stellar flare detection and other areas of
astronomy.
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