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Abstract

Accurate loss reserving is crucial in Property and Casualty (P&C) insurance for
financial stability, regulatory compliance, and effective risk management. We propose
a novel micro-level Cox model based on hidden Markov models (HMMs). Initially
formulated as a continuous-time model, it addresses the complexity of incorporating
temporal dependencies and policyholder risk attributes. However, the continuous-
time model faces significant challenges in maximizing the likelihood and fitting right-
truncated reporting delays. To overcome these issues, we introduce two discrete-time
versions: one incorporating unsystematic randomness in reporting delays through a
Dirichlet distribution and one without.

We provide the EM algorithm for parameter estimation for all three models and
apply them to an auto-insurance dataset to estimate IBNR claim counts. Our results
show that while all models perform well, the discrete-time versions demonstrate su-
perior performance by jointly modeling delay and frequency, with the Dirichlet-based
model capturing additional variability in reporting delays. This approach enhances the
accuracy and reliability of IBNR reserving, offering a flexible framework adaptable to
different levels of granularity within an insurance portfolio.

Keywords: Dirichlet distribution, EM algorithm, hidden Markov model, IBNR claims,
marked Cox model, micro-level reserving

1 Introduction

In Property and Casualty (P&C) insurance, accurate loss reserving is essential for insurers
to guarantee financial stability, regulatory compliance, and effective risk management (Bjar-
nason and Sjögren (2014)). Loss reserving involves estimating the funds needed to cover
future payments for incurred claims. Two key components of loss reserves are the Reported
But Not Settled (RBNS) reserve, accounting for claims reported but not yet settled, and the
Incurred But Not Reported (IBNR) reserve, accounting for incurred claims that are yet to
be reported. While both components are essential, this paper focuses on IBNR reserving.
Unlike RBNS claims, the number of IBNR claims is unknown to the insurer at the time
of reserve valuation, necessitating sophisticated modeling techniques to accurately estimate
this reserve. The complexity of IBNR reserving lies in forecasting the frequency and severity
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of unreported claims, making it a challenging yet crucial aspect of the insurance reserving
process.

The majority of the literature on modeling insurance claims and reserving is based on aggre-
gated claims data, such as the chain ladder method (Mack (1993, 1999)) and the Bornhuetter-
Ferguson method (Bornhuetter and Ferguson (1972)). These “macro-level” models accu-
mulate historical data on the development of claims over time in a two dimensional table,
referred to as run-off triangle, by aggregating payments by occurrence and development year.
Stochastic models were subsequently introduced to account for the variability in reserves de-
rived from these models; see Taylor (2012), England and Verrall (2002), and Wüthrich and
Merz (2008) for a comprehensive overview of stochastic reserving. Despite their simplicity,
these models come with several disadvantages, including the loss of valuable insights into the
characteristics of individual claims, high parameter uncertainty due to the limited number
of observations in aggregated data leading to reduced predictive power, and potential bias
under certain conditions (Crevecoeur et al. (2022)). To resolve these shortcomings, “micro-
level” models have been proposed with the aim to use individual-level data to depict the
development of individual claims.

Arjas (1989) and Norberg (1993, 1999) are the first to propose a stochastic loss reserving
framework at individual claim level. They proposed a marked non-homogeneous Poisson pro-
cess (NHPP) model and a general mathematical framework for the development of individual
claims. Haastrup and Arjas (1996) then implemented the NHPP model using non-parametric
Bayesian statistics. The subject of micro-level reserving remained unopened before emerg-
ing back in recent years. Antonio and Plat (2014) presented a case study in which they
applied Norberg’s model to an auto-insurance dataset. Data-driven comparisons between
macro-level and micro-level reserving have shown the superiority of the micro-level models;
see Charpentier and Pigeon (2016) and Huang et al. (2015, 2016).

Since then, various research streams have emerged in the micro-level estimation of IBNR
reserves. One stream employs machine learning and neural network techniques for IBNR
claim estimation. As outlined by Bücher and Rosenstock (2023), this approach utilizes
Frequency-Severity or Chain Ladder-based methods to estimate IBNR reserves over discrete
time intervals, as demonstrated by studies such as Wüthrich (2018a,b), Baudry and Robert
(2019), De Felice and Moriconi (2019), Delong et al. (2022), and Bücher and Rosenstock
(2023). Another stream focuses on modeling the claim arrival process, where the NHPP
model has traditionally played a prevalent role. However, considerations for enhancing this
aspect of loss reserving modeling have been highlighted, as discussed by Badescu et al. (2016).
NHPP, assuming independence among claim numbers from different periods, fails to capture
dependence among individual claim arrivals due to environmental variations affecting the
entire portfolio (Grandell (2012)) and contradicts the calendar year effect seen in the run-off
triangle (Holmberg (1994) and Shi et al. (2012)).

Addressing these issues involves incorporating a temporal dependence structure into the
claim arrival process model, achievable by transitioning to a Cox process. Notable research
in this direction includes Avanzi et al. (2016), who utilized the shot noise Cox process to
model claim arrival, employing a reversible jump Markov Chain Monte Carlo method for
estimation. Conversely, Badescu et al. (2016) employed a hidden Markov model (HMM)
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with an Erlang state-dependent distribution to model the claim arrival process for the entire
portfolio. Their work showcased that the discretely observed claim arrival process, along with
associated reported claims and IBNR processes, follows a Pascal-HMM. The authors detailed
the estimation algorithm for their model and its application in estimating IBNR claim count
in Badescu et al. (2019). It is crucial to note that while both studies incorporated the Cox
model, they focused on modeling the claim arrival process for the entire portfolio, overlooking
policyholder information that is likely to enhance the accuracy of the different components
within the model.

To this end, we introduce a novel micro-level Cox model that offers a level of flexibility allow-
ing actuaries to customize the analysis to various levels of granularity. Specifically, our model
accommodates modeling at the policyholder level, lines of business level, or the entirety of
the portfolio, providing a comprehensive framework for analyzing claim arrival patterns. In
the same spirit as Badescu et al. (2016), we adopt an HMM as the foundation of our Cox
model. In our framework, we assume a shared hidden Markov process governing the claim ar-
rival processes across different granular units within the portfolio. From a policyholder-level
modeling perspective, this HMM serves as an environmental dynamic that simultaneously
influences all policyholders. Given a state of the HMM, our model assumes that the claim
arrival intensity for a policyholder is a constant, which depends on the risk attributes of the
policyholder via a regression function. Thus, the claim arrival intensity for a policyholder is
influenced by both external factors affecting all policyholders and their own risk attributes.
The temporal dependence and environmental variation, often not incorporated in most re-
serving models, are captured through the common hidden Markov process. We show that
within our framework, the discretely observed claim arrival process, the discretely observed
reported claim process, and the discretely observed IBNR claim process for each policyholder
belong to the family of Poisson-HMMs, where the state-dependent distribution depends on
the policyholder’s risk attributes.

We initially propose our model in continuous time. In general, fitting continuous marked
count process models to reported claims data (whether they are marked Poisson or marked
Cox processes) presents significant challenges. One of the main challenges is maximizing
the likelihood of observed data. Maximizing the likelihood of the observed data entails
addressing two distinct components: the likelihood for the truncated reporting delay and
the likelihood for the claim frequency model of reported claims, which in turn depends
on the reporting delay. Thus, maximizing the likelihood poses a formidable task due to the
interdependence of the two components. In recent micro-level reserving literature, only Wahl
(2019) have attempted to maximize the likelihood at once for a specific class of micro-level
reserving models. Traditionally, researchers have adopted a two-step maximization approach
to maximize the likelihood of the observed data, initially fitting the right-truncated reporting
delay and subsequently estimating the frequency model using the reporting-delay components
in the frequency model as constants (which are estimated from the first step). However, this
approach rests on the assumption of independence between claim frequency and reporting
delay, which is often invalid; an increase in reported claims may indicate either a surge in
actual claims occurrence, accelerated reporting, or a combination of both, challenging the
independence assumption.
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We address such challenge within our marked Cox model framework by integrating reporting
delay and claim frequency modeling cohesively, transitioning from a continuous-time frame-
work to a discrete-time framework. Specifically, we aggregate continuous-time events to a
coarser time scale, which is more common in practice. This coarser time scale (or period)
can be days, weeks, months, etc. We assume a hierarchical structure: if Ni,t denotes the
number of claims that occurred in period t for policyholder i, and Zi,t,d denotes the number
of these claims reported d periods later, then we assume that Zi,t,d | Ni,t follows a multi-
nomial distribution. We simultaneously model both the delay and occurrence components,
capturing the intricate interplay between claim occurrence and reporting behavior.

Moreover, existing literature often assumes either static or time-dependent covariates to
model reporting delay variations. However, practical scenarios frequently involve unexplain-
able changes in delay structures that would not be captured through conventional covariates.
As previously demonstrated by Swamy (1970) and Şentürk and Müller (2005), accounting for
such unexplainable changes requires us to assume that the delay probabilities are random.
To address this, we extend the discrete-time model to account for the likely occurrence of
unobserved confounding covariates by assuming that the probabilities of the multinomial
distribution follow a Dirichlet distribution.

We outline the EM algorithm needed to obtain the maximum likelihood estimates for the
three different models: the continuous-time model assuming two-step maximization of the
observed data likelihood, and the discrete-time models, both with and without the Dirichlet
assumption for the reporting delay probability vector. We also fit the three models to an
auto-insurance dataset from a major European insurance company, which exhibits significant
randomness in the occurrence and delay structure. We show that despite losing information
by switching to the discrete-time framework, the discrete-time models perform better than
the continuous-time model because they account for the joint modeling of occurrence and
reporting. Moreover, we demonstrate that given the randomness exhibited in our data,
adding the Dirichlet assumption provides more realistic interval estimates for the IBNR
claim count.

This work contributes to the literature by:

• Extending the Cox model of Badescu et al. (2016, 2019) to various levels of granularity
(e.g., policyholder level, lines of business level). This is specifically important if the dis-
tribution of granular units in our portfolio changes over time and these granular units
possess different characteristics in terms of claim occurrence, reporting delay, and claim
severity. Ignoring these differences would lead to biased reserve estimates.

• Building upon the work of Verbelen et al. (2022) on modeling event occurrence sub-
ject to reporting delay via an EM algorithm, where they assume a Poisson process for
claim occurrence. We extend their analysis by allowing the occurrence process to follow a
Poisson-HMM, as well as conducting our analysis from a micro-level perspective.

