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Abstract

When quantitative longitudinal traits are risk factors for disease progression and subject to random biological variation, joint model ana-
lysis of time-to-event and longitudinal traits can effectively identify direct and/or indirect genetic association of single nucleotide poly-
morphisms (SNPs) with time-to-event. We present a joint model that integrates: (1) a multivariate linear mixed model describing 
trajectories of multiple longitudinal traits as a function of time, SNP effects, and subject-specific random effects and (2) a frailty Cox sur-
vival model that depends on SNPs, longitudinal trajectory effects, and subject-specific frailty accounting for dependence among mul-
tiple time-to-event traits. Motivated by complex genetic architecture of type 1 diabetes complications (T1DC) observed in the 
Diabetes Control and Complications Trial (DCCT), we implement a 2-stage approach to inference with bootstrap joint covariance esti-
mation and develop a hypothesis testing procedure to classify direct and/or indirect SNP association with each time-to-event trait. By 
realistic simulation study, we show that joint modeling of 2 time-to-T1DC (retinopathy and nephropathy) and 2 longitudinal risk factors 
(HbA1c and systolic blood pressure) reduces estimation bias in genetic effects and improves classification accuracy of direct and/or in-
direct SNP associations, compared to methods that ignore within-subject risk factor variability and dependence among longitudinal and 
time-to-event traits. Through DCCT data analysis, we demonstrate feasibility for candidate SNP modeling and quantify effects of sample 
size and Winner’s curse bias on classification for 2 SNPs identified as having indirect associations with time-to-T1DC traits. Joint analysis 
of multiple longitudinal and multiple time-to-event traits provides insight into complex traits architecture.

Keywords: joint models, longitudinal study, direct and/or indirect genetic association, pleiotropy, complex genetic architecture, multiple- 
trait analysis, random measurement error, quantitative trait trajectory, mixed model, frailty model

Introduction
Despite their known ability to improve inference in clinical and epi-
demiological studies, particularly in the presence of informative 
censoring/dropout or when longitudinal quantitative traits (QTs) 
are measured with biological random variation (Hogan and Laird 
1998; Ibrahim et al. 2010; Chen et al. 2011), joint models for longitu-
dinal QTs and time-to-event (TTE) traits have received limited 
attention in genetic association study design and analysis. 
Genome-wide association studies (GWAS) of QTs often require 
follow-up analyses to identify whether single nucleotide poly-
morphism (SNP) associations detected with a QT also affect clinical 
outcomes, such as disease complications, through direct and/or in-
direct effects induced by the QT (Fig. 1). Distinguishing between dir-
ect and/or indirect SNP effects can help to reveal genetic pathways 
in the etiology of disease progression with implications for the 

direction of ongoing investigations and development of new inter-
vention strategies. However, within-patient variability in inter-
mediate QTs (e.g. random biological variation) and unmeasured 
shared risk factors among longitudinal and TTE traits challenge ac-
curate distinction between direct and/or indirect SNP associations.

Our objective is an integrated approach to investigate complex 
genetic architecture of disease progression and associated risk 
factors, motivated by genetic association analysis of individuals 
with type 1 diabetes (T1D). Risk of type 1 diabetes complications 
(T1DC), including diabetic retinopathy (DR) and diabetic nephro-
pathy (DN), is hypothesized to depend on multiple genetic factors 
with direct and/or indirect effects induced via multiple shared 
and/or specific QT risk factors (Paterson and Bull 2012). The first 
GWAS in Diabetes Control and Complications Trial (DCCT) identi-
fied SNPs associated with hyperglycemia, as measured by hemo-
globin A1c (HbA1c), at genome-wide significance and weaker 
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associations with time-to-DR and/or time-to-DN (Paterson et al. 
2010). Other longitudinal QTs, also influenced by genetic factors, 
are postulated to have associations with T1DC. Integrated model-
ing therefore entails multiple longitudinal QT risk factors and 
multiple TTE traits, as well as multiple SNP trait associations 
(Figs. 2 and 3 for an illustration). In addition to genetic association 
with longitudinal QT risk factors, such QTs can be related to more 
than 1 complication, and genetic variants can affect risk of mul-
tiple complications directly and/or indirectly through those inter-
mediate QTs. When a longitudinal QT associated with a TTE is 
ignored or measured with random errors, an indirect SNP–TTE as-
sociation through the intermediate QT can be mistaken as a direct 
SNP–TTE association. Therefore, accounting for all the intermedi-
ate longitudinal QTs is essential to correctly distinguish between 
direct and/or indirect SNP–T1DC association. To this end, we for-
mulate a general model extension for multiple longitudinal QTs 
and multiple TTE traits.

The multiple-trait extension stems from existing joint models 
that consist of a submodel for a single longitudinal QT linked to 

a submodel for a single right-censored TTE trait (Rizopoulos 
2012; Wu et al. 2012; Asar et al. 2015). The longitudinal submodel 
describes the QT as an underlying smooth trajectory that depends 
on fixed effects of time and baseline covariates, as well as subject- 
specific random effects. The joint model association structure is 
induced via the functional dependence between the hazard of 
an event at time t and the longitudinal QT trajectory (Hickey 
et al. 2016; Papageorgiou et al. 2019). Specification of this relation-
ship can be based on prior biological knowledge of the link be-
tween the longitudinal and TTE traits. This class of joint models 
provides interpretations of direct and/or indirect effects because 
the relationship between a baseline covariate, such as a SNP geno-
type, and each of the longitudinal and TTE traits, as well as the re-
lationship between longitudinal and TTE traits, can be specified 
via model parameters corresponding to direct, indirect, and over-
all effects (Ibrahim et al. 2010).

Joint model extensions have been reviewed for multiple longi-
tudinal QTs (Hickey et al. 2016; Papageorgiou et al. 2019) and for 
multiple TTE traits (Hickey et al. 2018a). Although a few extensions 
have been developed for both multiple longitudinal QTs and mul-
tiple TTE traits [(Zhu et al. 2012; Tang et al. 2014; Tang and Tang 
2015 ), for example], these models are often formulated for a spe-
cific study question and can lack generalizability. In addition, 
multiple-trait extensions raise computational challenges for mar-
ginal likelihood maximization that integrates over the distribu-
tion of the multivariate random effects. Two-stage approaches 
for joint model fitting are computationally efficient and allow 
more flexible model formulations (Self and Pawitan 1992; Tsiatis 
et al. 1995; Bycott and Taylor 1998; Dafni and Tsiatis 1998). 
However, in some circumstances, inference can be mis-calibrated 
when parameter estimates and predictions from stage 1 are ob-
tained from the longitudinal model without consideration of the 
TTE trait, or when the uncertainty in stage 1 estimates is ignored 
during stage 2 estimation (Wulfsohn and Tsiatis 1997), a problem 
known as propagation of errors.

Fig. 1. Directed acyclic graph (DAG) illustrating the joint model 
parameters to characterize the direct SNP effect on the TTE trait and the 
indirect SNP effect via the intermediate longitudinal QT associated with 
the TTE trait. Figure adapted from (Ibrahim et al. 2010) which proposed a 
general joint model formulation for 1 longitudinal QT and 1 TTE trait to 
address questions specific to testing for treatment effects in 
randomized-controlled clinical trials.

Fig. 2. Proposed joint modeling approach for characterization of complex genetic architecture of multiple disease progression.
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The primary contribution of the work we report is a general joint 
model specification for genetic association studies in which mul-
tiple longitudinal QTs are related to multiple TTE traits, correlated 
random effects, and a frailty address dependencies among QTs 
and among TTE traits. As a practical implementation, we develop 
inference for statistical genetic analysis using 2-stage estimation 
with bootstrap resampling for parameter estimation and hypoth-
esis testing and then propose a novel procedure to classify SNP as-
sociations with each TTE trait as direct and/or indirect. A second 
contribution is the implementation of a data-informed simulation 
algorithm, under the postulated multiple-trait model for T1DC 
genetic architecture, to generate multiple causal SNPs with direct 
effects on simulated TTE traits and/or indirect effects via ob-
served (measured) longitudinal QTs in DCCT and an unobserved 
(simulated) longitudinal QT. Evaluations using the implementa-
tion demonstrate that in comparison to separate joint models 
for each QT–TTE trait pair and approaches that ignore measure-
ment error in longitudinal values, the proposed joint model exten-
sion reduces estimation bias and improves classification of direct 
and/or indirect SNP associations by (1) borrowing information 
shared among correlated traits, and (2) accounting for indirect 
genetic pathways via longitudinal QTs. The algorithm also pro-
vides a general approach to estimate power of the joint model 
analysis to detect association given study sample size and various 
direct/indirect genetic associations involving multiple observed or 
unobserved longitudinal QTs for time to disease complications. 
Lastly, we show computational feasibility and interpretation in 
an extended joint model application to DCCT genetic association 
analyses of selected SNPs. We classify 2 SNPs as having indirect 
association with 2 T1DC traits via the HbA1c longitudinal risk fac-
tor and obtain similar conclusions using alternative time- 
dependent association structures that account for cumulative 
and time-weighted effects of HbA1c on T1DC traits (Lind et al. 
1995, 2010). Example R programs for data simulation and for ap-
plication of the joint model are available on GitHub.

Materials and methods
Model formulation
We assume that a set of M SNPs has been genotyped, together with 
observation of K (1 ≤ k ≤ K) unordered and noncompeting TTE 

traits, such as multiple disease complications, and L (1 ≤ l ≤ L) lon-
gitudinal QTs (i.e. intermediate risk factors) measured in N unre-
lated individuals indexed by i (1 ≤ i ≤ N ). To characterize the 
genetic architecture of multiple longitudinal QTs and multiple 
TTE traits, we formulate a shared random-effects joint model 
that connects longitudinal and TTE submodels through specified 
time-dependent association structures. For ease of presentation, 
we simplify the model notation by assuming no adjusting covari-
ates but note that trait-specific and/or shared covariates, such as 
confounding factors or ancestry-related principal components 
can be easily incorporated. In the application and the discussion, 
we comment on approaches to assess adequacy of the model spe-
cification. We first introduce the joint model for 1 longitudinal 
QT (L = 1) and 1 TTE trait (K = 1) and then present the extension 
for L > 1 QTs and K > 1 TTE traits.

Joint model for 1 longitudinal and 1 TTE trait
For each individual i, we define yi =(yi,1, . . . , yi,j, . . . , yi,J), as 

the vector of QT measures collected over J visit times ti = 

(ti,1, . . . , ti,j, . . . , ti,J )T with 1 ≤ j ≤ J and ti,1 ≤ . . . ≤ ti,j ≤ . . . ≤ ti,J. We 

denote (Ti, δi) as the vector of right-censored event time Ti and event 
indicator δi for the TTE and assume Ti = min (T∗i , Ci), where T∗i is the 

latent (uncensored) event time and Ci is the censoring time (e.g. ad-
ministrative censoring). We define δi = I(T∗i ≤ Ci), with δi = 1 if the 

event occurs during the observation period, and δi = 0 otherwise.