• Incorporating unsystematic randomness in the reporting delay probability vector by as-
suming that it follows a Dirichlet distribution, and outlining the EM algorithm needed to
fit the model. We show that this is also an extension to the work of Verbelen et al. (2022)
who do not assume randomness of the reporting delay.
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The paper is structured as follows: In Section 2, we outline our modeling framework and
discuss its interpretability. The properties of the model and the associated individual-level
reported claim process and IBNR process are presented in Section 3. In Section 4, we outline
the discrete-time version of the model and show the likelihood for the three different models
under consideration. In Section 5, we provide the EM algorithm needed to estimate the
parameters of the three different models. Section 6 details the application of the model in
predicting the IBNR claims count and reserve, while we apply the models to real-life data
in Section 7 to assess their performance in estimating the IBNR claim count. We conclude
in Section 8.

2 Modeling Framework

We present our proposed model for modeling the claim arrival process at the policyholder
level. In line with the notation established by Badescu et al. (2016), we describe the devel-
opment of the jth claim for the ith policy (i = 1, . . . ,m) through three random variables
(Tij, Uij,Zij), where Tij denotes the occurrence time of the claim, Uij represents its reporting
delay, and Zij characterizes the development process following claim reporting. Chronologi-
cally ordered, {(Tij, Uij,Zij), j = 1, 2, . . . } constitutes the claim history process for policy i,
whose risk attributes are denoted by xi. Additionally, the total claim count process for the
ith policy is defined as Ni(t) =

∑∞
j=1 1{Tij < t}, where 1{.} is the indicator function.

In our modeling approach, we represent {Ni(t), t ≥ 0} as a marked Cox process with two
components:

1. The marks {(Ui1,Zi1), (Ui2,Zi2), . . . }, and

2. The stochastic intensity function Λi(t).

The assumption is made that the marks are independent, with a common density function
given by fU,Z|t,xi

(u, z) = fU |t,xi
(u)fZ|u,t,xi

(z). Additionally, the stochastic intensity function
Λi(t) is modeled as a piecewise stochastic process, where Λi(t) = ei,lΛl(t;xi) for dl−1 ≤ t < dl,
with l = 1, 2, . . . and d0 = 0. The time points dl, l = 1, 2, . . . , are predetermined, and
t = d0 = 0 marks the beginning of the observation window for the entire portfolio. Moreover,
ei,l ∈ [0, 1] denotes the exposure of the ith policy in the interval dl−1 ≤ t < dl, given by

ei,l = # days for which the contract is in force in dl−1≤t<dl
# days in dl−1≤t<dl

. Notably, ei,l can be zero, indicating the case

when the ith policy’s contract is not active during dl−1 ≤ t < dl.

To describe {Λ1(t;xi),Λ2(t;xi), . . . }, we propose a structure involving two components:

1. A hidden parameter process {C1, C2, . . . }, which constitutes a time-homogeneous Markov
chain with a finite state space {1, . . . , g}. Denoting its initial distribution and tran-
sition probability matrix as π1 and Γ = {γjk}, respectively, where γjk = P (Cl = k |
Cl−1 = j), we assume the Markov chain is irreducible, aperiodic, and has all states
being positive recurrent, leading to a unique limiting distribution.

2. A state-dependent process {Λ1(t;xi),Λ2(t;xi), . . . }, which depends on the current state
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Cl. Given Cl = j, we assume that Λl(t;xi) is constant such that

Λl(t;xi) | (Cl = j) = λ(j)(xi),

where λ(j) : X → R+ is a regression function, and X is the covariate space.

Specifically, each policyholder’s risk attributes xi are incorporated into the model through
the regression function λ(j)(xi). These risk attributes could include factors such as age,
location, coverage type, and any other relevant information about the policyholder that may
affect claim occurrence rates. By including these covariates, we tailor the intensity function
Λl(t;xi) to reflect the unique risk profile of each policyholder.

In summary, the intensity for each policy i remains constant during each period l, contingent
on the realization of hidden parameter Cl, and is determined by the regression function
based on policyholder’s risk attributes. The hidden states represent environmental variation
(e.g. weather or seasonal effect), affecting all policies in the portfolio, with policies assumed
independent given the environmental variation. It is important to note that the state of
the lth period is identical for all policies i. Consequently, we have that, for each policy i
(i = 1, . . . ,m),

Λl(t;xi) =


λ(1)(xi), with prob. = πl1

...
...

λ(g)(xi), with prob. = πlg

, t ∈ [dl−1, dl).

Remarks

• It is important to note that our proposed Cox model framework generalizes the work of
Badescu et al. (2016), albeit with different modeling assumptions. While Badescu et al.
(2016) models the claim arrival process for the entire portfolio, our approach takes a more
granular stance by considering the claim arrival process for each individual policyholder (or
other granular units), incorporating their respective risk covariates xi. Thus, our model
accounts not only for seasonality or environmental variations but also explicitly considers
the risk characteristics of individuals, allowing the number of claims to depend on both
external factors and the unique risk profiles within the portfolio.

Moreover, in the work of Badescu et al. (2016), the intensity function for a time period
[dl, dl+1) is assumed to follow an Erlang distribution. While this assumption might be
appropriate for a macro-level perspective, it is less suitable for our micro-level approach,
where we employ a regression function to model the intensity. Assuming the intensity is
constant and dependent on covariates simplifies our setup and aligns more closely with
existing literature. In the next section, we show that the distribution of the number of
claims in a given period under our model will be a mixture of Poisson distributions, which
a good fit for the over-dispersed claim frequency data. Assuming an Erlang distribution for
the intensity would result in a mixture of Pascal distributions for the number of claims,
which is not expected to significantly enhance model performance. Additionally, with
appropriate choices of predetermined time points, the intensity can be safely assumed to
be constant.
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• A special case within the above framework arises when the practitioner aims to model the
claim arrival process across different lines of business. In this scenario, the index i corre-
sponds to the ith line of business. If the regression function λ(j)(.) is a constant-regression
function, our model aligns with the contemporaneously conditionally independent multi-
variate HMM; see MacDonald and Zucchini (2016). Importantly, our framework permits
the inclusion of portfolio-level information through covariates in the regression model (e.g.,
the average age of policyholders in the line of business). Many papers argue for the ne-
cessity of accounting for the dependence between different lines of business in reserving
practices; the HMM captures this dependence via hidden states that influence the claim
arrival process across all lines of business. Conversely, if the practitioner models the claim
arrival process for a single line of business, they may choose i to correspond to the ith
claim type, thereby modeling claim arrivals for different claim types. This distinction is
crucial because even within the same line of business, the distribution of the marks may
vary across different claim types.

• An essential assumption in our model is that, given a realization of the hidden state during
[dl−1, dl), the intensity function is considered constant - with respect to an individual’s
risk attributes - within that period. While data-driven choices for dl could ideally capture
variations in intensity over time, such an approach might overcomplicate the model and
lead to overfitting issues. Setting dl to weekly, biweekly, or monthly intervals provides a
reasonable balance between granularity and simplicity.

• In our proposed framework, risk attributes xi are not explicitly time-indexed, aligning
with the common practice where policyholders’ risk characteristics are assumed to remain
constant over time. It’s crucial to recognize that, in practice, insurance risk attributes
can dynamically change. For example, in auto insurance, age is often a risk attribute that
changes upon policy renewal. However, this standard assumption should have no effect on
the performance of our model.

• Similar to the model in Badescu et al. (2016), it is evident that both the micro-level
mixed Poisson process and the Ammeter process (Ammeter (1948)) are special cases of
the proposed model.

3 Properties of the Model

In this section, we outline the immediate properties of our model, focusing on its application
from the policy-holder level. At a given reserve valuation date τ , the complete claim arrival
process is not fully observed; only reported claims are observable. Denoting the reported
claim process for the ith policy with respect to τ as {N r

i (t); 0 ≤ t ≤ τ}, it is defined
as N r

i (t) =
∑∞

j=1 1{Tij < t;Tij + Uij ≤ τ}, where Tij represents the claim occurrence
time and Uij denotes the reporting delay for the jth claim of the ith policyholder. Claims
not reported by τ (i.e., Tij + Uij > τ) contribute to the IBNR claim process, denoted as
{N ibnr

i (t); 0 ≤ t ≤ τ}, and defined as N ibnr
i (t) =

∑∞
j=1 1{Tij < t;Tij + Uij > τ}. Although

both processes should be indexed by τ , we omit it for simplicity.

It’s notable that both the reported claim process and the IBNR claim process remain marked
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Cox processes, retaining easily convertible stochastic intensity functions and mark densities.
We revisit a proposition proven in Theorem 3.1 of Badescu et al. (2016) to demonstrate
this.

Proposition 1. Assume that the claim arrival process for the ith policyholder, {Ni(t); t ≥ 0},
is a marked Cox process with stochastic intensity function Λi(t) and independent marks
{(Ui1,Zi1), (Ui2,Zi2), . . . } with common density function fU,Z|t,xi

(u, z) = fU |t,xi
(u)fZ|U,t,xi

(z).
Then for a given valuation date τ , its associated reported claim process {N r

i (t); 0 ≤ t ≤ τ}
and IBNR claim process {N ibnr

i (t); 0 ≤ t ≤ τ} are also marked Cox processes. Their ad-
justed stochastic intensity functions are Λr

i(t) = Λi(t)FU(τ − t)1{0 ≤ t ≤ τ} and Λibnr
i (t) =

Λi(t)(1 − FU(τ − t))1{0 ≤ t ≤ τ}, respectively, and their independent marks follow ad-

justed position-dependent mark distributions f r
U,Z|t,xi

(u, z) =
fU|t,xi

(u)1{u>τ−t}
FU|t,xi

(τ−t)
fZ|U,t,xi

(z) and

f ibnr
U,Z|t,xi

(u, z) =
fU|t,xi

(u)1{u≤τ−t}
1−FU|t,xi

(τ−t)
fZ|U,t,xi

(z), respectively, where FU |t,xi
is the distribution

function for the reporting delay U given a claim occurrence time t and risk attributes xi. □

Recall that we model the stochastic intensity function Λi(t) of the claim arrival process
{Ni(t;xi); t ≥ 0} as a piecewise stochastic process, where Λi(t) = ei,lΛl(t;xi) for dl−1 ≤ t <
dl, with l = 1, 2, . . . and d0 = 0, and the time points dl, l = 1, 2, . . . , are predetermined.
These predetermined time points constitute the time units which make up the time series
on which the HMM is defined. We define Ni,l := Ni(dl) −Ni(dl−1) as the number of claims
occurring during [dl−1, dl) for the ith policyholder (i = 1, . . . ,m). Hence, {Ni,1, Ni,2, . . . }
represents the discrete observations of the claim arrival process at these time points dl
(l = 1, 2, . . . ). The corresponding discrete observations of the reported claim process and
the IBNR claim process with respect to a valuation date τ are denoted by {N r

i,1, N
r
i,2, . . . }

and {N ibnr
i,1 , N ibnr

i,2 , . . . }, respectively. Notably, only {N r
i,1, N

r
i,2, . . . } is observed at time τ .

It is straight-forward to see that these three discretely observed processes follow Poisson-
HMM.

Proposition 2. For the proposed Cox model for the claim arrival process of policyholder
i, Ni(t;xi), the discretely observed claim arrival process, {Ni,1, Ni,2, . . . }, the discretely ob-
served reported claim process, {N r

i,1, . . . , N
r
i,k}, and the discretely observed IBNR claim pro-

cess, {N ibnr
i,1 , . . . , N ibnr

i,k }, all fall under the class of Poisson-HMMs. They share the same
hidden parameter process {C1, C2, . . . } with N(t;xi). Furthermore, their state-dependent
distributions are all Poisson with the following probability functions, respectively,

P (Ni,l = n | Cl = j) = p(n; λ̃
(j)
l (xi)),

P (N r
i,l = n | Cl = j) = p(n;µ

(j)
l (xi)),

P (N ibnr
i,l = n | Cl = j) = p(n; ν

(j)
l (xi)),

8



where

λ̃
(j)
l (xi) = ei,lλ

(j)(xi)(dl − dl−1)

µ
(j)
l (xi) = ei,l

(∫ dl

dl−1

FU |t,xi
(τ − t) dt

)
λ(j)(xi),

ν
(j)
l (xi) = ei,l

(∫ dl

dl−1

(1 − FU |t,xi
(τ − t)) dt

)
λ(j)(xi),

and

p(n;λ) =
λne−λ

n!
.

As a result, for l = 1, 2, . . . , Ni,l, N
r
i,l, and N ibnr

i,l follow mixed Poisson distributions with the
probability functions, respectively,

P (Ni,l = n) =

g∑
j=1

πljp(n; λ̃
(j)
l (xi)),

P (N r
i,l = n) =

g∑
j=1

πljp(n;µ
(j)
l (xi)),

P (N ibnr
i,l = n) =

g∑
j=1

πljp(n; ν
(j)
l (xi)).

□

The above proposition is straightforward given our assumption of constant intensity functions
given a realization of the hidden state. When Cl = j, the intensity functions for the claim
arrival process, reported claim process, and IBNR claim process become constant over the
period [dl−1, dl), resulting in Poisson processes for the claim arrival process and time-varying
Poisson processes for the reported and IBNR claim processes. It is also evident that the
three processes share the same hidden parameter process. This observation leads directly to
the conclusion that all three observed processes are Poisson-HMMs.

While Poisson-HMMs have traditionally been employed to model claim count processes for
entire portfolios, our application extends this methodology to the individual level (or other
granular unit). Properties similar to those in Badescu et al. (2016) can be easily derived,
but we refrain from showing them in the manuscript, out of considerations related to the
manuscript’s length.

4 Likelihood of the Observed Data

In this section, we propose the discrete-time version of our model, both with and without the
Dirichlet assumption for the reporting probability vector. The motivation for switching to
a discrete-time framework arises from the complexities associated with the continuous-time
framework, particularly the difficulties in maximizing the likelihood of the observed data.
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We begin by outlining the likelihood of the observed data in the continuous-time framework
and briefly discussing these complexities. This will serve as a motivation for our discrete-time
alternative.

4.1 Continuous-time Model

To estimate the IBNR reserve, we seek to maximize the likelihood of the observed data. Let
nr
i,l denotes the number of claims incurred by policyholder (or any granular unit) i during

period [dl−1, dl] and are reported by dT = τ . These claims, ordered by their arrival time, are
described through the three random variables {tijl, uijl, zijl : i = 1, . . . ,m; j = 1, . . . , nr

i,l},
where tijl is the claim arrival time of the j-th ordered claim for policyholder i in period
[dl−1, dl), uijl is its reporting delay, and zijl is its development information. Our set of
observed data is thus given by:

OC = {tijl, uijl, zijl : i = 1, . . . ,m; j = 1, . . . , nr
i,l; l = 1, . . . , T}.

Let N
(r,s:t)
i = (N r

i,s, . . . , N
r
i,t) be the discretely observed reported claim process from period

s to period t for policyholder i, and n
(r,s:t)
i = (nr

i,s, . . . , n
r
i,t) be its realization, it is easy to

show that the likelihood of the observed data is composed of three terms (e.g., see Antonio
and Plat (2014) and Fung et al. (2021)):

L(1)(Φ1 | OC) ∝P
(
N

(r,1:T )
1 = n

(r,1:T )
1 , . . . ,N (r,1:T )

m = n(r,1:T )
m

)
︸ ︷︷ ︸

First Term (Claim Frequency)

×
m∏
i=1

T∏
l=1

nr
i,l∏

j=1

fU |tijl,xi
(uijl)

FU |tijl,xi
(τ − tijl)︸ ︷︷ ︸

Second Term (Reporting Delay)

×
m∏
i=1

T∏
l=1

nr
i,l∏

j=1

fZ|uijl,tijl,xi
(zijl)︸ ︷︷ ︸

Third Term (Claim Development)

,

(1)

where Φ1 represents the vector of the model’s parameters, including: the initial distribution
π1 and the transition matrix Γ of the HMM, the regression coefficients θj for the λ(j)’s, and
the parameters associated with modeling the reporting delay and claim severity.

The “Claim Frequency” component captures the probability of observing the reported claim
counts across all policyholders and time periods. It characterizes the underlying claim fre-
quency patterns in the data.

The “Reporting Delay” component accounts for the right-truncated reporting delay for
claims that are reported before the valuation date τ . It is modeled as a regression de-
pendent on the policy characteristics and the time of occurrence. Fitting the right-truncated
reporting delay regression requires special attention and can be a challenging task because:
random right-truncation is not as well studied in survival analysis as left-truncation, and
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empirical data for reporting delay show the necessity of having a flexible mixture regression
model, which is not straight-forward for right-truncated data.

The “Claim Development” component is concerned with the development process after a
claim is reported and involves right-censored data. In case we need to estimate the IBNR
reserve, we will need to model claim severity, and thus, this third term is represented as
pY |U,t,x(y) where Y denotes the claim severity. This models the relationship between claim
severity and the reporting delay U , considering the policy characteristics x.

As discussed in the introduction, maximizing the above likelihood is a challenging task. We
observe that the third term, representing the claim development z, is independent of the pa-
rameters in the first two terms. Hence, it can be maximized separately. From Proposition 2,
we know that the reported claim counts’ distribution depends on the reporting delay, making
the maximization of the first two terms of L(1) a formidable task. As previously mentioned,
the common approach in the micro-level reserving literature is to employ a two-step max-
imization. This two-step maximization approach rests on the assumption of independence
between claim frequency and reporting delay, which is not a realistic assumption.

In what follows, we drop the claim development component from our analysis as we focus
on the interaction between frequency and delay.

4.2 Discrete-time Models

4.2.1 The Multinomial Model

With the aim of joint modeling of frequency and delay, we deviate from the continuous-time
framework to a discrete-time framework by aggregating the events towards a coarser time
scale. To this end, we assume that claims can be reported with a maximum delay of D
periods. This means that if a claim happens at period t (i.e. the claim happens in [dt, dt+1)),
it can be reported in periods t + d (d = 0, 1, . . . , D). We also, for simplicity, assume that
the predetermined time points dt (t = 0, . . . , T ) are equidistant, so that dt+1 − dt = 1 and
dT = τ . We denote the probability that a claim from policyholder with risk attributes xi

that occurred in period t is reported in period t + d by pt(d;xi). It is easy to show that
the discretely observed claim arrival process, {Ni,1, Ni,2, . . . , Ni,T}, the discretely observed
reported claim process, {N r

i,1, . . . , N
r
i,T}, and the discretely observed IBNR claim process,

{N ibnr
i,1 , . . . , N ibnr

i,T }, fall under the class of Poisson-HMMs, with the same hidden parameter
process {C1, C2, . . . } as N(t;xi), and with state-dependent Poisson intensities given by:

λ̃
(j)
t (xi) = ei,tλ

(j)(xi),

µ
(j)
t (xi) = ei,tλ

(j)(xi)p
r
i,t,

ν
(j)
t (xi) = ei,tλ

(j)(xi)(1 − pri,t),

respectively, where pri,t =
∑min{D,T−t}

d=0 pt(d;xi) is the probability that a claim from policy-
holder i that occurred in period t is reported before the reserve valuation date.

Let Zi,t,d denote the number of claims from policyholder i that occurred in period t and are

reported in period t+d. Note that N r
i,t =

∑min{D,T−t}
d=0 Zi,t,d. Our observed data is now given
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by:
OD = {nr

i,t, zi,t,d | i = 1, . . . ,m; t = 1, . . . , T ; d = 0, . . . , D; t + d ≤ T},
where nr

i,t and zi,t,d are the realizations of N r
i,t and Zi,t,d, respectively.

Similar to Verbelen et al. (2022), we make the assumption that given N r
i,t, the counts Zi,t,d

(d = 0, . . . ,min{D,T − t}) follow a multinomial distribution with probabilities pt(d;xi)
pri,t

(d =

0, . . . ,min{D,T − t}). Note that for t ≤ T − D, all claims occurred in period t is fully
observed, i.e., N r

i,t = Ni,t, and the counts (Zi,t,0, . . . , Zi,t,D) | N r
i,t ∼ Multinomial(N r

i,t,pt(xi)),
where pt(xi) = (pt(0;xi), . . . , pt(D;xi)) .

The likelihood of the observed data is then given by:

L(2)(Φ2 | OD) ∝ P
(
N

(r,1:T )
1 = n

(r,1:T )
1 , . . . ,N (r,1:T )

m = n(r,1:T )
m

)
×

m∏
i=1

T∏
t=1

nr
i,t!∏min{D,T−t}

d=0 zi,t,d!

min{D,T−t}∏
d=0

(
pt(d;xi)

pri,t

)zi,t,d

,
(2)

where Φ2 represents the vector of the model’s parameters, including: the initial distribution
π1 and the transition matrix Γ of the HMM, the regression coefficients θj for the λ(j)’s,
and the parameters related to the modeling of pt(xi), denoted by δ. An equivalent way to
write the multinomial component of the likelihood above is to decompose it into a series of
conditional binomial likelihoods. That is, we can write L(2) as:

L(2)(Φ2 | OD) ∝ P
(
N

(r,1:T )
1 = n

(r,1:T )
1 , . . . ,N (r,1:T )

m = n(r,1:T )
m

)
×

m∏
i=1

T∏
t=1

min{D,T−t}∏
d=1

(∑d
j=0 zi,t,j
zi,t,d

)
qt(d;xi)

zi,t,d(1 − qt(d;xi))
∑d−1

j=0 zi,t,d ,
(3)

where qt(d;xi) = pt(d;xi)∑d
j=0 pt(j;xi)

represents the conditional probability that a claim incurred at

period t by policyholder with risk attributes xi is reported in period t+d, given that the claim
is reported by period t + d. Thus, we break down the multinomial likelihood by considering
the binomial likelihood of observing each count given the cumulative counts and adjusting
the success probabilities accordingly. Note that pt(d;xi) can be obtained iteratively from
qt(d;xi) by:

pt(D;xi) = qt(D;xi)

pt(d;xi) = qt(d;xi) ×

(
1 −

D∑
j=d+1

pt(j;xi)

)
(d = D − 1, . . . , 1)

pt(0;xi) = 1 −
D∑
j=1

pt(j;xi).