Longitudinal submodel

Specification is by a linear mixed-effects model for the longitudinal 
QT (Laird and Ware 1982). The model assumes that for every indi-
vidual in the sample, an underlying smooth trajectory of the longi-
tudinal QT describes the subject-specific evolution dependent 
on time, SNP effect, and individual-level random-effects bi. To sim-
plify the presentation, we assume a linear QT trajectory (Equation 
1), but the longitudinal submodel can be specified with nonlinear 
trajectories using, for example, higher-order polynomials or splines 
to account for nonlinear time trends (Rizopoulos 2012, Bian 
2020). The smooth linear trajectory is defined as:

y∗i (t) = β0 + bi,0 + (β1 + bi,1)t + βggi, (1) 

where:  

• gi, is the number of copies of the minor allele for each indi-
vidual i for the SNP tested,

• β = (β0, β1, βg)T is the vector of fixed intercept, slope time, 

and SNP effects on the longitudinal QT,

• and bi = (bi,0, bi,1)T is the subject-specific random intercept 

and slope time effects assuming bi ∼ N2(0, D), where D is 
the variance–covariance matrix.

This trajectory cannot be observed directly; rather we observe 
longitudinal measurements yi collected at discrete time points 
ti; measurements are subject to independent and identically dis-
tributed noise contamination variables εi ∼ NJ(0, Σ), where 

εi = (εi,1, . . . , εi,j, . . . , εi,J)
T, Σ = σ2IJ, and σ2 is the residual variance 

of the QT. Then, the vector of observed QT values is:

yi = y∗i (ti) + εi (2) 

We assume that bi and εi are independent (Laird and Ware 
1982).

Simulated Time-to-DR (k=1) Simulated Time-to-DN (k=2)

Observed
SBP (l=2)

Observed
HbA1c (l=1)
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U (l=u)

SNP1 SNP2 SNP3 SNP4 SNP5

,1 = 0.7

1,1 = 0.2 , = 0.4 2,2 = 0.2
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Fig. 3. Realistic DCCT data-based causal genetic scenario. We generated 
R = 1,000 replicates of N = 667 DCCT individuals with M = 5 causal 
variants and K = 2 TTE traits simulated under this causal genetic scenario 
and R = 1,000 replicates of M = 5 SNPs (with same MAFs as the causal ones) 
simulated under a global null genetic scenario where none of the SNPs is 
associated with any traits. The effects of sex on SBP and of T1D duration 
at baseline on both time-to-T1DC traits are not represented in this figure 
but are included in the data generating model; see Supplementary File 2
(sections 2 and 3) for details.
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Equation 2 implies that yi in <J follows a multivariate normal 
distribution with

E[yi] = Xiβ and Var[yi] = ZiDZT
i + Σ 

where Xi = (1J, ti, gi1J) denotes the (J-by-3) design matrix for the 
fixed intercept, slope, and SNP effects and Zi = (1J, ti) is the 
(J-by-2) design matrix for the random intercept and slope effects, 

with 1J = (1, . . . , 1, . . . , 1)T. To improve robustness to misspecifica-
tion of the variance–covariance matrix D, we adopt an 
unstructured form for the random-effects variance, defined as 

D = Var(bi,0) Cov(bi,0, bi,1)
Cov(bi,0, bi,1) Var(bi,1)

􏼒 􏼓

, which does not require add-

itional constraints on serial dependence between the repeated 
measurements. This choice implies that the covariance 
between any pair of QT observations for individual i collected 
at 2 distinct visit times ti,j ≠ ti,s (1 ≤ j ≤ J, 1 ≤ s ≤ J, j ≠ s) 

is Cov(yi,j, yi,s) = ti,jti,sVar(bi,1) + (ti,j + ti,s)Cov(bi,0, bi,1) + Var(bi,0) + σ2, 

with variance Var(yi,j) = t2
i,jVar(bi,1) + 2ti,jCov(bi,0, bi,1) + Var(bi,0) + σ2, 

which is quadratic over time with positive curvature at Var(bi,1).

TTE submodel

We define a proportional hazard (PH) model in which the hazard 
function of the TTE is the instantaneous event rate in a small inter-
val around T∗i given that the event has not occurred before time t 

and depends on a function of the true unobserved longitudinal pro-
cess up to time t, Wi(t) = f (Y∗i (t)), with Y∗i (t) = { y∗i (s), 0 ≤ s ≤ t}. The 

hazard function (Equation 3) specifies the SNP effect adjusted for 
association of the longitudinal QT risk factor with the TTE trait:

λi(t) = lim
dt→ 0

Pr { t ≤ T∗i < t + dt |T∗i ≥ t, Wi(t) = f (Y∗i (t)), gi}/dt,

We assume:

λi(t) = λ0(t) × exp{αwi(t) + γggi}, (3) 

where λ0(t) is a (parametric or nonparametric) baseline hazard 
function and wi(t) = f (y∗i (t)) specifies the function of the longitudinal 

QT trajectory values associated with risk of the event at time t. In 
the case of a contemporaneous parametrization, λi(t) depends on the 
trajectory value at the same time t (i.e. wi(t) = y∗i (t)). Other function-

al forms weight earlier QT values according to prior knowledge of 
the relationship with the TTE trait (Hickey et al. 2016; Mauff et al. 
2017; Papageorgiou et al. 2019). The parameters, α and γg correspond 
to the effect of the longitudinal QT on TTE (α), and to the SNP effect 
on the TTTE trait (γg) conditional on the longitudinal QT trajectory.

Interpretation

As depicted in Fig. 1, the joint model parameters characterize re-
lationships among a SNP, an intermediate QT, and a TTE trait. 
Effects of a SNP on a TTE trait can be interpreted as indirect asso-
ciation induced via the SNP effect (βg) on the longitudinal QT; dir-
ect association of the SNP (γg) independent of the QT (Ibrahim et al. 
2010; Hickey et al. 2018b). Thus, when α ≠ 0, a SNP association with 
a TTE trait can be 1 of 3 types: 

• Indirect association: the SNP has a nonnull effect on the lon-
gitudinal QT (βg ≠ 0) but no effect on TTE conditional on the 

QT trajectory (γg = 0); the overall SNP effect θ depends only on 

the indirect effect (θ = μg, with μg = αβg).

• Direct association: the SNP has a nonnull effect on the TTE 
conditional on the QT trajectory (γg ≠ 0), but no effect on 

the longitudinal QT (βg = 0); the overall SNP effect depends 

only on the direct effect (θ = γg).

• Both direct and indirect associations: the SNP has nonnull ef-
fects on the longitudinal QT (βg ≠ 0) and on the TTE condi-

tional on the QT trajectory (γg ≠ 0). In this case, the overall 

SNP effect θ aggregates the indirect and direct SNP effects 
(θ = μg + γg, with μg = αβg).

When an associated longitudinal QT is omitted from the TTE 
model, the estimated SNP effect on the TTE is no longer condition-
al on the QT trajectory. This can occur in GWAS when the TTE 
analysis ignores an intermediate QT or when the TTE is associated 
with more than 1 such QTs. This observation also illustrates a 
limitation of the joint model for 1 longitudinal QT and 1 TTE trait, 
with the consequence that an indirect SNP association can be mis-
taken as a direct association when other longitudinal QTs are 
omitted.

Generalization of the joint model to multiple longitudinal 
and multiple TTE traits
To characterize the genetic architecture of a system of multiple 
longitudinal QT risk factors and multiple TTE traits, we extend 
the joint model to L > 1 longitudinal and K > 1 TTE traits (Fig. 2). 
We define yi,l = (yi,l,1, . . . , yi,l,j, . . . , yi,l,J) as the observed longitudin-
al measures for each lth QT (1 ≤ l ≤ L) collected over J visit times ti 

and (Ti,k, δi,k) as the observed right-censored event time Ti,k and 
event indicator δi,k for each kth TTE trait with δi,k = I(T∗i,k ≤ Ci). We 
assume the same censoring time Ci across all K TTE traits, but 
the model can be extended to situations where Ci varies for each 
TTE. Again, for ease of presentation, we assume no adjusting cov-
ariates, linear trajectories for all L longitudinal QTs, and contem-
poraneous effects of longitudinal QTs on the K TTE traits.

Multivariate longitudinal submodel

In the multivariate extension, we index subscripts in Equations 1
and 2 for lth longitudinal QT (Equations 4 and 5 in Fig. 2). The vec-
tor of observed repeated QT measures for the lth QT becomes:

yi,l = Xi,lβl + Zi,lbi,l + εi,l,

where:

• Xi,l = (1J, ti, gi1J) and Zi,l = (1J, ti) are the design matrices for 

fixed and random effects,

• βl = (β0,l, β1,l, βg,l)
T and bi,l = (bi,0,l, bi,1,l)

T denote the QT-specific 

fixed and random-effects vectors,

• and εi,l = (εi,1,l, . . . , εi,j,l, . . . , εi,J,l)
T is the vector of residual error 

terms, with εi,l ∼ NJ(0, Σl), where Σl = σ2
l IJ and σ2

l is the re-

sidual variance for the lth QT; we assume independent εi,l 

for all L QTs.

To account for dependence among longitudinal 
QTs, we assume the overall random-effects 
vector bi = (bi,1, . . . , bi,l, . . . , bi,L)T ∼ N2L(0, D), where D = 

D1,1 · · · D1,L

..

.
Dl,l

..

.

DL,1 · · · DL,L

⎛

⎜
⎝

⎞

⎟
⎠ is the variance–covariance matrix for L QTs, 

accounting for serial dependencies within each QT, i.e. 

Dl,l = Var(bi,0,l) Cov(bi,0,l, bi,1,l)
Cov(bi,0,l, bi,1,l) Var(bi,1,l)

􏼒 􏼓

, and accounting 

for cross-dependencies between each pair of QTs (l ≠ m), 
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i.e. Dl,m = Cov(bi,0,l, bi,0,m) Cov(bi,0,l, bi,1,m)
Cov(bi,1,l, bi,0,m) Cov(bi,1,l, bi,1,m)

􏼒 􏼓

.

This formulation implies that the vector of stacked repeated 
measures of L QTs for individual i, yi = (yi,1, . . . , yi,l, . . . , yi,L)T in 
<

J×L follows a multivariate normal distribution with mean E[yi] = 
Xiβ and variance Var[yi] = ZiDZT

i + Σ, where Xi = 
diag( Xi,1, . . . , Xi,l, . . . , Xi,L) and Zi = diag( Zi,1, . . . , Zi,l, . . . , Zi,L) 
are the overall (JL-by-3L) and (JL-by-2L) block diagonal design ma-
trices for fixed and random effects, β = (β1, . . . , βl, . . . , βL)T is the 
(3L-by-1) stacked vector of fixed effects, D is the (2L-by-2L) covari-
ance matrix for random effects bi = (bi,1, . . . , bi,l, . . . , bi,L)T, and Σ = 
diag(Σ1, . . . , Σl, . . . , ΣL) is the (JL-by-JL) block diagonal matrix of 
residual variances.