4.2.2 The Dirichlet-Multinomial Model

The probabilities of reporting delay often exhibit temporal variability, which can be char-
acterized as either explainable or unexplainable. Explainable variations in reporting delay
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are systematic variations that arise from differences in the period of occurrence of claims
and/or the risk attributes associated with policyholders. For example, when working with
daily data, claims occurring on weekends may exhibit different reporting patterns compared
to those occurring on weekdays. Similarly, the month in which a claim occurs can also
influence reporting delay probabilities. In contrast, unexplainable variability refers to the
unsystematic fluctuations in reporting delay that are not captured by our covariates. In
cases where data exhibits high random variability in reporting delay, both continuous-time
and multinomial models may produce interval estimates for IBNR claim counts that are
significantly off from the actual IBNR claim count, as we will observe in our data analysis.
While an exact cause for the high fluctuations cannot be precisely identified without addi-
tional data collection, we believe that there are unobserved covariates who have direct and
interaction effects on the delay probabilities.

To this end, we add randomness to the reporting delay probabilities pt(d;xi)’s by assuming
that pt(xi) = (pt(0;xi), . . . , pt(D;xi)) follows a Dirichlet distribution with parameters ηi,t =
(ηt,0(xi), . . . , ηt,D(xi)). This choice is motivated by the fact that the Dirichlet distribution
serves as the conjugate prior for the multinomial distribution, which significantly simplifies
the mathematical treatment and estimation of our model.

The parameters ηi,t = (ηt,0(xi), . . . , ηt,D(xi)) can be specified in various ways. One approach
is to model ηi,t using a regression with fixed effects, where these parameters are expressed
as a function of observed covariates, such as policyholder characteristics or temporal factors.
Alternatively, we can incorporate the Dirichlet assumption as a random effect. For instance,
we could assume that for each period t, the reporting delay probability vector pt follows
a Dirichlet distribution with parameters ηt. This formulation represents a ”global model,”
where the reporting delay probability vector at period t for each policyholder i is drawn from
this global distribution. However, this model assumes that all policyholders have similar
reporting patterns, which may not always hold in practice. To refine this approach further,
we could cluster the policyholders into groups I1, . . . , In′ , and assume that for each period t
and for each group I, the reporting delay probability vector pI

t follows a Dirichlet distribution
with parameters ηI

t . In this case, the reporting delay probability vector at period t for all
policyholders i ∈ I would be drawn from this group-specific model, allowing for a more
granular modeling of heterogeneity in reporting behaviors across different groups. Lastly, a
random coefficients model could be employed, where both the intercept and the coefficients
associated with the covariates in the regression model are allowed to vary randomly across
different clusters or observations (in this case, different policies). This approach provides
further flexibility, enabling us to account for substantial random fluctuations in the delay
probabilities.

We make use of the following proposition which can also be found in Lawless (1994):

Proposition 3. If pt(xi) = (pt(0;xi), . . . , pt(D;xi)) follows a Dirichlet distribution with pa-

rameters ηi,t = (ηt,0(xi), . . . , ηt,D(xi)), then the conditional probabilities qt(d;xi) = pt(d;xi)∑d
j=0 pt(j;xi)
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(d = 1, . . . , D) are independently distributed beta random variables with

qt(d;xi) ∼ Beta(ηt,d(xi),
d−1∑
j=0

ηt,j(xi)).

Thus, the binomial likelihoods components in L(2) would be replaced with beta-binomial
likelihoods components, and the likelihood for our model with the Dirichlet assumption
becomes:

L(3)(Φ3 | OD) ∝ P
(
N

(r,1:T )
1 = n

(r,1:T )
1 , . . . ,N (r,1:T )

m = n(r,1:T )
m

)
×

m∏
i=1

T∏
t=1

min{D,T−t}∏
d=1

(∑d
j=0 zi,t,j
zi,t,d

)
B(zi,t,d + ηt,d(xi),

∑d−1
j=0(zi,t,d + ηt,j(xi)))

B(ηt,d(xi),
∑d−1

j=0 ηt,j(xi))
,

(4)

where B is the beta function, and Φ3 represents the vector of the model’s parameters,
including: the initial distribution π1 and the transition matrix Γ of the HMM, the regression
coefficients θj for the λ(j)’s, and the parameters related to the modeling of the η’s, denoted
by δ.

Remark: With g = 1 (single state), we have that N r
i,t follows a Poisson distribution, and so,

this Dirichlet assumption can be seen as an extension of the model of Verbelen et al. (2022).
We provide the EM algorithm for this model in the next section.

5 Parameter Estimation

In this section, we present the estimation methodology employed to fit the discrete-time
models from the previous section. To achieve this, we utilize the EM algorithm, providing
an iterative framework for updating the model parameters to maximize the likelihood of the
observed reported claims while considering the unobserved hidden states of the HMM. The
EM algorithm for fitting the continuous-time model using the two-step maximization can be
found in Appendix A.

The EM algorithm for the Multinomial model extends the algorithm outlined in Verbelen
et al. (2022), where the reported claims process now follows a Poisson-HMM, rather than a
Poisson process. On the other hand, the EM algorithm for the Dirichlet-Multinomial model
requires special attention. This is because the Dirichlet assumption introduces additional
complexity in estimating the probability vector, making the E-step analytically intractable.
Therefore, we will need to switch from the EM algorithm to the Monte Carlo EM (MCEM)
algorithm, which uses Monte Carlo simulations to approximate the E-step and handle the
complexities introduced by the Dirichlet distribution.
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5.1 The Multinomial Model

Recall that the likelihood of the observed data for the discrete-time Multinomial model, L(2),
is given by:

L(2)(Φ2 | OD) ∝ P
(
N

(r,1:T )
1 = n

(r,1:T )
1 , . . . ,N (r,1:T )

m = n(r,1:T )
m

)
×

m∏
i=1

T∏
t=1

nr
i,t!∏min{D,T−t}

d=0 zi,t,d!

min{D,T−t}∏
d=0

(
pt(d;xi)

pri,t

)zi,t,d

,

where N
(r,1:T )
i = (N r

i,1, . . . , N
r
i,T ) denote the discretely observed reported claim process from

period 1 to T for policy i, and n
(r,1:T )
i = (nr

i,1, . . . , n
r
i,T ) is its realization. As we established

in Proposition 2, our model dictates that the discretely observed reported claims process
for policy i, {N r

i,1, . . . , N
r
i,k}, originates from the class of Poisson-HMM. Specifically, we

demonstrated that:
N r

i,t | Ct = j ∼ Poisson(ei,tλ
(j)(xi)p

r
i,t).

The likelihood for the “Claim Frequency” component is thus given by:

P
(
N

(r,1:T )
1 = n

(r,1:T )
1 , . . . ,N (r,1:T )

m = n(r,1:T )
m

)
= π1P 1(n

r
1)ΓP 2(n

r
2) . . .ΓP T (nr

T )1T =: LT ,

where
nr

t = (nr
1,t, . . . , n

r
m,t),

P t(n
r
t ) = diag

{
m∏
i=1

P (N r
i,t = nr

i,t | Ct = 1), . . . ,
m∏
i=1

P (N r
i,t = nr

i,t | Ct = g)

}
,

and 1 is a row vector of 1s.

The Forward-Backward Algorithm

Before sketching the EM algorithm, we first define the forward and backward probabilities
as follows:

αtj := P (N
(r,1:t)
1 = n

(r,1:t)
1 , . . . ,N (r,1:t)

m = n(r,1:t)
m , Ct = j),

βtj := P (N
(r,t+1:T )
1 = n

(r,t+1:T )
1 , . . . ,N (r,t+1:T )

m = n(r,t+1:T )
m | Ct = j),

respectively. These probabilities are used to iteratively update the hidden state probabili-
ties during the EM algorithm, and they have the following properties (see MacDonald and
Zucchini (2016) for details):

P (Ct = j | N (r,1:T )
1 = n

(r,1:T )
1 , . . . ,N (r,1:T )

m = n(r,1:T )
m ) =

αtjβtj

LT

,

P (Ct−1 = j, Ct = k | N (r,1:T )
1 = n

(r,1:T )
1 , . . . ,N (r,1:T )

m = n(r,1:T )
m ) =

αt−1,jγjkPk(nr
t )βtk

LT

,

where Pk(nr
t ) =

∏m
i=1 P (N r

i,t = nr
i,t | Ct = k).
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They are computed using the following recursive relations:

α1 = π1P 1(n
r
1),

αt = αt−1ΓP t(n
r
t ), t = 2, . . . , T,

βT = 1,

βt = ΓP t+1(n
r
t+1)βt+1, t = T − 1, T − 2, . . . , 1.

We now proceed with the details of the EM algorithm.

Complete Data Likelihood

The EM algorithm iteratively estimates the parameters Φ2, where the number of hidden
states, g, is treated as preset. The algorithm consists of two main steps: the E-step and
the M-step, which will be demonstrated in the following subsections. We first introduce the
following notations:

• c(T ) = (c1, . . . , cT ): the unobserved states of the HMM,

• utj := 1{Ct = j}, and

• vtjk := 1{Ct−1 = j, Ct = k}.

We let our complete data consist of all claims that occurred before our reserve valuation
date (both reported and unreported), as well as the realizations of the states of the HMM.
Thus, the complete data is given by:

C = OD ∪ {nibnr
i,t , zi,t,d | i = 1, . . . ,m; t = 1, . . . , T ; d = 1, . . . , D t + d > T} ∪ {c1, . . . , cT}

= {ni,t, zi,t,d, ct | i = 1, . . . ,m; t = 1, . . . , T ; d = 0, . . . , D}.
Note that the complete data assumes that we know the total number of claims that occurred
in each period for each policyholder, as well as the periods in which these claims are reported.
The likelihood of the complete data is then given by:

L(2)
C (Φ2 | C) = π1,c1

T∏
t=2

γct−1,ct

T∏
t=1

m∏
i=1

Pct(ni,t)

×
m∏
i=1

T∏
t=1

D∏
d=1

(∑d
j=0 zi,t,j
zi,t,d

)
qt(d;xi)

zi,t,d(1 − qt(d;xi))
∑d−1

j=0 zi,t,d ,

where Pct(ni,t) = P (Ni,t = ni,t | Ct = ct).

It is straightforward to see that we can write the log-likelihood of the complete data as:

l
(2)
C (Φ2 | C) =

g∑
j=1

u1j log π1j +

g∑
j=1

g∑
k=1

(
T∑
t=2

vtjk

)
log γjk +

g∑
j=1

T∑
t=1

m∑
i=1

utj logPj(ni,t)

+
m∑
i=1

T∑
t=1

D∑
d=1

[
log

(∑d
j=0 zi,t,j
zi,t,d

)
+ zi,t,d log qt(d;xi) +

(
d−1∑
j=0

zi,t,d

)
log(1 − qt(d;xi))

]
.

We now outline the E-step and M-step of the EM algorithm that are applied to maximize
the complete-data log-likelihood.
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E-step

In the k-th E-step, we compute the conditional expectation of the complete-data log-likelihood
given the observed data and the current estimator Φ

(k−1)
2 of the model parameters Φ2. Note

that the unobserved components of our complete data consist of the hidden states, c(T ), as
well as the IBNR claims, {nibnr

i,t , zi,t,d | i = 1, . . . ,m; t = 1, . . . , T ; t + d > T}. The expecta-

tion of these components given the observed data and Φ
(k−1)
2 should thus be derived. The

conditional expectation is given by:

E[l
(2)
C (Φ2 | C) | Φ(k−1)

2 ,OD] =

g∑
j=1

û
(k)
1j log π1j +

g∑
j=1

g∑
k=1

(
T∑
t=2

v̂
(k)
tjk

)
log γjk

+

g∑
j=1

T∑
t=1

m∑
i=1

û
(k)
tj

[
n̂
(k)
i,t,j log(λ(j)(xi)) − λ(j)(xi)

]
+

m∑
i=1

T∑
t=1

D∑
d=1

[
ẑ
(k)
i,t,d log qt(d;xi) +

(
d−1∑
j=0

ẑ
(k)
i,t,d

)
log(1 − qt(d;xi))

]
+ constant,

(5)

where the expressions for û
(k)
tj and v̂

(k)
tjl are given by:

û
(k)
tj = E

(
utj | n(r,1:T ),Φ

(k−1)
2

)
= P

(
Ct = j | n(r,1:T ),Φ

(k−1)
2

)
=

α
(k−1)
tj β

(k−1)
tj

L
(k−1)
T

,

(6)

and

v̂
(k)
tjl = E

(
vtjl | n(r,1:T ),Φ

(k−1)
2

)
= P

(
Ct−1 = j, Ct = l | n(r,1:T ),Φ

(k−1)
2

)
=

α
(k−1)
t−1,j γ

(k−1)
jl

∏m
i=1 P (N r

i,t = nr
i,t | Ct = l,Φ

(k−1)
2 )β

(k−1)
tl

L
(k−1)
T

(7)

In these expressions, the forward probabilities, backward probabilities, and observed likeli-
hood are obtained using the model parameters Φ2 = Φ

(k−1)
2 from the (k − 1)-th iteration.
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The terms û
(k)
tj and v̂

(k)
tjl represent the updated probabilities of being in state j at time t and

the transition probability from state j to state l at time t, respectively, based on the current
model parameter estimates Φ

(k−1)
2 and the observed data.

The expressions for n̂
(k)
i,t,j and ẑ

(k)
i,t,d are given by:

n̂
(k)
i,t,j := E(Ni,t | Ct = j,OD,Φ

(k−1)
2 ) = nr

i,t + 1{t > T −D}ei,tλ(k−1)
j (xi)

D∑
d=T−t+1

p
(k−1)
t (d;xi),

ẑ
(k)
i,t,d := E(Zi,t,d | OD,Φ

(k−1)
2 ) =

{
zi,t,d, t ≤ T −D(∑g

j=1 π
(k−1)
tj ei,tλ

(k−1)
j (xi)

)
p
(k−1)
t (d;xi), t > T −D

where p
(k−1)
t (d;xi) and λ

(k−1)
j (xi) are the estimates of pt(d;xi) and λ(j)(xi), respectively,

computed using the parameter estimates obtained from the M-step in the (k−1)-th iteration.

The term n̂
(k)
i,t,j represents the updated expectation of the total number of claims that occurred

in period t for policyholder i, given that the state of the HMM is j, while the term ẑ
(k)
i,t,d

represents the updated expectation of the portion of these claims that are reported in period
t + d. Note that all claims that occurred at t ≤ T − D are reported and are part of the
observed data OD, and thus, the expected values of Ni,t and Zi,t,d (t ≤ T −D; d = 0, . . . , D)
given the observed data are equal to ni,t and zi,t,d, respectively.

By maximizing this expected complete-data log-likelihood, we can iteratively update the
model parameters in the M-step of the algorithm, leading to improved parameter estimates
that better fit the observed data.

M-step

The M-step in the EM algorithm involves maximizing the expected complete-data log-
likelihood (Equation (5)) with respect to the model parameters Φ2, subject to the con-
straints

g∑
j=1

π1j = 1, and

g∑
l=1

γjl = 1, j = 1, . . . , g.

For this step, we can obtain the updated estimates for π1 and Γ separately by maximizing
the first two terms of Equation (5), respectively. The optimal values for π

(k)
1j and γ

(k)
jl at the

kth iteration are given by:

π
(k)
1j = û

(k)
1j , j = 1, . . . , g, (8)

γ
(k)
jl =

∑T
t=2 v̂

(k)
tjl∑g

l=1

∑T
t=2 v̂

(k)
tjl

, j, l = 1, . . . , g. (9)
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As for the third term:

T∑
t=1

m∑
i=1

û
(k)
tj

[
n̂
(k)
i,t,j log(λ(j)(xi)) − λ(j)(xi)

]
,

it is easy to see that for each j, this is a weighted Poisson log-likelihood, with the exception
that n̂

(k)
i,t,j can be non-integer. Yet, we can still obtain the updated regression parameters for

each λ(j) using quasi-likelihood methods available through standard packages in R. Finally,
for the term:

m∑
i=1

T∑
t=1

[
ẑ
(k)
i,t,d log qt(d;xi) +

(
d−1∑
j=0

ẑ
(k)
i,t,d

)
log(1 − qt(d;xi))

]
,

it is easy to see that for each d, this is a Binomial log-likelihood, again with the exception
that ẑ

(k)
i,t,d can be non-integer. For each d, we model qt(d;xi) as a regression function of

the policy-holder risk attributes, xi, and time-dependent covariates (e.g. the month of the
period t). The Binomial log-likelihood can then be optimized using quasi-likelihood methods
available through standard package in R.

The model parameters are then given by Φ2 = {π1,Γ,θ1, . . . ,θg, δ1, . . . , δD}, where θj is
the vector of regression parameters for λ(j)(x), and δd is the vector of regression parameters
for qt(d;x).

Convergence

We continue iterating the E-step and M-step until the relative distance between the estimates
from consecutive iterations falls below a predetermined threshold. The relative distance is
defined as

d(Φ
(k−1)
2 ,Φ

(k)
2 ) =

g∑
j=1

∣∣∣∣∣π
(k−1)
1j − π

(k)
1j

π
(k−1)
1j

∣∣∣∣∣+

g∑
j=1

g∑
l=1

∣∣∣∣∣γ
(k−1)
jl − γ

(k)
jl

γ
(k−1)
jl

∣∣∣∣∣+

g∑
j=1

||θj ||0∑
s=1

∣∣∣∣∣θ
(k−1)
js − θ

(k)
js

θ
(k−1)
js

∣∣∣∣∣
+

D∑
d=1

||δj ||0∑
s=1

∣∣∣∣∣δ
(k−1)
js − δ

(k)
js

δ
(k−1)
js

∣∣∣∣∣ .
The EM algorithm converges when the relative distance is below the threshold.

Initialization of Model Parameters

To effectively apply the EM algorithm, appropriate initialization of model parameters is
crucial. Note that we have complete data (all claims are reported) for periods t ≤ T − D,
so we can fit the model for such data to obtain parameter estimates as initialization

Model Selection

Finally, we need to decide on the number of states g. Typically, a larger g would provide a
better fit, but it could also lead to overfitting. We usually select the model with the lowest
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chosen information criterion (e.g., AIC or BIC). For fast and efficient computation, we can
employ a backward fitting strategy similar to Badescu et al. (2019). We start by fitting
the model with a large g, and then iteratively delete a state until the chosen information
criterion stops decreasing. In this strategy, we use the parameter estimates obtained from
fitting with g states to initialize the algorithm for g− 1 states, with the initial values for π1

and Γ being normalized estimates excluding the deleted state. This approach should make
the estimation process very efficient.

Under-/Overflow Problems

As noted by MacDonald and Zucchini (2016), the computation of forward and backward
probabilities, along with the subsequent calculations in the E- and M- steps, is susceptible to
under- or overflow issues. MacDonald and Zucchini (2016) recommends scaling the forward
and backward probability computations by taking the logarithms of these quantities and
provides code solutions for this purpose. However, for our model, additional considerations
are needed.

The computation of forward and backward probabilities involves matrix multiplication of
the matrices P t(n

r
t ). Unlike normal HMMs fitted to single time series, where these matrices

are diagonal matrices containing the probability of the count process obtaining its observed
value given the different states, our model’s probabilities are the product of the observed
count process for each individual. For our model, this matrix is defined as

P t(n
r
t ) = diag

{
m∏
i=1

P (N r
i,t = nr

i,t | Ct = 1), . . . ,
m∏
i=1

P (N r
i,t = nr

i,t | Ct = g)

}
.

It becomes evident that the elements of the diagonal matrix are extremely small, potentially
causing underflow problems in computing forward and backward probabilities, as well as sub-
sequent calculations, even after scaling. To address this issue, we implement the LogSumExp

algorithm (e.g., see Blanchard et al. (2021)), which is effective in mitigating numerical in-
stability arising from the small probabilities.

5.2 The Dirichlet-Multinomial Model

Complete Data Likelihood

We now aim to find the parameter estimates that maximize L(3) using the EM algorithm. As
we illustrated, the Dirichlet-Multinomial model differs from the Multinomial model by the
assumption that the probability vector pt(xi) is random. To this end, we let our complete
data be given by:

C̃ = C ∪ {pi,t,d | i = 1, . . . ,m; t = 1, . . . , T ; d = 1, . . . , D}
= {ni,t, zi,t,d, pi,t,d, ct | t = 1, . . . , T ; d = 0, . . . , D},
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where pi,t,d is the realization of pd(t;xi). That is, we now assume we know the actual reporting
probability vector pt(xi). The likelihood of the complete data is then given by:

L(3)
C (Φ3 | C̃) = π1,c1

T∏
t=2

γct−1,ct

T∏
t=1

m∏
i=1

Pct(ni,t)

×
m∏
i=1

T∏
t=1

 ni,t!∏D
d=0 zi,t,d!