Assuming an unstructured variance–covariance matrix Dl,l for 
lth QT, the variance at each visit time ti,j is Var(yi,j,l) , and the covari-
ance function Cov(yi,j,l, yi,s,l) between 2 visit times ti,j ≠ ti,s is analo-
gous to those defined above for 1 longitudinal QT and 1 TTE trait. 
The multivariate mixed model accounts for dependencies of 
each QT pair (l, m; l ≠ m) via random-effects covariance 
functions in Dl,m where the covariance between observations of 
2 QTs measured at ti,j is Cov(yi,j,l, yi,j,m) = t2

i,jCov(bi,1,l, bi,1,m) + 
ti,j(Cov(bi,0,l, bi,1,m) + Cov(bi,0,m, bi,1,l)) + Cov(bi,0,l, bi,0,m) , which is 
quadratic over time and the covariance between 2 longitudinal 
QTs measured at ti,j ≠ ti,s is Cov(yi,j,l, yi,s,m) = ti,jti,sCov(bi,1,l, bi,1,m) + 
ti,jCov(bi,1,l, bi,0,m) + ti,sCov(bi,0,l, bi,1,m) + Cov(bi,0,l, bi,0,m). Thus, joint 
analysis of correlated longitudinal QTs is expected to improve 
power over separate analysis of each QT by borrowing information 
through implied dependency structures among the random effects.

Multivariate TTE submodel

Finally, we extend Equation 3 to a multivariate PH frailty TTE sub-
model, with a subject-specific random effect (frailty term, ui) to 
capture unexplained dependencies among the TTE traits (e.g. 
due to unmeasured baseline shared factors). The frailty term is as-
sumed to follow a nonnegative distribution (e.g. a gamma distri-
bution which corresponds to a well-understood and widely used 
frailty model, with available closed form solution; Balan and 
Putter 2020). In Fig. 2 (Equation 6), λ0,k(t) and γg,k correspond to 
the baseline hazard function and SNP effect on the kth TTE trait 
(1 ≤ k ≤ K), accounting for association of lth QT with the TTE trait 
k (αl,k, 1 ≤ l ≤ L). Equation 6 (Fig. 2) can be expressed as

λi,k(t) = λ0,k(t) × exp{αkwi,k(t) + γg,kgi + ui},

where αk = (α1,k, . . . , αl,k, . . . ., αL,k) is the vector of L QT effects on 

the kth TTE trait and wi,k(t) = (wi,1,k(t), . . . ., wi,l,k(t), . . . , wi,L,k(t)) T 

specifies the corresponding QT association profile. We note 
wi,l,k(t) = fl,k(y∗i,l(t)), where y∗i,l(t) denotes the lth QT trajectory value 

(1 ≤ l ≤ L ) at time t, which depends on the fixed and random ef-
fects βl and bi,l .

Comparisons with joint model of 1 longitudinal and 1 TTE 
trait

In the proposed extension for multiple longitudinal and multiple 
TTE traits, the direct, indirect, and overall SNP effects defined 
above for 1 longitudinal QT and 1 TTE trait are interpreted similar-
ly. However, there are important practical differences between 
analysis of a QT–TTE trait pair and the multiple-trait extension. 
First, because the extension can account for multiple longitudinal 
QTs associated with 1 (or more) TTE(s), it improves SNP associ-
ation inference and SNP classification accuracy, particularly 
when a TTE depends on multiple QTs. This is illustrated in our 

numerical experiments that follow below. Second, in the multivari-
ate longitudinal submodel, the variance–covariance matrix D for 
the random effects specifies nonzero covariance terms in Dl,m 

for each pair of QTs (1 ≤ l ≤ L and 1 ≤ m ≤ L, l ≠ m). In contrast, un-
der the assumption of null covariance terms in Dl,m for all QT 
pairs, the multivariate submodel reduces to independent submo-
dels for each longitudinal QT and thus, separate analyses of each 
QT. When longitudinal QTs are correlated, assuming null covar-
iances can fail to make use of information borrowed through the 
bi and reduces efficiency of the parameter estimates in the longi-
tudinal trajectories (Shah et al. 1997; Jensen and Ritz 2018). This, in 
turn, can adversely affect estimation in the TTE model. Third, 
without a frailty term ui, the multivariate TTE submodel 
(Equation 6, Fig. 2) reduces to separate submodels for each TTE 
trait. Thus, through use of a shared ui, the extended joint model ac-
counts for residual dependency among the K TTE traits, not ex-
plained by the covariates shared by the TTE submodels. Overall, 
the joint model for multiple longitudinal QTs and multiple TTE 
traits can improve inference by accounting for intermediate longi-
tudinal QT(s) and their dependencies, as well as dependencies 
among the TTE traits, and thereby improve classification accuracy 
of direct and/or indirect SNP associations.

Implementation
Effect estimation and test statistic construction
To address computational obstacles in maximization of the joint 
likelihood and allow more flexible inference, we estimate the 
parameters using a 2-stage approach (see Appendix). We work 
within the original framework of Tsiatis and colleagues (Tsiatis 
et al. 1995; Wulfsohn and Tsiatis 1997; Dafni and Tsiatis 1998; 
Tsiatis and Davidian 2001, 2004); the latter specify conditions 
that guarantee consistent and asymptotically normal 2-stage es-
timators. In the spirit of subsequent authors (Ye et al. 2008; 
Yuen et al. 2018; Arisido et al. 2019), we fit a multivariate mixed 
model (Equation 5, Fig. 2) in stage 1; we use the mvlme() function 
from the R package JoineRML (Hickey et al. 2018c; version 0.4.2) 
to estimate the parameters of the longitudinal trajectories of the 
QTs and obtain fitted values of the smoothed trajectories. In stage 
2, we fit a Cox PH frailty TTE model (Equation 6, Fig. 2) adjusting 
for functions of the smoothed trajectories as time-dependent cov-
ariates using the coxph() function from the R survival package 
(Therneau and Grambsch 2000; Therneau 2020; versions 3.2.7 
and 3.2.13). We specify nonparametric baseline hazard functions 
for each TTE using the strata argument in coxph(). We assume a 
gamma frailty distribution, that is, ui ∼ Γ(a, b) with a, b > 0. This 
assumption implies that dependence among the K TTE traits for 
each individual i is stronger for late events. As shown in the 
DCCT application, sensitivity to alternative specification of the 
frailty such as a Gaussian distribution can be addressed in 
coxph().To account for propagation of errors, due to uncertainty 
in stage 1 estimates not accounted for in stage 2 (Wulfsohn and 
Tsiatis 1997) and to empirically estimate the covariance matrix 
of SNP–QT trajectory (βg,l) and SNP–TTE effects (γg,k), we apply a 
nonparametric bootstrap. The bootstrap also provides reliable 
standard error estimates in the joint TTE submodel needed 
when using an unspecified baseline hazard (Hsieh et al. 2006; 
Gould et al. 2015; Furgal et al. 2019). For each bootstrap sample 
b (1 ≤ b ≤ B, B is the total number of bootstrap repetitions), we gen-
erate a new data set by randomly sampling N individuals with re-
placement and then refit the joint model. We compute the 
empirical covariance matrix for the vector of all 􏽣βg,l, 􏽣γg,k, and 􏽣αl,k 

using B bootstrap estimates. Wald statistics for each βg,l are 
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computed as 􏽣Zβg
= 􏽣βg,l/seβg,l 

using the empirical bootstrap standard 
errors seβg,l 

(to test H0: βg,l = 0 vs. H1: βg,l ≠ 0), and similarly for each 

γg,k as 􏽣Zγg
= 􏽣γg,k/seγg,k 

(to test H0: γg,k = 0 vs. H1: γg,k ≠ 0).
In contrast to the 2-stage joint model, a conventional 1-stage 

analysis to assess whether a SNP–TTE trait association is inde-
pendent from the QT–TTE association relies on regression adjust-
ment using observed QT values as time-dependent covariates in a 
Cox-PH model (Paterson et al. 2010; Deng and Pan 2017). This ap-
proach, based only on the TTE model, does not provide informa-
tion about SNP–QT effects (βg,l) and interprets the SNP as having 
a direct association with the TTE trait when the test of SNP–TTE 
effect (γg,k) is declared significant, given the observed QT. 
Inference for αl,k under this approach can be biased or inefficient 
when the QT is measured with random error or high within- 
subject variability (Faucett and Thomas 1996; Wulfsohn and 
Tsiatis 1997; Xu and Zeger 2001; Song et al. 2002; Brown and 
Ibrahim 2003), and inference for γg,k may also be affected. 
Although estimates of βg,l obtained from mixed model QT ana-
lysis, fitted separately, may be used to distinguish between direct 
alone versus both direct and indirect SNP association, unlike the 
joint model, this conditional approach ignores measurement er-
ror in the observed QT values.

Procedure to classify direct and/or indirect SNP  
associations
In Table 1, we present a practical procedure to classify a SNP as-
sociation with TTE trait k as direct and/or indirect, accounting for 
the SNP association with the lth longitudinal QT. This procedure 
requires 2 significance thresholds, P∗βg 

and P∗γg
, for hypothesis tests 

of βg,l and γg,k respectively, to be specified prior to the analysis and 
adjusted for the number of SNPs tested. Depending on the re-
search question, we can choose thresholds for P∗β and P∗γ to be dif-
ferent or the same (P∗ = P∗βg

= P∗γg
). The latter is applicable, for 

instance, to systematically classify direct and/or indirect associ-
ation for a set of M SNPs and the former to assess which SNPs, 
among those reported to be associated with the longitudinal 
risk factor, have a direct effect on a TTE trait. To our knowledge, 
no comparable procedure to classify direct and/or indirect SNP 

association based on SNP effect estimates from joint models 
has been proposed for studies with longitudinal QTs and TTE 
traits. A key feature of the proposed joint model extension to 
multiple longitudinal and multiple TTE traits is inference for 
SNP effects on each of the traits in an integrated statistical mod-
el, while accounting for within-subject QT variability and trait 
dependencies.

The focus of the statistical simulation study and DCCT data ap-
plication that follows is to evaluate the SNP classification proced-
ure applied in extended joint model analysis. As demonstrated by 
the DCCT (The Diabetes Control and Complications Trial Research 
Group 1993), intensive insulin treatment to control the HbA1c 
level to a normal range prevents and delays progression of 
long-term T1DC. DCCT GWAS identified 2 SNPs associated with 
within-patient mean HbA1c at genome-wide significance in the 
conventional treatment arm; rs10810632 in BNC2/9p22.2 and 
rs1358030 near SORCS1/10q25.1 (Paterson et al. 2010). Additional 
SNP associations with DR and DN were reported with potential 
pleiotropic effects (Hosseini et al. 2015). Other longitudinal QTs 
are postulated to have genetic associations with T1DC, for ex-
ample, association of systolic blood pressure (SBP) with DN. 
Because the goal of intensive therapy in DCCT was to reduce 
HbA1c into the nondiabetic range, which produced treatment dif-
ferences in HbA1c values, we base our joint model evaluation and 
application on N = 667 unrelated individuals of European ancestry 
from the conventional treatment group (see Supplementary Files 
1 and 2). We incorporate observed longitudinal measurements for 
HbA1c and SBP which were recorded irrespective of the occur-
rence of any complication event(s) at up to 39 quarterly visits.

Simulation study
Design of the DCCT-data-based simulation study
We generate R = 1,000 replicated data sets simulated under a com-
plex genetic architecture informed by the DCCT Genetics Study data 
(Fig. 3), which involves N = 667 subjects from the conventional 
treatment group, M = 5 simulated causal SNPs with direct effects 
on K = 2 simulated time-to-T1DC (with ∼54% DR events and ∼25% 
DN events on average), and/or indirect effects via L = 3 longitu-
dinal QTs. Two longitudinal QTs as measured in DCCT (HbA1c 
and SBP) and another simulated unmeasured QT (U ) are designed 
to induce shared dependency among the T1DC traits. We assume 
effects of sex on SBP and effects of T1D duration (at baseline) on 
both T1DC traits, as estimated in the original DCCT data, and 
specify contemporaneous association structures for the associ-
ation of HbA1c and SBP on T1DC traits. We specify effect sizes 
and minor allele frequencies (MAFs) of the causal SNPs, as well 
as other parameter values according to the DCCT Genetics 
Study and the T1DC literature (Fig. 3). For SBP and DN, we inflate 
the typical SNP effects reported in the literature to achieve power 
sufficient to detect SNP associations given the available DCCT 
sample size. Under the global null genetic scenario in which 
none of the SNPs are associated with any traits, we also simulate 
M SNPs with the same MAFs as the causal SNPs, independently of 
the traits.

Algorithm for realistic data generation under a complex 
genetic architecture
To generate a data structure that combines observed and simu-
lated traits, we formulate a genotype–phenotype multiple-trait 
model including (1) L = 3 linear mixed models linking each SNP 
with an indirect effect to a longitudinal risk factor and (2) K = 2 
nonindependent parametric TTE models depending on fitted 

Table 1 . Procedure to classify a SNP as having an association with 
a TTE trait k, indirectly through an associated longitudinal QT risk 
factor l and/or directly with TTE trait k, based on hypothesis tests 
of SNP effects βg,l and γg,k.

SNP association with the 
longitudinal QT risk factor l

Pβg,l
≤ P

∗

βg
Pβg,l

> P
∗

βg

SNP association with 
the TTE trait k

Pγg,k
≤ P

∗

γg
Direct and 

indirect 
(βg,l ≠ 0 and 

γg,k ≠ 0)

Direct 
(βg,l = 0 and 

γg,k ≠ 0)

Pγg,k
> P

∗

γg
Indirect 
(βg,l ≠ 0 and 

γg,k = 0)

Not direct and 
not indirect 
(βg,l = 0 and 

γg,k = 0)

Pβg,l 
and Pγg,k 

are P-values from Wald tests (1df) for each of SNP effects βg,l and γg,k. 
For the former, we test H0: βg,l = 0 vs. H1: βg,l ≠ 0. For the latter, H0: γg,k = 0 vs. H1: 
γg,k ≠ 0. P∗βg 

and P∗γg 
are the corresponding classification thresholds. For example, 

if H0: βg,l = 0 is rejected and H0: γg,k = 0 is rejected by the corresponding test 
statistics, then the SNP is classified as being both indirectly and directly 
associated with the TTE trait k. The classification procedure is based on the 2 
separate test statistics and does not require a joint test statistic of the overall 
SNP effect; it thus partitions the 2D parameter space into 4 mutually exclusive 
quadrants. In the simulations and application, we use P∗ = P∗βg

= P∗γg
, although 

different thresholds can be specified for P∗βg 
and P∗γg

.
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longitudinal QT trajectories and SNPs with direct effects. For each 
DCCT individual i with observed longitudinal measures for HbA1c 
and SBP and observed baseline covariates (sex and T1D duration), 
we simulate genotypes at M causal SNPs with MAF vector p, longi-
tudinal trait values Ui, and K = 2 TTE traits ((Ti,k, δi,k), k = 1 and 2 for 
DR and DN), using the algorithm illustrated in Fig. 4 and detailed 
in Supplementary File 2 (sections 1–5). All SNP genotypes are gen-
erated under Hardy–Weinberg and linkage equilibrium assump-
tions. SNPs with indirect effects through longitudinal QTs 
associated with DR and/or DN are generated from the observed 
(SNP1 and SNP5) or simulated (SNP3) QTs, while SNPs with direct 
effects (SNP2 and SNP4) are generated independently of the longi-
tudinal QTs and are included in the hazard function used to gen-
erate each TTE trait (Fig. 4).

Scenario for DCCT-based complex genetic architecture
Overall, the simulated complex genetic architecture represents 
multiple types of SNP trait associations (Fig. 3): direct association 
with each T1DC trait (SNP2 and SNP4), indirect association with 
both T1DC traits via measured (SNP1) and unmeasured (SNP3) 
longitudinal QTs, and direct and indirect association via a mea-
sured longitudinal QT (SNP5); all longitudinal QTs exhibit 
within-subject random variability. Except for SNP3, all other SNP 
scenarios represent SNP association with a longitudinal QT 
(SNP1 and SNP5) or a TTE trait (SNP2, SNP4, and SNP5) testable 
in a single-trait GWAS. Particularly, SNP1, SNP3, and SNP5 have 
indirect effects on T1DC traits induced via intermediate QT(s), 
such that their associations with each T1DC trait are detectable 

in discovery analysis using Cox PH TTE models fitted separately for 
each TTE trait and ignoring the longitudinal QT(s) (Supplementary 
File 2, section 8). SNP1 corresponds to rs10810632 and rs1358030 
associations reported in the motivating DCCT GWAS of HbA1c 
(Paterson et al. 2010), while SNP5 represents a strong signal that 
would be detected in separate GWAS analysis of each longitudinal 
QT and TTE trait.

Analysis of the simulated data
To evaluate statistical performance and classification accuracy of 
direct and/or indirect SNP associations under the complex genetic 
architecture outlined above, we assess the merits of extended 
joint model analysis over simpler methods that do not fully ex-
ploit the data structure. These alternative approaches include 
joint model analyses limited to 2 longitudinal QTs and 1 TTE trait, 
joint model analyses of 1 longitudinal QT and 1 TTE trait, and a 
conditional analysis of 2 TTE traits adjusted for observed values 
of 2 longitudinal QTs. In each replicated data set, each SNP is sep-
arately analyzed using the following methods: 

• JM-cmp: a completely specified joint model analysis that in-
cludes observed (HbA1c and SBP) and unobserved (U ) longi-
tudinal QTs as well as baseline covariates (sex and T1D 
duration) used in the data simulation. Due to the latent na-
ture of unobserved U, JM-cmp cannot be fitted in practice, 
but we include it as a benchmark for comparison against 
analysis ignoring the unobserved longitudinal U.

Fig. 4. Illustration of the procedure developed for DCCT-based simulation study under the scenario from Fig. 3. For each individual i, with {ti, yi,1, yi,2} 
observed in DCCT, the algorithm simulates latent longitudinal QT values for U (yi,u), genetic data at M causal SNPs (with p, the vector of pm MAFs), and 
time-to-T1DC data (Ti,k, δi,k) for K = 2 time-to-T1DC traits. The SNPs are simulated under Hardy–Weinberg and linkage equilibrium assumptions. SNPs 
with indirect effects are simulated from a multinomial distribution with calculated conditional genotype probabilities for individual i (πgi=0, πgi=1, πgi=2) 
based on yi,l. Each yi,l is assumed to follow a multivariate normal distribution with Xi,l and Zi,l the specified fixed and random-effect design matrices in 
longitudinal QT models and Ωl = { βl, Dl, σ2

l } the vector of specified parameter values for each lth QT. SNPs with direct effects are simulated from the 
population probabilities that depend only on their MAF. The specified hazard function for each kth TTE trait depends on the effects of the longitudinal QT 
trajectories and on the SNPs with direct effects in ηi,k, with ηi,1 = γg,1 SNP2i + α1,1y∗i,1(t) for DR and ηi,2 = γg,2SNP4i + γ′g,2 SNP5i + α1,2 y∗i,1(t) + α2,2 y∗i,2(t) for 
DN, as well as the effect of the shared latent QT trajectory y∗i,u(t) used to induce dependencies between the TTE traits. We define Γk as the vectors of 
specified parameter values for each kth TTE trait. The uncensored event time T∗i,k is simulated by calculating the inverse of the cumulative specified 
hazard function using the Brent univariate root-finding method (Brent 1973; Crowther and Lambert 2013). To simplify the exposition of the simulation 
procedure, we do not show the effects of sex on SBP or T1D duration on T1DC traits, but they are included in the data generating model; see 
Supplementary File 2 for details. Parameters for the causal genetic scenario are shown in Fig. 3 and Supplementary File 2 (section 4).
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• JM-mis: includes the same variables as in JM-cmp but ex-
cludes U.

• JM-sep: analysis of 2 longitudinal QTs and 1 TTE trait that do 
not account for dependency between the TTE traits [where 
JM-sep(l = 1 and 2; k = 1) denotes the joint model for DR and 
JM-sep(l = 1 and 2; k = 2) the joint model for DN] and joint 
models of 1 longitudinal and 1 TTE trait that do not account 
for dependence between the longitudinal traits, nor between 
the TTE traits [referred to as JM-sep(l = 1; k = 1), JM-sep(l = 1; 
k = 2), and JM-sep(l = 2; k = 2)]. Altogether, comparisons with 
JM-sep analyses assess the merits of the extended joint mod-
el methods JM-mis and JM-cmp.

• CM-obs: Cox PH frailty analysis that includes both TTE traits 
(DR and DN) and the same variables as in JM-mis but adjusts 
for the observed longitudinal QT values as time-dependent 
covariates; this corresponds to the conditional analysis ap-
proach mentioned above. Here, to classify SNPs as indirectly 
associated, we fit a linear mixed model to test the SNP effects 
on the QT(s) adjusted for the same covariates as used for the 
joint models. Comparisons of estimation, hypothesis testing, 
and classification results based on CM-obs to those based on 
JM-mis and JM-cmp assess the impact of within-subject QT 
variation/measurement errors on hypothesis testing and 
classification results for each SNP.

In each of these analyses, we compute empirical covariance ma-
trices for effect estimates using 500 bootstrap iterations and con-
struct large sample test statistics for SNP effects. Under 2-stage 
JM inference, we fit a bivariate (l = 1 and 2) or univariate (l = 1 or l  
= 2) longitudinal QT model and test βg,l for indirect SNP association 
in stage 1. Then in stage 2, we fit the specified TTE submodels with 
the QT trajectories from stage 1 and test γg,k for direct SNP associ-
ation. Given hypothesis test results for a pair of QT–TTE traits for 
each SNP, we apply the procedure defined in Table 1 to classify 
the SNP–TTE association. Although there are differences between 
single and multiple QT test results in stage 1, differences in classi-
fication arise largely through differences in test results in stage 2 
TTE analysis. Under 2-stage and conditional independence as-
sumptions (Appendix), 􏽣βg,l and 􏽣γg,k and corresponding Z test statis-
tics (Zβg 

and Zγg
) are expected to be uncorrelated under the global 

null scenario, but this may not necessarily hold under the genetic al-
ternative scenario when the analysis model is misspecified or when 
the TTE estimation uses observed longitudinal QT values. We com-
pute empirical correlations in each replicate under both scenarios.

Evaluation criteria
We compare type 1 error (T1E) and power of hypothesis tests of 
SNP–QT (βg,l) and SNP–TTE (γg,k) association among the alternative 
analyses (JM-cmp, JM-mis, JM-sep, and CM-obs) at P* = 5 and 1% 
critical values under the global null and causal genetic scenarios, 
analyzing each of the SNPs separately. We assess estimation ac-
curacy using mean bias for 􏽣βg,l and 􏽣γg,k and confidence interval 
coverage across replicates and similarly examine the distribution 
and mean of bootstrap standard errors and correlations for all the 
compared models.