D∏
d=1

p
zi,t,d
i,t,d︸ ︷︷ ︸

Multinomial Distribution

× 1

B(ηi,t)

D∏
d=0

p
ηt,d(xi)−1

i,t,d︸ ︷︷ ︸
Dirichlet Distribution

 ,

where Pct(ni,t) = P (Ni,t = ni,t | Ct = ct). Note that the “Multinomial Component” in the
complete data likelihood is constant since it does not depend on the model’s parameters.
The log-likelihood of the complete data is then given by:

l
(3)
C (Φ3 | C̃) =

g∑
j=1

u1j log π1j +

g∑
j=1

g∑
k=1

(
T∑
t=2

vtjk

)
log γjk +

g∑
j=1

T∑
t=1

m∑
i=1

utj logPj(ni,t)

+
m∑
i=1

T∑
t=1

− logB(ηi,t)
D∑

d=1

(ηt,d(xi) − 1) log pi,t,d + constant.

E-Step

In the k-th iteration of the E-step, we take the expectation of l
(3)
C (Φ3 | C̃) with respect to

Φ
(k−1)
3 and OD. We have:

E
[
l
(3)
C (Φ3 | C̃) | Φ(k−1)

3 ,OD

]
=

g∑
j=1

û
(k)
1j log π1j +

g∑
j=1

g∑
l=1

(
T∑
t=2

v̂
(k)
tjl

)
log γjl

+

g∑
j=1

T∑
t=1

m∑
i=1

û
(k)
tj

[
n̂
(k)
i,t,j log(λ(j)(xi)) − λ(j)(xi)

]
+

m∑
i=1

T∑
t=1

− logB(ηi,t)
D∑

d=1

(ηt,d(xi) − 1) ̂log pi,t,d
(k)

+ constant,

(10)

where û
(k)
tj and v̂

(k)
tjl are given by Equations (6) and (7), respectively, and

n̂
(k)
i,t,j := E

[
Ni,t | Ct = j,OD,Φ

(k−1)
3

]
= nr

i,t + 1{t > T −D}ei,tλ(k−1)
j (xi)E

[
D∑

d=T−t+1

pt(d;xi) | Ct = j,OD,Φ
(k−1)
3

]
,

̂log pi,t,d
(k)

:= E
[
log pt(d;xi) | OD,Φ

(k−1)
3

]
,
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where λ
(k−1)
j (xi) is the estimate of λ(j)(xi) computed using the parameter estimates obtained

from the M-step in the (k−1)-th iteration. We do not have closed-form analytical expressions

for n̂
(k)
i,t,j (t > T − D) and ̂log pi,t,d

(k)
, and thus, numerical methods are needed to compute

these expectations. We can obtain Monte Carlo estimates of these expectations using samples
from the conditional distribution pt(xi) = (pt(0;xi), . . . , pt(D;xi)), using the parameters
Φ3. This, however, adds an extra layer of challenge because there is no guarantee that the
likelihood will increase with each iteration, unlike in the case of the normal EM algorithm,
as we are replacing the actual expectation with a numerical approximation.

Remark: The computation of the forward probabilities, backward probabilities, the likeli-
hood, and consequently, ûtj and v̂tjk in the E-step differs slightly for the two models con-
sidered. The differences arise when computing the probability P (N r

i,t = nr
i,t | OD,Φ

(k−1)).
As previously discussed, this probability depends on the reporting delay. For the discrete-
time Multinomial model, the estimation of the probability vector pt(xi) changes after each
iteration of the algorithm, and so we use pt(xi) estimated from the k − 1-th iteration in
our computation in the k-th iteration. As for the Dirichlet-Multinomial model, pt(xi) is a
Dirichlet random vector, and thus we compute

P (N r
i,t = nr

i,t | OD,Φ
(k−1)
3 ) =∫

p

P (N r
i,t = nr

i,t | pt(xi) = p,OD,Φ
(k−1)
3 ) × P (pt(xi) = p | OD,Φ

(k−1)
3 ) dp.

Distribution of pt | OD

In the case where t ≤ T −D, we have:

pt(xi) | OD ∼ Dirichlet(ηt,0(xi) + zi,t,0, . . . , ηt,D(xi) + zi,t,D),

since the Dirichlet distribution is a conjugate prior of the multinomial distribution. Chal-
lenges arise in the case where t > T −D, as we do not observe zi,t,d for d > T −t, and thus we
lose the nice conjugate property. Therefore, we need to derive the conditional distribution
of pt for t > T −D.

The probability of pt(xi) equal p = (p0, . . . , pD) given the observed data is given by:

P (pt(xi) = p | OD) ∝ P (OD | pt(xi) = p) × P (pt(xi) = p),

where

P (OD | pt(xi) = p) ∝ P (N r
i,t = nr

i,t | pt(xi) = p)×
P (Zi,t,0 = zi,t,0, . . . , Zi,t,T−t = zi,t,T−t | N r

i,t = nr
i,t,pt(xi) = p).
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Thus,

P (pt(xi) = p | OD) ∝ P (pt(xi) = p) × P (N r
i,t = nr

i,t | pt(xi) = p)×
P (Zi,t,0 = zi,t,0, . . . , Zi,t,T−t = zi,t,T−t | N r

i,t = nr
i,t,pt(xi) = p)

∝
D∏

d=0

(pd)
ηt,d(xi)−1 ×

(
g∑

j=1

πtj
e−λ(j)(xi)p

r
(λ(j)(xi)p

r)n
r
i,t

nr
i,t!

)
×

nr
i,t!∏T−t

d=0 zi,t,d!

T−t∏
d=0

(
pd
pr

)zi,t,d

∝

(
T−t∏
d=0

(pd)
zi,t,d+ηt,d(xi)−1

)
×

(
D∏

d=T−t+1

(pd)
ηt,d(xi)−1

)
︸ ︷︷ ︸

h

×
g∑

j=1

πtj

(
λ(j)(xi)

)nr
i,t e−λ(j)(xi)p

r

︸ ︷︷ ︸
g

,

where pr =
∑T−t

d=0 pd. Note that the conditional distribution in this case is not a standard
distribution, and thus, we cannot sample from it directly.

Rejection Sampling

Samples from the conditional distribution of pt(xi) can be selected by multivariate rejection
sampling. We can write P (pt(xi) = p | OD) = ah(p)g(p). It is straightforward to see that h
is the density function of Dirichlet distribution with parameters (zi,t,0 +ηt,0(xi), . . . , zi,t,T−t +
ηt,T−t(xi), ηt,T−t+1(xi), . . . , ηt,D(xi)), and thus, we can easily sample from it. We perform the
rejection sampling as follows:

• Step 1: sample p from h, and independently, sample u from a Uniform(0,1) distribu-
tion.

• Step 2: If u ≤ g(p)
supp{g(p)}

, then accept p. If not, go to Step 1.

Note that supp{g(p)} ≤
∑g

j=1 πtj(λ
(j)(xi))

nr
i,t . By obtaining a sample for pt(xi) given OD

and Φ
(k−1)
3 , we can estimate n̂

(k)
i,t,j and ̂log pi,t,d

(k)
using Monte Carlo methods.

M-Step

We now maximize Equation (10) from the E-step after replacing n̂
(k)
i,t,j (t > T − D) and

̂log pi,t,d
(k)

with their Monte Carlo estimates. Again, the updated estimates of π1 and Γ are
given by Equations (8) and (9), respectively. Moreover, similar to the Multinomial model
case, given each j, it is straightforward to see that the third term is a weighted Poisson
log-likelihood, and thus can be fit using standard packages in R. Finally, for the fourth and
final term, it is straightforward to see that this is a Dirichlet log-likelihood. As previously
illustrated, there are several flexible ways to model η. For our data analysis, we model
η as a regression function of xi and time-dependent covariates. We obtain the parameter
estimates for this Dirichlet regression using the DirichletReg package in R, which rescales
the probability estimates from the E-step to ensure that the constraints are satisfied.
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Convergence Criterion, Model Initialization & Model Selection

We deviate from the standard EM algorithm and use the MCEM algorithm, as we compute
the expectations in the E-step using Monte Carlo methods. In the MCEM algorithm, it
is not guaranteed that the likelihood will increase after each iteration, unlike the standard
EM algorithm (see Booth and Hobert (1999)). Thus, special care should be taken. Many
methods have been proposed for approximating the EM algorithm (see Ruth (2024) for a
review). From a practical point of view, we use the same convergence criterion as we have
for the previous model (the relative distance criterion), as this would have a negligible effect
on the parameter estimates even though the likelihood can fluctuate.

For model initialization, we fit the model to our complete data up to period T −D (as we
did in the Multinomial case), and use the parameter estimates as the initialization for the
algorithm. Finally, we choose the number of states g using a backward strategy as explained
before.

6 IBNR Reserve Prediction

The estimation of the IBNR claim reserve varies slightly across the three models. Below, we
outline the steps for the continuous-time model:

IBNR Claim Reserve Estimation Steps

1. Fit Right-Truncated Reporting Delay Regression: Estimate the parameters of the right-
truncated reporting delay regression model to obtain the fitted distribution of the report-
ing delay FU |t,x(u).

2. Compute Reporting Delay Probability : Use the fitted reporting delay regression to com-
pute the probability

∫ dl
dl−1

FU |t,xi
(τ − t) dt for each policyholder i = 1, . . . ,m and each

period l = 1, . . . , T . This probability is used in maximizing the likelihood of the dis-
cretely observed reported claims processes and simulating the IBNR claim counts.

3. Fit the Discretely Observed Reported Claim Process : Maximize the likelihood of the ob-
served reported claim counts using the EM algorithm. This involves estimating the initial
state probabilities and the transition matrix for the HMM, as well as the claim frequency
regression parameters.

4. Viterbi’s Global Decoding : Apply Viterbi’s algorithm to find the most likely sequence of
hidden states c∗ given the observed reported claim counts n(r,1:T ) and the fitted model
parameters from step 3.

5. Simulate IBNR Claim Counts : For each policyholder i = 1, . . . ,m and each period l =
1, . . . , T where the exposure is positive, simulate the IBNR claim count N IBNR

i,l using the

Poisson distribution with mean λ
(c∗l )

l (xi)×(1−
∫ dl
dl−1

FU |t,xi
(τ−t) dt) for the corresponding

hidden state from the previous step. The total IBNR claim count at time τ is then given
by
∑m

i=1

∑T
t=1 N̂

IBNR
i,l , where N̂ IBNR

i,l is the simulated IBNR claim count for policyholder i
and period l.
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6. Estimate the Reserve: For the continuous-time model, simulate the occurrence time t
for each IBNR claim from the previous step, assuming it is uniformly distributed across
the period of occurrence. Then, simulate the reporting delay u from the fitted regression
model for reporting delay, given that u > τ − t. Finally, simulate the claim severity using
a fitted regression model for claim severity, given the policyholder characteristics xi, the
occurrence time t, and the simulated reporting delay u. The sum of these simulated
amounts will constitute the reserve.