For each SNP, we evaluate accuracy of SNP classification for 
each TTE trait as direct and/or indirect association (Table 1). 
Specifically, under the global null and causal genetic scenarios, we 
compare empirical and expected classification frequencies under 
the assumption of indirect and/or direct association built into the 
generating model. The empirical frequencies are tabulated from 
the distribution of simulation replicates in the 4 classification cat-
egories from Table 1 (direct, indirect, direct and indirect, and not 

direct and not indirect), specifying classification thresholds such 
that P∗β = P∗γ = P∗, with P∗ = 0.05. To allow for potential dependence 
between the SNP effect tests, we calculate expected frequencies 
under the assumption that large sample statistics (Zβg

, Zγg
), con-

structed from 􏽣βg,l and 􏽣γg,k, and their bootstrap variances follow a 
bivariate normal distribution with bootstrap covariances (see 
Supplementary File 2, section 9). We judge the classification pro-
cedure for a SNP association in each QT–TTE trait pair to have 
high accuracy when the empirical frequencies are consistent 
with those expected, and we compare accuracy among the differ-
ent analysis models. We also assess empirical classification fre-
quencies for causal SNPs with nonnull effects by increasing 
stringency of P∗ up to 10−5.

Results
Simulation study
SNP association test validity and power
Under the global null scenario of no genetic association with any of 
the traits, the T1E of SNP tests (βg,l and γg,k) is reasonably well con-
trolled (Table 2), and P-values Pβg 

and Pγg 
from the joint models 

show no departure from the expected large sample distributions 
(χ2 with 1 degree of freedom, Supplementary File 2, section 7). 
Under the alternative multi-SNP causal genetic scenario (Table 2), 
T1Es for null βg,l are close to the nominal level of 5% for most analysis 
models (exceptions are SNP2 and SNP5), while tests of SNPs with ef-
fects on intermediate measured longitudinal QTs [SNP1 (βg,1) and 
SNP5 (βg,2)] reach 100% power for all the analysis models (Table 2).

Under the genetic alternative simulation scenario, T1E control 
and power in γg,k tests are improved in JM-cmp and JM-mis com-
pared to JM-sep(l = 1 or 2; k = 1 or 2, i.e. for 1 QT–TTE pair) and 
CM-obs. Improvement in the multiple-trait models [including 
JM-sep(l = 1 and 2; k = 1 or 2)] is largely explained by bias reduction 
and more efficient estimation (Supplementary File 2, section 6). 
The nonnull QT effect estimates in the TTE analysis (􏽣αl,k) are simi-
larly improved. Both JM-sep (for a single QT–TTE pair) and CM-obs 
analysis exhibit elevated T1E and/or loss of power to detect SNP– 
TTE association and biased effect estimates when important QTs 
are not taken into account properly (Table 2 and Supplementary 
File 2, section 6). This includes SNP1–DR when HbA1c is ignored, 
SNP3–DR and DN when unmeasured U is ignored, as well as SNP4– 
DN and SNP5–DN when SBP is ignored. Overall, the relative ranking 
of empirical power among the analysis models persists for γg,k tests 
across P* varying down to 10−5 (Supplementary File 2, section 8) with 
steeper power reduction for SNP4-DN in JM-sep(l = 1; k = 2).

Finally, we find little evidence for correlation between Z scores 
of 􏽣βg,l and 􏽣γg,k. The average bootstrap correlation 􏽣ρl,k across repli-
cates is low for each QT–TTE trait pair (l; k) under the genetic alter-
native (Tables 3–7) and global null simulation scenarios 
(Supplementary File 2, section 9) for all joint model analyses 
(|􏽣ρl,k| < 0.05). However, we see larger |􏽣ρl,k| values in CM-obs, par-
ticularly for SBP/DN, perhaps due to larger random variation in 
SBP. Advantages of the multiple-trait analyses (JM-cmp and 
JM-mis) for parameter estimation and hypothesis testing trans-
late into improved performance of the classification procedure.

Classification of direct and/or indirect SNP associations with 
TTE traits
Under the global null scenario, empirical classification frequencies 
for direct and/or indirect SNP association with each T1DC trait at 
significance level P∗= 0.05 agree with those expected for all SNP as-
sociation categories and all models (Supplementary File 2, section 
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9 and Table 9.2-2); this observation confirms accuracy of classifi-
cation (empirical classification frequencies closer to those ex-
pected for all 4 categories of association). Empirical frequencies 
for the category of direct and indirect associations are less than 
those for direct or indirect categories because rejection of both 
single-parameter hypotheses in SNP tests of βg,l and γg,k is required 
(Table 1).

Under the genetic alternative simulation scenario, when SNPs 
have direct and/or indirect effects via measured longitudinal 
QTs, the proposed multivariate joint models JM-cmp and JM-mis 
[and JM-sep(l  = 1 and 2; k with k = 1 or 2)] correctly classify the 
SNP associations for each QT–TTE pair in more than 88% of repli-
cates for SNP1, SNP2, and SNP4 (Tables 3–5) and in more than 61% 
of replicates for SNP5 (Table 6) at specified significance level P* =  
0.05. Classification accuracy is improved relative to single-pair 
QT–TTE analysis: both JM-sep(l = 1 or 2; k = 1 or 2) and CM-obs 
models exhibit larger differences between empirical and expected 

classification frequencies and lower ability to correctly distin-
guish between direct and/or indirect association and potential 
for classification error. This is clearly evident for SNPs with bias 
in γg,k and low T1E control or power for γg,k test in JM-sep(l = 1 or 
2; k = 1 or 2) and/or CM-obs analyses, notably for: 

• SNP1 has indirect association with both T1DC traits via 
HbA1c (Table 3); empirical classification frequencies are low-
er than expected for CM-obs in the correct classification cat-
egory with HbA1c/DR (indirect association) and for JM-sep 
(l = 2; k = 2) in the correct category with SBP/DN (not direct 
and not indirect association).

• SNP4 has a direct association with DN (Table 5): JM-sep(l = 1; k =  
2) has lower than expected empirical classification frequency 
for the correct direct association category with HbA1c/DN.

• SNP5 has direct and indirect effects on DN via SBP (Table 6): 
CM-obs has larger than expected empirical classification 

Table 2. Empirical type-1 error and power (%) for SNP hypothesis tests of each of βg, l and γg, k based on the complete joint model and 
compared models, assessed using R = 1,000 replicates of N = 667 DCCT subjects, with SNPs simulated under global genetic null and genetic 
alternative scenarios.

SNPsa Analysis models

Global null at P* = 5% Genetic alternative at P* = 5%

HbA1c SBP DR DN HbA1c SBP DR DN

SNP1 (MAF = 30%) βg,1 = 0 βg,2 = 0 γg,1 = 0 γg,2 = 0 βg,1 = 0.7 βg,2 = 0 γg,1 = 0 γg,2 = 0
JM-cmp 5.2 5.8 4.4 4.8 100 5.1 4.1 5.4
JM-mis 5.2 5.8 3.6 4.9 100 5.1 4.2 4.6
JM-sep(l = 1 and 2; k = 1) 5.2 5.8 3.8 . 100 5.1 4.7 .
JM-sep(l = 1 and 2; k = 2) 5.2 5.8 . 5.2 100 5.1 . 4.6
JM-sep(l = 1; k =1) 5.6 . 4.0 . 100 . 4.6 .
JM-sep(l = 1; k = 2) 5.6 . . 4.6 100 . . 5.7
JM-sep(l = 2; k = 2) . 5.9 . 4.6 . 5.2 11.2

SNP2 (MAF = 10%) βg,1 = 0 βg,2 = 0 γg,1 = 0 γg,2 = 0 βg,1 = 0 βg,2 = 0 γg,1 = 0.8 γg,2 = 0
JM-cmp 5.5 6.0 5.8 3.9 6.6 5.4 100 3.9
JM-mis 5.5 6.0 4.5 3.8 6.6 5.4 100 4.6
JM-sep(l = 1 and 2; k = 1) 5.5 6.0 5.0 . 6.6 5.4 100 .
JM-sep(l = 1 and 2; k = 2) 5.5 6.0 . 4.4 6.6 5.4 . 5.2
JM-sep(l = 1; k = 1) 5.0 . 5.0 . 6.1 . 100 .
JM-sep(l = 1; k = 2) 5.0 . . 5.1 6.1 . . 4.6
JM-sep(l = 2; k = 2) . 6.7 . 4.9 . 5.2 . 4.7

SNP3a (MAF = 40%) βg,1 = 0 βg,2 = 0 γg,1 = 0 γg,2 = 0 βg,1 = 0 βg,2 = 0 γg,1 = 0 γg,2 = 0
JM-cmp 4.0 6.7 4.3 4.5 4.5 4.6 4.7 3.8
JM-mis 4.0 6.7 4.6 3.9 4.5 4.6 89.9 58.4
JM-sep(l = 1 and 2; k = 1) 4.0 6.7 4.7 . 4.5 4.6 89.7 .
JM-sep(l = 1 and 2; k = 2) 4.0 6.7 . 4.4 4.5 4.6 . 57.7
JM-sep(l = 1; k = 1) 4.1 . 4.6 . 4.8 . 89.7 .
JM-sep(l = 1; k = 2) 4.1 . . 4.6 4.8 . . 33.0
JM-sep(l = 2; k = 2) . 6.5 . 4.8 . 4.4 . 56.4

SNP4 (MAF = 30%) βg,1 = 0 βg,2 = 0 γg,1 = 0 γg,2 = 0 βg,1 = 0 βg,2 = 0 γg,1 = 0 γg,2 = 0.7
JM-cmp 4.8 6.3 3.9 4.9 5.4 4.8 6.0 100
JM-mis 4.8 6.3 4.9 4.7 5.4 4.8 5.4 100
JM-sep(l = 1 and 2; k = 1) 4.8 6.3 4.9 . 5.4 4.8 5.1 .
JM-sep(l = 1 and 2; k = 2) 4.8 6.3 . 5.1 5.4 4.8 . 99.9
JM-sep(l = 1; k = 1) 5.0 . 4.6 . 6.1 . 5.1 .
JM-sep(l = 1; k = 2) 5.0 . . 5.0 6.1 . . 93.9
JM-sep(l = 2; k = 2) . 5.6 . 4.8 . 4.8 . 99.9

SNP5 (MAF = 20%) βg,1 = 0 βg,2 = 0 γg,1 = 0 γg,2 = 0 βg,1 = 0 βg,2 = 7.0 γg,1 = 0 γg,2 = 0.4
JM-cmp 5.0 5.5 4.7 5.6 2.8 100 5.5 66.4
JM-mis 5.0 5.5 4.6 4.5 2.8 100 4.6 64.5
JM-sep(l = 1 and 2; k = 1) 5.0 5.5 5.2 . 2.8 100 4.8 .
JM-sep(l = 1 and 2; k = 2) 5.0 5.5 . 5.0 2.8 100 . 63.2
JM-sep(l = 1; k = 1) 5.1 . 5.3 . 2.8 . 4.6 .
JM-sep(l = 1; k = 2) 5.1 . . 4.9 2.8 . . 100
JM-sep(l = 2; k = 2) . 5.6 . 5.4 . 100 . 64.9

Values are computed for each SNP and each genetic association parameter as the proportion of replicates that reject the null hypothesis at significance threshold 
P* = 0.05. Results at other significance levels P*, and also for CM-obs, are shown in Supplementary File 2, under the global null scenario at P* ≤ 0.01 (section 7), and under 
the genetic alternative scenario at P∗ ≤ 10−5 (section 8). Power for each test of nonnull SNP effects on the trait simulated under the genetic alternative scenario (Fig. 3) is 
shown in bold. 

a Except for JM-cmp, none of the analyses account for indirect SNP3 genetic pathways via the longitudinal risk factor U under the genetic alternative scenario; this 
translates into elevated T1E in the direct genetic effects tests of γg,k for both time-to-T1DC traits.
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frequencies for the correct classification category with 
HbA1c/DN (direct association) and with SBP/DN (direct and 
indirect association).

On the other hand, the presence of an unmeasured QT is mis-
leading for all practical analysis methods: SNP3 has indirect ef-
fects on both T1DC traits via the unmeasured longitudinal QT 
(U ) but no effects through HbA1c or SBP. Except for JM-cmp which 
exhibits accurate (and high) classification frequencies for HbA1c 
and SBP as neither direct nor indirect, all the other compared 
models (which ignore U ) exhibit poor classification accuracy 
(Table 7) and tend to mistakenly classify SNP3 as a direct associ-
ation with each T1DC trait in ∼30–86% of the replicates. As strin-
gency of P∗ increases up to 10−5 for the same effect sizes, empirical 
classification frequencies decrease in the correct classification 
category, while misclassification increases in the other categories 
due to reduced power; for example, JM-cmp tends to mistakenly 
classify SNP5 as an indirect association with SBP/DN 
(Supplementary File 2, section 11).

In summary, for SNPs directly associated with a TTE trait or in-
directly associated via a measured longitudinal QT, our simula-
tions show that by using smoothed trajectories and accounting 
for all QT associations, the extended joint model improves param-
eter inference and classification accuracy compared to CM-obs or 
JM-sep of only 1 QT–TTE pair. Reduced classification accuracy 
translates to increased risk of under- or over-classifying a SNP 
as direct and/or indirect association [e.g. under-classification of 
SNP4 and SNP5 associations with HbA1c/DN in JM-sep(l = 1; 
k = 2) as direct associations and over-classification of SNP5 asso-
ciations with SBP/DN as direct and indirect associations in 
CM-obs]. In addition, when a SNP has both direct and indirect ef-
fects on a TTE trait, such as for SNP5, classification frequencies 
can be low when γg,k test power is low (where power depends on 
effect size, MAF, and trait distribution). As a result, a SNP with 
both direct and indirect associations can be misclassified as an in-
direct association. Finally, when a SNP has an indirect effect on 
both T1DC traits via an unmeasured QT, as for SNP3, the testing 
procedure based on JM-mis that captures some of the unmodeled 
dependency between TTE traits through the frailty term does not 
prevent misclassification as a direct association. This observation 
also demonstrates the importance of the joint model extension 
which allows analysis of all the intermediate QT(s), as opposed 
to JM-sep, and reduces misclassification of direct and/or indirect 
SNP associations.

Application in the DCCT Genetics Study data
We demonstrate feasibility of the 2-stage extended joint model 
method by analysis in the DCCT individuals from the convention-
al treatment group genotyped on HumanCoreExome Bead Array 
(Illumina, San Diego, CA, USA) with ungenotyped autosomal 
SNPs imputed using 1,000 genomes data phase 3 (The 1000 
Genomes Project Consortium et al. 2015), as detailed in 
Supplementary File 1. We use time to mild retinopathy and time 
to persistent microalbuminuria, for DR and DN outcomes respect-
ively, as previously defined in the motivating GWAS of HbA1c 
(Paterson et al. 2010); see Supplementary File 3, section 1. We ana-
lyze N = 516 conventionally treated subjects, without mild to 
moderate nonproliferative retinopathy or DN at DCCT baseline. 
By the time of the DCCT close-out visit, 297 (57.6%) had a DR event, 
and 61 (11.8%) had a DN event, including 47 subjects (9.1%) that 
experienced both events. After SNP filtering and pruning on link-
age disequilibrium (Supplementary File 3, section 2), we analyze 
307 SNPs reported as associated with HbA1c, SBP, or multiple 

definitions of DR and/or DN (Paterson et al. 2010; Grassi et al. 
2011; Sandholm et al. 2012; Hosseini et al. 2015; Wheeler et al. 
2017; Evangelou et al. 2018; Pollack et al. 2019); see 
Supplementary File 4 for the full list of SNPs.

Joint model fitting
We fit the joint model for each SNP at a time, including baseline 
covariates, longitudinal HbA1c and SBP, and T1DCs DR and DN 
(Supplementary File 3, section 3). In the Cox PH frailty TTE submo-
del, PH assumptions are well satisfied when the baseline hazard is 
stratified on the cohort variable; overall conclusions are equiva-
lent when cohort is included as a covariate. Given prior evidence 
for long-term HbA1c effects on T1DC, we present results under 
the time-weighted cumulative specification for HbA1c association 
with time-to-T1DC traits, which exhibits stronger prior associ-
ation with T1DC in the DCCT individuals analyzed here, but we 
obtained similar classification results under alternative specifica-
tions for HbA1c association (i.e. contemporaneous and updated 
mean, Supplementary File 3, section 4). Application of diagnostic 
tools in the joint model analysis, including residual analysis in the 
longitudinal and TTE submodels, finds little evidence for model 
misspecification (Supplementary File 3, section 5). As shown, mar-
tingale residuals are consistent with assumption of linear rela-
tionships between QTs and each time-to-T1DC trait in the Cox 
PH frailty model. Conclusions are unchanged when we assume a 
Gaussian rather than a gamma frailty distribution.

In Fig. 5a, we show that rs1358030 and rs10810632, discovered 
in a previous GWAS of HbA1c in DCCT (Paterson et al. 2010), are 
classified as indirect associations with both T1DC traits via their 
shared association with HbA1c (Pβg

≤ P∗ and Pγg
> P∗, P∗ = 1.7 ×  

10−4 after Bonferroni correction for the 289.02 effective SNP tests; 
Li and Ji 2005). Although the other candidate SNPs were selected 
from larger meta-analysis in T1D and/or independent studies in 
general populations (Paterson et al. 2010; Grassi et al. 2011; 
Sandholm et al. 2012; Hosseini et al. 2015; Wheeler et al. 2017; 
Evangelou et al. 2018; Pollack et al. 2019), the SNP trait association 
tests do not reach Bonferroni-corrected significance thresholds in 
our analysis (Supplementary File 3, section 4), potentially due to 
effect heterogeneity and low power to detect these variants or 
by inherent heterogeneity in the study designs and/or phenotypic 
definitions. Thus, classification for these candidate SNPs is 
uninformative.

Sample size and power considerations
Compared to the simulation, the number of DN events is lower in 
the DCCT data application. We thus expect lower power to detect 
direct SNP association with DN; this implies reduced accuracy to 
distinguish between indirect, direct, and both direct and indirect 
association. To assess how genetic association and classification 
for rs10810632 and rs1358030 may be affected by increasing sam-
ple size, we applied parametric resampling (see Supplementary 
File 3, section 6) to draw data sets with sample size up to 5 times 
the DCCT sample of N = 516, and we then extrapolated the classi-
fication beyond N = 2580. This analysis demonstrates decreasing 
variances of the SNP effects for both SNPs as sample size increases 
and narrowing of their 95 and 99% confidence intervals 
(Supplementary File 3, section 6); Fig. 6a illustrates the corre-
sponding shift in classification of rs10810632 association with 
DR as indirect via HbA1c toward classification as both indirect 
and direct. On the other hand, given that both SNPs were previ-
ously discovered in a GWAS of HbA1c in DCCT, SNP effect esti-
mates for HbA1c association (􏽤βg,1) may be overestimated due to 
Winner’s curse bias (Kraft 2008; Sun et al. 2011), which would 
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impact the classification. We repeated the sample size analyses 
specifying an adjusted SNP effect size for the HbA1c association 
equal to 50% of its effect estimate in our DCCT analysis. In this 
scenario, the test of SNP–HbA1c effect falls just below the P* 
threshold in the resample size N = 516, although power improves 
in larger sample sizes (Fig. 6). Here again, classification tends to 
shift from indirect toward both direct and indirect SNP associa-
tions with both T1DC traits (Supplementary File 3, section 6, for 
complete results for both SNPs); however, a much larger sample 
size is needed to cross the P* threshold for a powerful test of direct 
association.

In the DCCT application, we take advantage of the largest avail-
able clinical study of T1D complications with long-term follow-up 

and high-density longitudinal QT measurements. This highlights 
the dearth of longitudinal studies with both a large number of in-
dividuals and long-term clinical follow-up, as well as the related 
challenges in joint model analysis. In prospective study designs 
with both longitudinal and TTE traits, an inherent imbalance 
can exist among traits in detection of SNP associations, in that 
power for QT(s) depends on the number of measurements while 
power for TTE traits depends on the number of events and dur-
ation of follow-up. Although there is currently a trade-off between 
epidemiological studies with large sample sizes but low density of 
longitudinal measurements and clinical studies with more mo-
dest sample sizes but high measurement densities, we anticipate 
informative application of joint model analysis in large biobanks, 

(a)

(b)

(c)

Fig. 5. Classification of direct and/or indirect SNP associations in the DCCT Genetics Study data. a) Scatter plots of the P-values (-log10) for tests of βg,l (H0: 
βg,l = 0 vs. H1: βg,l ≠ 0) on the X axis and γg,k (H0: γg,k = 0 vs. H1: γg,k ≠ 0) on the Y axis for HbA1c/DR, HbA1c/DN, and SBP/DN trait pairs. Significance levels 
P∗= 1.7 × 10−4 and P∗ = 0.05 are indicated by  horizontal and vertical dashed lines. b) and c) represent association results for rs10810632 and rs1358030 
detected as indirect associations at P∗= 1.7 × 10−4. Left panels present results from separate analysis of each trait (i.e. longitudinal model for each QT and 
Cox PH TTE model without adjusting for the longitudinal traits) as used in naïve discovery GWAS; and right panels show results from the joint model with 
bootstrap 95% confidence intervals for the direct and indirect SNP effects. Results are presented using time-weighted cumulative HbA1c effects on T1DC 
traits.
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for example (Scholtens et al. 2015; Bycroft et al. 2018; Dummer et al. 
2018), now assembling longitudinal measures jointly with binary 
outcomes and genetic data.

Discussion
We present new, more informative methods for statistical genetic 
analysis under a joint model specification of multiple longitudinal 
risk factors and multiple TTE traits, designed to characterize the 
complex genetic architecture of related traits in longitudinal stud-
ies of disease progression. The proposed extended model is formu-
lated to deal with dependencies within and between traits and can 
account for trait-specific and shared covariates, within-subject 
random variability in the longitudinal traits, as well as effects of 
unobserved baseline confounding factors between the TTE traits 
through a subject-specific frailty term. We introduce a realistic 
data-based simulation algorithm to assess joint model perform-
ance that can also be used to estimate achievable power in clinical 
studies such as DCCT characterized by extensive longitudinal 
follow-up but limited sample size.