Note that Steps 5 & 6 are repeated 1000 times to obtain a distribution for the IBNR claim
counts and IBNR reserves. The point estimate for these amounts is the mean of the 1000
simulated values.

The process differs slightly for the discrete-time models. For the Multinomial model, the
reporting delay component is fitted simultaneously with the frequency component using the
EM algorithm. Thus, the estimation procedure starts from Step 3. The steps of estimat-
ing the IBNR claim counts (Steps 4 & 5 from above) are essentially the same as in the
continuous-time model, but we use the estimated reporting probability vector pt(xi) in the
simulation instead of the continuous distribution FU . For the Dirichlet model, we obtain
estimates for ηi,t, the Dirichlet parameters of pt(xi), in Step 3. This is used to first simulate
pt(xi), which is then used in Step 5 to estimate the IBNR claim count as in the case of the
Multinomial model. We can simulate the period of reporting d using the estimated reporting
probability vector pt(xi) and then use it to estimate the IBNR reserve by simulating from
a fitted model for the average claim severity given the policyholder characteristics xi, the
occurrence time t, and the simulated period of reporting d.

7 Case Study: Real-life Data

In this section, we apply the proposed models to estimate the IBNR claim count for a major
European auto insurance company. We then compare these estimates with those obtained
from the traditional Chain Ladder method. This analysis aims to evaluate the performance
of our models in a practical insurance context. Additionally, we investigate how the joint
modeling of occurrence and reporting in the discrete-time models performs compared to
the continuous-time model, where we maximize the likelihood of the observed data using a
two-step maximization process. This is particularly interesting given the loss of information
when moving to discrete-time models.

7.1 Data Analysis

Data Description

Our dataset contains information on Physical Damage policies issued by the company be-
tween January 2009 and December 2017. During these years, a total of 293,709 one-year
policies were issued, resulting in 106,187 reported claims. For each policy, the dataset in-
cludes the policy start and end dates, as well as various vehicle and policyholder attributes.
These attributes include the age of the driver, the age of the car, the class of the car (A, B,
or C), the fuel type (Gasoline or Diesel), whether the contract is a renewal or issued to a new
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policyholder, and the region (five regions). For each claim, the dataset records the day on
which the claim occurred, the day on which the claim was reported, and the progression of
claim payments. In this study, we focus on estimating the IBNR claim count, which requires
us to concentrate on the time of occurrence and reporting delay of each claim. Therefore,
we will not consider the payments in our analysis.

Reporting Delay

From the 106,197 claims reported between January 2009 and December 2017, only two were
reported more than two years after the occurrence date. This suggests that nearly all claims
occurring before 2016 have been reported. Table 1 displays the distribution of reporting
delays in months for these claims. A delay of zero months indicates a claim was reported in
the same month it occurred, while a delay of one month means it was reported the following
month, and so on. The majority of claims (81.71%) were reported in the same month they
occurred. Over 99% of claims were reported within five months, and only 0.1% were reported
after ten months. This indicates that most claims are reported promptly after occurrence,
with only a small fraction experiencing delays beyond ten months.

Delay
(months)

0 1 2 3 4 5 6 7 8 9 10+

No. of
claims

66475 11617 1580 642 342 192 141 105 80 52 130

% of total 81.71 14.28 1.94 0.79 0.42 0.24 0.17 0.13 0.10 0.06 0.16

Cumulative
%

81.71 95.99 97.93 98.72 99.14 99.38 99.55 99.68 99.78 99.84 100.0

Table (1) Reporting Delay for Claims Occurring Before 2016

Frequency

Figure 1 illustrates the trends in exposure (left) and claim count per exposure (right) from
January 2009 to December 2015. The exposure, which represents the number of policies at
risk, exhibited a steady increase from January 2009 until December 2012. Following this
period, it decreased consistently until January 2015, after which it began to rise again. In
contrast, the claim count per exposure displayed significant fluctuations over the same period.
It reached a minimum of 0.023 claims per exposure in December 2014 and peaked at 0.045
claims per exposure in May 2013. This variation in claim frequency highlights the need for
a sophisticated model capable of capturing such dynamic changes. The HMM employed in
our model is well-suited for this purpose, as it can account for the underlying state changes
that drive fluctuations in claim frequency over time.

7.2 IBNR Claim Count Prediction

In this subsection, we outline the four different models used to estimate the IBNR claim count
for our data, along with their specifications. The models considered are the Continuous-time
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Figure (1) Exposure & Claim Count Per Exposure Between Jan 2009 and Dec 2015

model, the Multinomial model, the Dirichlet-Multinomial model, and the traditional Chain
Ladder method.

For the discrete-time models, we set the maximum reporting delay, D, to 9 months. This
choice is based on the observation that nearly 99.9% of claims are reported within this
period, ensuring that the majority of claims are captured within the model. Additionally,
the choice of D = 9 is motivated by the limitations of the DirichletReg function in R, which
encounters numerical instability with larger values due to the exceedingly small probabilities
associated with longer delays.

Specifications for the Fitted Models

• The Continuous-time Model (CM): As previously explained, our approach begins by fit-
ting the distribution for the reporting delay, which is then utilized to fit our model, and
consequently estimate the IBNR claim count. A notable challenge in this process is the
right truncation of the reporting delay, which complicates the fitting of the distribution.
We provide the continuous-time model with an advantage over the discrete-time models
as we fit the reporting delay using all claims that occurred before the reserve valuation
date τ , including those that have not yet been reported. This overcomes the issue of right
truncation, allowing for a more accurate fit.

While this method is not feasible in practice — since unreported claims cannot be known
beforehand — it serves to highlight the strengths of the discrete-time models, which we will
demonstrate in the results section. In a practical scenario, one could use a “back censoring”
technique, where a time threshold within the training period is identified. Claims occurring
before this threshold would have been reported by the valuation date, allowing the model
to be fit without concern for right truncation.
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In our analysis, the log-logistic proportional hazard regression performed well in fitting
the reporting delay data, as evidenced by the Cox-Snell residuals plot in Figure 2. The
covariates used in the regression include the policyholder-level covariates mentioned in the
data description subsection and time-dependent covariates such as the month in which the
claim occurred and the day of occurrence.

Figure (2) Cox-Snell Residual Plot for Assessing the Fit of the Reporting Delay Model

• The Multinomial Model (MM): In Section 5.1, we outlined the EM algorithm required to fit

the Multinomial Model, where we model the Binomial probabilities qt(d;xi) = pt(d;xi)∑d
j=0 pt(j;xi)

for each d ∈ {1, . . . , D} as a regression function of the policyholder’s risk attributes xi

and time-dependent covariates. The policyholder-level covariates are those described in
the data section, while the time-dependent covariates include the month of occurrence and
the weekday on which the period ends, both of which were found to be significant in our
regression analysis. Given that qt(d;xi) is small for d > 1, we use a complementary log-log
link function to model it. For d = 1, we use a standard log link function, as is typical for
Binomial GLMs. We fit the Binomial component of the likelihood using the standard glm

function in R.

• The Dirichlet-Multinomial Model (DM): The fitting process for the Dirichlet-Multinomial
model is thoroughly detailed in Section 5.2. We model the Dirichlet prarameters η as a
regression function of the same covariates used for qt(d;xi) in the Multinomial Model.

• The Chain Ladder (CL): We estimate the IBNR claim count using the Chain Ladder
method on data aggregated monthly, serving as the baseline for comparing our models.
As with the discrete-time models, we assume that claims are reported no later than 9
months after the month of occurrence.

Remarks

• While setting D = 9 months simplifies the model, it may lead to underestimating the
IBNR claim count because it ignores claims that are reported after this period. However,
since nearly all claims are reported within this window, the number of missed claims should
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be very small. In practice, practitioners can estimate this remaining number empirically
using the formula:

T∑
t=1

∞∑
d=T−t+1

ẑt,d

where T is such that dT = τ , ẑt,d is the estimated number of claims that occurred in period
t and were reported after a delay of d periods, and is calculated as:

ẑt,d =
1

T − 1

t−1∑
l=1

zl,d

Here, zl,d represents the number of claims that occurred in period l and were reported
with a delay of d periods. Essentially, ẑt,d is the average number of claims reported after
a delay of d periods, based on the observed claims data from previous periods.

• For the continuous-time model, we do not assume a maximum reporting delay, so by fol-
lowing the steps in Section 6, we can estimate the full number of IBNR claims, unlike
the discrete-time models. However, for a fair comparison with the discrete-time mod-
els, we use the estimated parameters after fitting the continuous-time model to estimate
only the IBNR claims with a maximum delay period of 9 months after the month of
claim occurrence. This is achieved by adjusting Step 5 so that the probability factor(

1 −
∫ dl
dl−1

FU |t,xi
(τ − t) dt

)
is replaced with:

∫ dl

dl−1

P (U + t ∈ [τ, tmax] | t,xi) dt,

where t is the day of claim occurrence, U is the reporting delay random variable, and tmax

is the date by which the claim should be reported if we assume a maximum delay of 9
months after the month of claim occurrence. For example, if the claim occurrence date
is in January, then tmax will be the end of October for the same year. This adjustment
ensures that only the first 9 months of reporting delay are considered in the estimation,
aligning the continuous-time model’s output with the assumptions made in the discrete-
time models.

7.3 Results

We present the results of estimating the IBNR claim count using the four different models,
focusing on claims reported within 9 months after the month of occurrence. Estimations
were performed at the end of each month from January 2014 to December 2016, resulting in
36 valuation points. Since our dataset extends to December 2017, and given that more than
99.99% of claims are reported within a year of occurrence, we have a reliable actual IBNR
claim count to compare against our model estimates.
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Figure (3) Boxplots of Absolute Percentage Errors for IBNR Claim Count Estimates by
Model and Number of States

To evaluate the performance of each model, we calculated the absolute percentage error of
the IBNR claim count point estimates at each of the 36 valuation points. The results are
summarized in boxplots that display the distribution of absolute percentage errors for each
model across the valuation period, as well as in a table that reports the mean, median, and
standard deviation of these errors (see Figure 3 and Table 2). We considered models with 2,
3, and 4 states for our HMMs. While more than 4 states could offer additional granularity,
it may be excessive for our relatively short monthly time series.