Evaluation by realistic simulation study of complex T1DC gen-
etic architecture shows that accounting for trait dependencies 
and measurement errors in longitudinal QT risk factors using 
the joint model extension improves classification accuracy of 
SNP as direct and/or indirect association compared to (1) separate 
joint model analysis of each TTE trait with 1 or multiple longitu-
dinal QTs and (2) Cox-PH frailty model analysis adjusted for mul-
tiple observed longitudinal QT values. This improvement in 
classification accuracy under the joint models of multiple longitu-
dinal and multiple TTE traits results from improved T1E control 
for single-parameter tests of SNP effects (βg,l and γg,k) and im-
proved power to detect SNP association, largely explained by re-
duced parameter estimation bias. However, we also observe that 
estimation bias and misclassification can be severe in the 

presence of SNP association with a longitudinal risk factor that 

is unmeasured or absent from the joint model, and misclassifica-

tion may be nonnegligible when the study has limited power to de-

tect only 1 of the SNP effects (βg,l or γg,k), as in the DCCT study.
In the application, we use parametric resampling to evaluate 

how study sample size or Winner’s curse bias affects classification 
accuracy and anticipate that this approach may also help inform 
replication study design with sufficient power. Nevertheless, we 
conclude that joint model analysis in longitudinal studies of dis-
ease progression, such as in the DCCT Genetics Study, improves 
classification of direct and/or indirect SNP association. By integra-
tive analysis of multiple SNP–QT–TTE pathways, classification of 
direct versus indirect association helps prioritize relevant genom-
ic regions, phenotypes, and tissues for functional dissection. As 
outlined in a recent review (Rao et al. 2021), experimental ap-
proaches to obtain biological insight require identification of var-
iants and target genes, with functional studies of biological 
mechanisms to link variants and genes to phenotypes. The rela-
tionships among lipid variants and genes, lipid levels, and coron-
ary artery disease is a well-recognized instance of how genetic 
associations identified in GWAS led to subsequent experimental 
validation of indirect effects (Musunuru et al. 2010). Although 
such experimental studies are beyond the scope of this manu-
script, analytic methods that more deeply mine existing GWAS 
data can inform functional studies to accelerate translational im-
pact of GWAS findings.

Although the primary aim in this report is to develop statistical 
methods to distinguish among direct and/or indirect SNP associa-
tions with each TTE trait, the multiple-trait extension of the joint 
model lends itself to development of multiple-trait SNP associ-
ation testing for SNP discovery. In Supplementary File 5, we pre-
sent a joint-parameter test for global SNP association with all 
the longitudinal and TTE traits, based on a generalized Wald stat-
istic. In application to the simulated DCCT-based complex genetic 

(a) (b)

Fig. 6. Change in classification results of rs10810632 for HbA1c/DR with (a) increasing sample size and (b) winner’s curse bias for the SNP effect on HbA1c, 
investigated using parametric resampling (Supplementary File 3, section 6). We resampled data sets with sample size up to 5 times the DCCT sample size 
of N = 516 and then extrapolated the classification results beyond N = 2580. The X axes of a) and b) show the P-values (-log10) for the test of rs10810632 
effect on HbA1c (H0: βg,1 = 0 vs. H1: βg,1 ≠ 0), while the Y axes show the P-values (-log10) for the test of rs10810632 effect on DR (H0: γg,1 = 0 vs. H1: γg,1 ≠ 0) 
for the sample sizes investigated (shown by different colors). We fitted a regression line on each plot to project the trend of the classification beyond N =  
2,580 individuals. These plots illustrate the corresponding shift in classification of rs10810632 association with DR as indirect via HbA1c toward 
classification as both indirect and direct association. Complete results with HbA1c/DN are shown in Supplementary File 3 (section 6).
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architecture, we observe good T1E control under the global genet-
ic null scenario, improved power for SNP discovery when a SNP 
has multiple-trait effects, and power maintenance in other SNP 
association scenarios.

The extended joint model can be applied to studies where longi-
tudinal QT measurements are missing at some of the visits, but 
choice of the joint model estimation method depends on the miss-
ing data mechanism. In the presence of informative missing data 
mechanisms, we recommend sensitivity analysis using existing 
joint likelihood implementations that assume the time-to-dropout 
mechanism depends on missing longitudinal QT values through 
the posterior distribution of the random effects; this corresponds 
to an informative missing data mechanism (Rizopoulos 2012). To 
our knowledge, these implementations exist only for simple joint 
model formulations either with 1 longitudinal and 1 TTE trait 
(Rizopoulos 2010) or with multiple longitudinal QTs and 1 TTE trait 
(Rizopoulos 2016; Hickey et al. 2018c). Alternatively, multiple im-
putation methods have been implemented for 2-stage estimation 
(Rubin 1987; Moreno-Betancur et al. 2018); these impute missing va-
lues for multiple longitudinal QTs using the conditional distribu-
tion of each QT trait given a TTE trait and other QTs. More 
generally for missing data, further development of methods to 
maximize the extended joint likelihood, for example, using 
Bayesian methods, would alleviate numerical challenges with in-
creasing model complexity in multivariate extensions of joint mod-
els (Gould et al. 2015); but this would require the design of an 
efficient sampling algorithm to study the posterior distribution.

We acknowledge several features of the joint model approach 
that warrant examination in further work. Firstly, to reduce com-
putational complexity and improve model flexibility, we use 
2-stage parameter estimation. In some circumstances, this ap-
proach can produce biased effect estimates in the longitudinal 
and/or TTE submodels as well as underestimation of their stand-
ard errors (Tsiatis et al. 1995; Wulfsohn and Tsiatis 1997; Dafni and 
Tsiatis 1998; Ye et al. 2008; Albert and Shih 2010; Sweeting and 
Thompson 2011; Ye and Wu 2017; Huong et al. 2018; Mauff et al. 
2020). For instance, estimates are biased when data are inform-
atively missing in the presence of nonrandom censoring of the 
longitudinal trait values, e.g. due to the occurrence of an event 
or informative dropout (Ye et al. 2008; Albert and Shih 2010; 
Mauff et al. 2020). In the DCCT application, characterized by ad-
ministrative censoring and a high completion rate, these biases 
are of less concern because longitudinal QT values continued to 
be recorded on a prespecified visit schedule regardless of the oc-
currence of any T1DC events; we estimated the trajectories using 
all the available measurements. Furthermore, we obtain robust 
nonparametric bootstrap estimates of the covariance matrix for 
the SNP effects, and simulation results under the null do not 
show deviation from expected distributions.

Secondly, because the joint model integrates longitudinal and TTE 
submodels, model misspecification can occur in multiple ways. 
Misspecification of the QT submodel (such as by ignoring nonlinear 
time trends) can induce bias in the TTE submodel (Arisido et al. 2019) 
and mislead inference. In the DCCT analysis, we account for nonli-
nearities in HbA1c trajectories by including an additional short- 
term trend in the first 6 months after DCCT entry. Data-adaptive 
splines in longitudinal QT trajectories to improve robustness were 
found to be feasible for a joint model with 1 longitudinal QT 
(HbA1c) and 1 TTE trait (time-to-DR) in a DCCT analysis (Bian 
2020), but evaluation for multiple QTs is warranted. Model compar-
isons (based on Akaike or Bayesian information criteria) and diag-
nostic analyses may also help to detect departures from joint 
model assumptions. In Supplementary File 3 (section 5), we provide 

an illustration of diagnostic analyses in the DCCT application which 
can serve as guidance in other applications. Overall, we recommend 
careful consideration of 2-stage model specification and data-based 
simulation studies to evaluate classification robustness of direct 
and/or indirect associations.

Thirdly, patient visits were scheduled with high frequency in 
DCCT, so we ignored the modest degree of interval censoring in 
the current implementation of the joint model; when there are 
longer gaps between visits, alternative methods are needed to ac-
count for interval censoring in the TTE submodel with additional 
simulation studies to assess impact on joint model estimation, 
testing, and classification.

Computationally, joint model fitting can be very demanding, par-
ticularly for genetic association studies that test millions of var-
iants. In the DCCT application, it took ∼1 min to fit the joint 
model for each SNP and ∼18 more min to estimate the covariance 
matrix with 500 bootstraps run in parallel on 4 nodes (each node 
with 40 CPU and 202 GB RAM). While analysis at the genome-wide 
level, involving, for example, ∼9 million imputed autosomal SNPs 
in DCCT study (Roshandel et al. 2018), is computationally unreal-
istic at present, a screening approach without bootstrap to select 
informative SNPs, followed by bootstrap refinement, would re-
duce the computational burden to feasible levels. Recently, com-
putationally efficient algorithms have been developed to improve 
feasibility of linear mixed models (Sikorska et al. 2018) and Cox PH 
models (Rizvi et al. 2019; Bi et al. 2020) for genome-wide genetic as-
sociation studies, but to date, they remain underdeveloped for 
multivariate outcomes.

Lastly, Liu et al. (2018) discuss various formulations and inter-
pretations of joint models in the context of mediation analysis, 
with shared random effects to account for potential unmeasured 
baseline confounding factors between 1 longitudinal and 1 TTE 
traits. In clinical trial applications, they illustrate interpretation 
of sensitivity analysis to unmeasured baseline confounders. 
Adaptation of the joint model we propose for multiple longitudin-
al QTs and multiple TTE traits for mediation analysis requires ex-
tension of the mediation assumptions (Sobel 1982; Mackinnon 
et al. 1995) to the case of multiple mediators and multiple TTE 
traits. Specific evaluations of the joint model extension under 
these assumptions are also warranted.

In conclusion, we anticipate application of joint model methods 
in large biobank data sets to be informative in characterization 
of the genetic architecture of complex traits. Some extensions of 
joint models have been proposed to account for additional chal-
lenges raised by large biobanks, for example, informative visiting 
processes (Gasparini et al. 2020). By providing more efficient SNP 
effect estimates and increased precision in polygenic risk score 
development, results of such analysis also have potential to con-
tribute to the translation of human genetic findings into persona-
lized medicine (Young et al. 2019), including dynamic 
subject-specific risk assessment (Papageorgiou et al. 2019; Bull 
et al. 2020) as well as optimization of intervention strategies 
(Sweeting and Thompson 2011; Yuen et al. 2018).

Data availability
DCCT data are available to authorized users at https://repository. 
niddk.nih.gov/studies/edic/ and https://www.ncbi.nlm.nih.gov/ 
projects/gap/cgi-bin/study.cgi?study_id=phs000086.v3.p1 (IRB #07- 
0208-E). Example R codes for DCCT data-based simulation and 
analysis of the simulated data are on GitHub (https://github. 
com/brossardMyriam/Joint-model-for-multiple-trait-genetics). 
Supplementary files are available on Figshare. Supplementary File 1
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describes the DCCT data set and lists DCCT/EDIC Research Group 
members; Supplementary File 2 is supplemental information 
for the DCCT-based simulations; Supplementary File 3 is sup-
plemental information for the DCCT Genetics Study data analysis; 
Supplementary File 4 lists SNPs analyzed in DCCT; Supplementary 
File 5 details multiple traits SNP association testing under the joint 
model framework. Compute Canada provided high performance 
computing (see https://docs.computecanada.ca/wiki/Niagara#Niagara_ 
hardware_specifications and https://docs.scinet.utoronto.ca/index. 
php/Niagara_Quickstart for the hardware specifications and character-
istics). Figshare DOI: https://doi.org/10.25386/genetics.23315162
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Appendix
Joint likelihood function of the joint model of 1 
longitudinal QT and 1 TTE trait (L = K = 1)
Under the following assumptions (A1–A3), 

(A1) bi ∼ N2(0, D), where bi = (bi,0, bi,1)T are subject-specific ran-

dom effects

(A2) εi,j ∼ N(0, σ2) and εi,j ⊥ εi,s between visit times ti,j ≠ ti,s, with 

j ≠ s, for all 1 ≤ j ≤ J and 1 ≤ s ≤ J

(A3) bi ⊥ εi, where εi = (εi,1, . . . , εi,j, . . . , εi,J)
T, εi ∼ NJ(0, σ2IJ) .