Performance Comparison of the Chain Ladder Method and HMM-Based Mod-
els

The classical Chain Ladder (CL) method performs worse than our proposed HMM-based
models. The CL method shows a mean and median absolute percentage error of around
16%, with high variability in the error, as indicated by both the boxplot and the standard
deviation values presented in Table 2. This highlights the limitations of the CL method
compared to more advanced approaches.
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g = 2
Models CL CM MM DM
Mean Absolute % Error 0.1689 0.1127 0.1021 0.0784
Median Absolute % Error 0.1648 0.0807 0.0978 0.0785
SD of Absolute % Error 0.1171 0.0901 0.0619 0.0537

g = 3
Models CL CM MM DM
Mean Absolute % Error 0.1689 0.1121 0.0931 0.0774
Median Absolute % Error 0.1648 0.1012 0.0848 0.0720
SD of Absolute % Error 0.1171 0.0875 0.0631 0.0630

g = 4
Models CL CM MM DM
Mean Absolute % Error 0.1689 0.1166 0.0875 0.0760
Median Absolute % Error 0.1648 0.0887 0.0747 0.0685
SD of Absolute % Error 0.1171 0.0914 0.0597 0.0560

Table (2) Summary of Absolute Percentage Errors for IBNR Claim Count Estimates Across
Models

Performance of the Proposed Models

Our proposed models—the Continuous-time Model (CM), the Multinomial Model (MM),
and the Dirichlet-Multinomial Model (DM)—perform much better than the CL method,
demonstrating their effectiveness in estimating IBNR claim counts. The discrete-time models
(MM and DM) generally outperform the continuous-time model (CM), as evidenced by their
lower median and mean absolute percentage errors and lower variability (see Figure 3) across
all values of g (2, 3, and 4). The CM model shows a median absolute error close to that of
the MM and DM models, but the mean absolute error is significantly larger due to its high
variability, as reflected in the boxplot.

In general, the CM model tends to produce good estimates of IBNR claim counts when the
integral ∫ dl

dl−1

FU |t,xi
(τ − t) dt,

representing the probability that a claim occurring within the period (dl−1, dl] is reported
before the valuation date τ , aligns closely with the actual percentage of such claims. How-
ever, when this integral deviates significantly from the actual percentage, the CM model’s
estimates deteriorate. For example, at the end of January 2016, the average value of the
integral ∫ dT

dT−1

FU |t,xi
(τ − t) dt,

where dT = τ (which represents the probability that a claim that occurred in January 2016
was reported before the end of the month), across policyholders was 0.81095, while the
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actual percentage was 0.7465753 (i.e., 75% of such claims were reported by the end of the
month)—a difference that diverged from the usual pattern. This discrepancy, which was
not captured by our model for reporting delay despite using all available data, significantly
impacted the IBNR claim count estimate; the underestimated value of

1 −
∫ dT

dT−1

FU |t,xi
(τ − t) dt

led to an underestimated IBNR claim count.

Effect of Increasing States on Model Performance

As the number of states g increases, the performance of the discrete-time models (MM
and DM) improves, suggesting that these models benefit from more states in capturing the
underlying dynamics of the data. However, this trend does not hold for the continuous-time
model (CM). The CM model’s performance remains inconsistent due to its sensitivity to
the fitting of reporting delays and the two-step maximization of the likelihood process, as
explained in the previous analysis. Therefore, while adding states improves the accuracy
of discrete-time models, it does not necessarily translate into better performance for the
continuous-time model.

Analysis of Confidence Intervals for DM and MM Models

The error bar plots in Figure 4 illustrate the 95% confidence intervals for the simulated
IBNR claim count estimates using the DM and MM models with g = 2, 3, 4, while the
points represent the actual IBNR claim counts. The red points indicate instances where the
actual IBNR claim count falls outside the interval, and the blue points indicate instances
where it falls within the interval. It is evident that the DM model’s confidence intervals
are generally wider and more frequently contain the actual IBNR claim counts compared
to the MM model. Specifically, for the DM model, the confidence intervals include the
actual IBNR claim count in 28, 29, and 28 out of the 36 valuation dates for g = 2, 3, 4,
respectively. In contrast, the MM model’s intervals contain the actual IBNR claim counts
only 17, 20, and 21 times for g = 2, 3, 4, respectively. The increased width of the confidence
intervals in the DM model reflects the introduction of variability in the reporting probability
vector through the Dirichlet assumption. This added variability leads to a more appropriate
distribution of the IBNR claim counts, capturing the inherent uncertainty and providing a
more realistic estimate. This highlights the importance of considering such variability for
better risk management, as underestimating or overestimating reserves can have significant
financial implications.

8 Conclusion

In this paper, we proposed a novel micro-level Cox model designed to enhance the estimation
of IBNR claim counts in P&C insurance. Our model incorporates a HMM to capture the tem-
poral dependencies in the claim arrival process, allowing for the integration of policyholder-
level data and environmental factors. This framework supports analysis at varying levels of
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Figure (4) Error bar plots showing the 95% confidence intervals for simulated IBNR claim
count estimates using the DM and MM models with g = 2, 3, 4. The red points indicate
when the actual IBNR claim count falls outside the interval, and the blue points indicate
when it falls within the interval.

granularity, providing flexibility for different applications. We initially presented the model
in a continuous-time framework, then extended it to a discrete-time framework to enable
simultaneous modeling of claim occurrence and reporting delays. Additionally, we intro-
duced a Dirichlet distribution assumption for the reporting delay probabilities, addressing
non-systematic or unexplainable variations in delay structures.

Our empirical analysis demonstrated that the discrete-time models, particularly the one
incorporating the Dirichlet assumption, outperformed the continuous-time model, providing
more accurate estimates of the IBNR claim count, with both frameworks outperforming the
classical Chain Ladder method. This finding highlights the importance of jointly modeling
claim occurrence and reporting behavior, as well as the value of accounting for randomness
in reporting delays.

For future research, we plan to conduct a deeper analysis of the applicability of continuous-
time models in the literature. Given the superior performance of our discrete-time approach,
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it is essential to reassess the contexts in which continuous-time models are most appropriate.
Additionally, the inclusion of the Dirichlet assumption in our model suggests a promising
direction for the application of Bayesian methods in IBNR reserving. By transitioning to a
Bayesian framework, we aim to further improve the robustness and flexibility of our reserve
estimates.
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A EM Algorithm for the Continuous-time Model

Recall that the likelihood of the observed data for the continuous-time model, L(1), is given
by:

L(1)(Φ1|OC) ∝ P
(
N

(r,1:T )
1 = n

(r,1:T )
1 , . . . ,N (r,1:T )

m = n(r,1:T )
m

)
×

m∏
i=1

T∏
t=1

nr
i,t∏

j=1

fU |titj ,xi
(uitj)

FU |titj ,xi
(τ − titj)

,

where N
(r,1:T )
i = (N r

i,1, . . . , N
r
i,T ) denote the discretely observed reported claim process from

period 1 to T for policy i, and n
(r,1:T )
i = (nr

i,1, . . . , n
r
i,T ) is its realization. We maximize the

likelihood by employing the two-step maximization widely used in the micro-level reserving
literature. To this end, we describe the EM algorithm needed to fit the ‘Claim Frequency‘
component assuming a known distribution for the reporting delay. Recall that the likelihood
such component is given by

P
(
N

(r,1:T )
1 = n

(r,1:T )
1 , . . . ,N (r,1:T )

m = n(r,1:T )
m

)
= π1P 1(n

r
1)ΓP 2(n

r
2) . . .ΓP T (nr

T )1T =: LT ,

where
nr

t = (nr
1,t, . . . , n

r
m,t),
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P t(n
r
t ) = diag

{
m∏
i=1

P (N r
i,t = nr

i,t|Ct = 1), . . . ,
m∏
i=1

P (N r
i,t = nr

i,t|Ct = g)

}
,

and 1 is a row vector of 1s.

Complete Log-Likelihood

The complete data is given by the observed data (the discretely observed reported claims)
and the unobserved data (the states of the HMM). The log-likelihood of the complete data
is given by

l
(1)
C (Φ1|N (r,1:T )

i = n
(r,1:T )
i , Ct = ct, i = 1, . . . ,m, t = 1, . . . , T )

= log

(
π1,c1

T∏
t=2

γct−1,ct

T∏
t=1

m∏
i=1

Pct(n
r
i,t)

)
= log π1,c1 +

T∑
t=2

log γct−1,ct +
T∑
t=1

m∑
i=1

logPct(n
r
i,t)

=

g∑
j=1

u1j log π1j +

g∑
j=1

g∑
k=1

(
T∑
t=2

vtjk

)
log γjk +

g∑
j=1

T∑
t=1

m∑
i=1

utj logPj(n
r
i,t).

where Pj(n
r
i,t) = P (N r

i,t = nr
i,t|Ct = j).

E-step

In the E-step, we compute the conditional expectation of the complete log-likelihood given
the observed data and the current estimator Φ

(k−1)
1 of the model parameters Φ1. This

conditional expectation is given by:

E
(
l(1)(Φ1|n(r,1:T ), c(T ))|n(r,1:T ),Φ

(k−1)
1

)
=

g∑
j=1

û
(k)
1j log π1j +

g∑
j=1

g∑
l=1

(
T∑
t=2

v̂
(k)
tjl

)
log γjl

+

g∑
j=1

T∑
t=1

m∑
i=1

û
(k)
tj logPj(n

r
i,t),

(11)

where û
(k)
tj and v̂

(k)
tjl are given by Equations 6 and 7, respectively.

M-step

The M-step in the EM algorithm involves maximizing Equation 11 with respect to the model
parameters Φ1 = {π1,Γ,θ1, . . . ,θg}, subject to the necessary constraints. The optimal

values for π
(k)
1j and γ

(k)
jl at the kth iteration are given by Equations 8 and 9, respectively.

Finally, we aim to obtain the regression parameter θ
(k)
j that maximizes the third term of

Equation 11, given by:

T∑
t=1

m∑
i=1

û
(k)
tj logPj(ni,t;θj) =

∑
t,i

û
(k)
tj logPj(ni,t;θj),
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which is the likelihood for a weighted Poisson regression. The maximization of this likelihood
is readily available in many software packages in R.

Remark: To expedite the maximization process, one can employ the binning technique
for continuous covariates, treating them as nominal covariates. This approach significantly
enhances the computational efficiency of the estimation. By creating categorical classes of
policies based on binned covariates, we assume that policies within each class share similar
risk characteristics. For an even faster maximization process, we can impose a restriction
while binning continuous covariates, ensuring that each class has at least one claim occurrence
for some t ∈ 1, . . . , T . This enables us to express the likelihood function as a weighted
exponential likelihood regression. Consequently, the maximization step becomes notably
faster and more manageable, allowing us to efficiently estimate the model parameters in just
a few minutes.

Convergence Criterion, Model Initialization & Model Selection

We use similar procedures as those for the discrete-time models.
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