Then, conditional on the random effects bi and fixed effects Ω, it is 
appropriate to assume that the repeated measurements in the 
longitudinal process are independent (Laird and Ware 1982), in 
other words that the serial correlation is taken into account; and 
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the longitudinal and TTE submodels are independent (Ibrahim 
et al. 2001). Under these conditional independence assumptions, 
the joint likelihood function of the joint model parameters Ω given 
the observed data is

L(Ω|yi, Ti, δi) =
􏽙N

i=1

∫ f1(yi| bi, Ω) × f2(Ti, δi | bi, Ω) × f3(bi|Ω)dbi, 

where 

• f1(yi| bi, Ω) = (2πσ2)−J/2 􏽑J
j=1 exp

􏼐
(yi,j−y∗i (ti,j))

2

2σ2

􏼑
,

• f2(Ti, δi | bi, Ω) = [λi(Ti| bi, Ω) ]δi Si(Ti| bi, Ω),

• Si(Ti|bi, Ω)= exp − ∫Ti

0 λ0(s)exp{αwi(s)+γggi}ds
􏽨 􏽩

and wi(t) = f (y∗i (t)),  

where y∗i (t), denotes the lth QT trajectory at time t  for 1 ≤ l ≤ L 

which depends on the fixed and random effects β and bi. The 
survival function depends on the whole QT history of the true 
unobserved longitudinal process up to time t, denoted as 
Y∗i (t) = { y∗i (s), 0 ≤ s ≤ t};

• f3(bi|Ω) = (2π)−q/2
|D|−1/2exp − 1

2 bT
i D−1bi

􏽮 􏽯
, where q is the di-

mension of the D matrix.

The event indicator δi is used to distinguish the contribution of 
the individuals who experience the event during the observation 
period from the individuals who are still at risk up to that time 
point but do not experience the event. Individuals who experience 
the event (δi = 1) contribute to the cumulative hazard function 
and to the hazard function both evaluated at the Ti; the indivi-
duals who do not experience the event (δi = 0) contribute to the 
hazard function only.

Joint model parameter estimation can be performed by maxi-
mization of the full joint likelihood function directly or by 
Bayesian computation. Direct maximization of the joint likeli-
hood function can be performed using the expectation–maxi-
mization (EM) algorithm, treating the random effects as 
missing data (Wulfsohn and Tsiatis 1997). However, integrals 
with respect of time in the definition of the survival function, 
as well as the integral with respect to the bi do not have an ana-
lytical solution; therefore, numerical approaches, such as adaptive 
Gauss–Hermite quadrature, are needed. Implementations of this 
model using maximization of the above joint likelihood function 
are available in R packages (see Furgal et al. 2019, for a review). 
However, as the dimension of the bi increases, the integral over 
the bi becomes computationally burdensome, and Bayesian ap-
proaches can be employed instead, where the bi are also consid-
ered model parameters obtained as a posterior sample, and thus 
the integral over the bi is no longer required.

Joint model of multiple longitudinal QTs and 
multiple TTE traits
Joint likelihood function
Extending the previous joint model assumptions (A1–A3) to L > 1 
and K > 1, we have 

(A1) bi ∼ N2(0, D), where bi = (bi,1, . . . , bi,l, . . . , bi,L)T are subject- 

specific random effects for all L QTs

(A2) εi,l ∼ NJ(0, σ2
l IJ) for lth QT with 1 ≤ l ≤ L

(A3) bi,l⊥εi,l for lth QT with 1 ≤ l ≤ L, and

(A4) ui ⊥ bi,l, where ui is a shared subject-specific frailty for K 

TTE traits.

Then, conditional on the random effects bi, the frailty ui, 
and fixed effects Ω, we further assume the following: bi 

accounts for association among the L longitudinal QTs 
(Shah et al. 1997) and association between the longitudinal and 
TTE traits (Ibrahim et al. 2001); and ui accounts for residual de-
pendence among the TTE traits (Hougaard 1995). Under these con-
ditional independence assumptions, the joint likelihood function 
of the joint model parameters Ω given the observed data is

L(Ω|yi, Ti, δi) =
􏽙N

i=1

∫ f1(yi| bi, Ω) × f2(Ti, δi | bi, ui, Ω) × f3(bi|Ω)

×f4(ui|Ω) duidbi, 

where: 

• (Ti, δi) = ((Ti,1, δi,1), . . . , (Ti,k, δi,k), . . . , (Ti,K, δi,K))T is defined as 

the vector of K stacked TTE traits for individual i,

• f1(yi| bi, Ω) =
􏽑L

l=1
f (yi,l| bi,l, Ωl) with f (yi,l| bi, 

l, Ωl) = (2πσ2
l )− J

2exp − 1
2σ2

l

􏽑J

j=1
(yi,j,l − y∗i,l(ti,j))

2

􏼢 􏼣

,

• f2(Ti, δi | bi, ui, Ω) =
􏽑K

k=1 [λi,k(Ti,k| bi, ui, Ω)]δi,k Si,k(Ti,k| bi, ui,Ω), 

with Si,k(Ti,k| bi, ui, Ω) = exp
􏼂
− ∫Ti,k

0 λ0,k(s)exp
􏽐L

l=1 αl,kwi,l,k(s))
􏽮

+γg,kgi + ui} ds
􏼃

and wi,l,k(s) = fl,k(y∗i,l(t)), where y∗i,l(t) denotes 

the lth QT trajectory at time t for 1 ≤ l ≤ L which depends 
on the fixed and random effects βl and bi,l .

• f3(bi|Ω) = (2π)−q/2
|D|−

1
2 exp − 1

2 bT
i D−1bi

􏽨 􏽩
, where q is the dimen-

sion of the D matrix

• f4(ui|Ω) = ua−1
i

exp(−ui/b)
Γ(a)ba , i.e. we assume ui ∼ Gamma(a, b) with 

ui > 0, a corresponds to the shape parameter and b to the 
scale parameter, and a, b > 0. Γ(a) is the gamma function eval-
uated at a.

We are not aware of any existing implementations of full like-
lihood maximization of the extended model in the literature. 
Calculation of the full likelihood requires multivariate integra-
tion with respect to the random effects distribution, which can 
lead to demanding computation. When the random effect vector 
bi has a small dimension, say less than 3, the integral can be eval-
uated via Gaussian quadrature which approximates the integral 
by a weighted sum of the target function evaluated at prespeci-
fied sample points. However, when the dimension is larger, it is 
demanding to calculate the integrals with satisfactory approxi-
mation accuracy. Although a full likelihood specification enables 
rigorous study of asymptotic properties, its large sample ap-
proximation may not be accurate when sample size is small. In 
comparison, the Bayesian paradigm does not require asymptotic 
approximations, but the design of an efficient sampling algo-
rithm to study the posterior distribution is challenging. 
Because of these limitations, we implement a 2-stage approach 
to estimation of fixed effect parameters in the extended 
multiple-trait model that is reasonable for the GWAS application 
of interest; in particular, the longitudinal measurements in 
DCCT are taken according to a prespecified schedule and are 
not terminated by the observation of diabetes complications, 
loss to follow-up and mortality are minimal, censoring is admin-
istrative, and each individual has a dense and nearly complete set 
of measurements.
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Likelihood functions under the 2-stage approximation
Let ΩLong and ΩSurv be the vectors containing all fixed 
parameters from the longitudinal and TTE submodels 
respectively.

Stage 1: Multivariate mixed model

L(ΩLong|yi) =
􏽙N

i=1

∫
bi

f1(yi| bi, ΩLong) × f3(bi| ΩLong)dbi, 

where 

• f1(yi| bi, ΩLong) =
􏽑L

l=1 f (yi,l| bi, ΩLong) with f (yi,l| bi, ΩLong)= 

(2πσ2
l )− J

2exp − 1
2σ2

l

􏽑J
j=1 (yi,j,l − y∗i,l(ti,j))

2
􏽨 􏽩

,

• f3(bi|ΩLong) = (2π)−q/2
|D|−

1
2 exp − 1

2 bT
i D−1bi

􏽨 􏽩
, where q is the 

dimension of the D matrix.

The fixed-effect and random-effect parameters are estimated 
jointly for all longitudinal QTs using all available repeated 
measurements, without using the TTE information. Then fitted 
trajectory values are obtained by plugging the parameter esti-
mates into

y∗i,l(t) = Xi,l(t)βl + Zi,l(t)bi,l, 

where Xi,l(t) = (1, t, gi) and Zi,l(t) = (1, t) 

Stage 2: Multivariate Cox PH model adjusted for fitted trajec-
tory values for the vector of L longitudinal QTs:

L(ΩSurv|Ti, δi, 􏽤wi(Ti)) =
􏽙N

i=1
∫
ui

f2(Ti, δi |
􏽤ui, wi(Ti), ΩSurv)

×f4(ui|ΩSurv) × dui, 

with
f2(Ti, δi |

􏽤ui, wi(Ti), ΩSurv) =
􏽑K

k=1
[λi,k(Ti,k|

􏽤ui, wi,k(Ti,k), ΩSurv)]δi,k ×Si,k 

(Ti,k|ui, 􏽤wi,k(Ti,k), ΩSurv), Si,k(Ti,k|
􏽤ui, wi,k(Ti,k), ΩSurv) = exp − ∫Ti,k

0 λ0,k

􏽨

(s)exp
􏽐L

l=1 αl,k
􏽤wi,l,k(s) + γg,k gi + ui

􏽮 􏽯
ds], where 􏽤wi,l,k(s) is obtained 

by plugging fitted trajectory values into wi,l,k(t) = fl,k(y∗i,l(t)).
Unlike the joint likelihood function, where the shared random ef-

fects bi account for the dependencies between the longitudinal 
QTs and the TTE traits, the 2-stage approach accounts for the de-
pendencies between the longitudinal and TTE traits via the fitted 
values of the longitudinal trajectories. This approximation can 
produce biased estimates and/or underestimated standard errors 
for longitudinal and survival model parameters, when there is 
nonrandom censoring of the longitudinal QT values due to the oc-
currence of an event or from informative dropout (Ye et al. 2008; 
Albert and Shih 2010) and because of propagation errors of stage 
1 parameter estimates into stage 2 (Wulfsohn and Tsiatis 1997). 
Under longitudinal model misspecification and estimation bias, 
the conditional independence assumptions fail, undermining 
the accurate of trajectory estimates. Because the TTE processes 
are related to length of follow-up, informative missingness/drop-
outs can lead to differential follow-up between subjects with and 
without an event, and thus the random effects bi can depend on 
the event times (e.g. patients who have an event early are more 
likely to have positive random slopes). However, as we show in 
the simulation studies, in absence of model misspecification and 
informative dropouts/missingness, this approach has low bias 
and is computationally feasible for genetic association studies.
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