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1.1 The Intended Readership

Research on MCMC methodology has continued strong after the publication of this hand-

book’s first edition. We have recorded multiple innovations in making MCMC algorithms

more efficient and widely applicable in the context of bigger data and increasingly more

complex models. For instance, when likelihoods are expensive to compute and approxima-

tions are inserted in the transition kernels, evaluation of incurred errors is done via a class

of methods that have come to be known as noisy MCMC (see also chapter ??). One must

acknowledge that such developments are in some sense further from perfect sampling than

classical MCMC. However, we also recognize a movement in a direction more aligned with

perfect sampling. Particularly, the emergence of unbiased MCMC as an ingenious use of

coupling techniques to eliminate the MCMC bias and to bound the total variation distance

to the target (see also chapter ??) promises to change significantly the MCMC landscape

in the coming years. Since coupling is also the main ingredient in perfect sampling, we in-

1This paper is intended for the Handbook of Markov chain Monte Carlo’s 2nd edition. The authors will be grateful for any
suggestions that could perfect it.
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2 CHAPTER 1. PERFECT SAMPLING: A REVIEW

troduce the ideas contained in Propp and Wilson’s 1996 seminal paper [51] that propagated

the general scheme of coupling from the past (CFTP). Spurred by that idea, there has been

intense search and research for perfect sampling or exact sampling algorithms, so named be-

cause such algorithms use Markov chains and yet obtain genuine i.i.d. draws—hence perfect

or exact—from their limiting distributions within a finite number of iterations.

There is of course no free lunch. Whereas this is a class of very powerful algorithms, their

construction and implementation tend to require a good deal of labor and great care. Indeed,

even the most basic general themes are not entirely trivial to understand, and subtleties and

traps can be overwhelming for novices. Our central goal for this chapter is therefore to

provide an intuitive overview of some of the most basic sampling schemes developed since

[51]. We do not strike for completeness, nor for mathematical generality or rigorousness.

Rather, we focus on a few basic schemes and try to explain them as intuitively as we can,

via figures and simple examples. The chapter is therefore not intended for the residents

but rather the visitors of the MCMC kingdom who want to tour the magic land of perfect

sampling. There are of course a number of other tour packages, including Mark Huber’s

book on perfect simulation [26]. But we hope ours is one of the least expensive ones in terms

of readers’ mental investment, though by no means are we offering a free ride.

1.2 Coupling From the Past (CFTP)

1.2.1 Moving from Time-Forward to Time-Backward

The CFTP algorithm is based on an idea that is both simple and revolutionary. Suppose

we are interested in sampling from a distribution with probability law Π(·) with state space

S ⊂ Rd. We define a Markov chain with stationary law Π using a transition kernel K(x, ·)
whose transitions can be written in a stochastic recursive sequence (SRS) form

Xt+1 = ϕ(Xt, ξt+1), t = 0, 1, 2, . . . , (1.2.1)

where ϕ is a deterministic map and ξt+1 is a random variable with state space Λ ⊂ Rr.

(Sometimes it is automatically assumed that Λ = (0, 1)r but that is not necessary here.)

More precisely, the distribution of ξ is such that P (Xt+1 ∈ A) = Π(A) =
∫
K(xt, A)Π(dxt),
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that is, it guarantees that the output Xt+1 has the same (marginal) distribution as the input

Xt if Xt ∼ Π.

To explain the key idea of CFTP, let us first review the usual implementation of MCMC.

When the chain can be written as in (1.2.1), we can simply compute it iteratively starting

from an arbitrary starting point X0 ∈ S, by generating a sequence of ξ1, ξ2, . . . , ξt, if we

decide to run for t iterations. If the Markov chain formed by (1.2.1) is positive recurrent

and aperiodic (see Chapter XX), then we know that as t → ∞, the probability law of Xt,

Pt, will approach Π, regardless of the distribution of X0. Of course, how large t needs to be

before the difference between Pt and Π becomes too small to have practical consequences is

the very thorny issue we try to avoid here.

The CFTP, as its name suggests, resolves this problem using an ingenious idea of running

the chain from the past instead of into the future. To see this clearly, compare the following

two sequences based on the same random sequence {ξ1, ξ2, . . . , ξt} used above:

forward: X
(x)
0→t = ϕ(ϕ(. . . ϕ(ϕ(x, ξ1), ξ2), . . . ξt−1), ξt); (1.2.2)

backward: X
(x)
t→0 = ϕ(ϕ(. . . ϕ(ϕ(x, ξt), ξt−1), . . . ξ2), ξ1). (1.2.3)

The time-forward X
(x)
0→t is obviously identical to the Xt computed previously with X0 = x.

The time-backward X
(x)
t→0 is evidently not the same asX

(x)
0→t but clearly they have the identical

distribution whenever {ξ1, ξ2, . . . , ξt} are exchangeable, which certainly is the case when

{ξt, t = 1, 2, . . .} are i.i.d., as in a typical implementation. (Note a slight abuse of notation,

we use t both as the length of the chain and as a generic index.) Consequently, we see that

if we somehow can compute X
(x)
t→0 at its limit at t = ∞, then it will be a genuine draw from

the desired distribution because it has the same distribution as X
(x)
0→t at t = ∞.

1.2.2 Hitting the Limit

At first sight, we seem to have accomplished absolutely nothing by constructing the time-

backward sequence because computing X
(x)
t→0 at t = ∞ surely should be as impossible as

computingX
(x)
0→t at t = ∞! However, a simple example reveals where the magic lies. Consider

a special case where ϕ(Xt, ξt+1) = ξt+1, that is, the original {Xt, t = 1, 2, . . .} already forms
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an i.i.d. sequence, which clearly has the distribution of ξ1 as its stationary distribution (again,

we assume {ξt, t = 1, 2, . . .} are i.i.d.). It is easy to see that in such cases, X
(x)
0→t = ξt, but

X
(x)
t→0 = ξ1, for all t. Therefore, with X

(x)
0→∞ we can only say that it has the same distribution

as ξ1, whereas for X
(x)
∞→0 we can say it is ξ1!

More generally, under regularity conditions, one can show that there exists a stopping

time T such that P (T < ∞) = 1 and that the distribution of X
(x)
T→0 is exactly Π, that

is, X
(x)
T→0 “hits the limit” with probability one. Intuitively, this is possible because unlike

X
(x)
t ≡ X

(x)
0→t, which forms a Markov chain, X̃

(x)
t ≡ X

(x)
t→0 depends on the entire history of

{X̃1, . . . , X̃t−1}. It is this dependence that restricts the set of possible paths X̃t can take and

hence makes it possible to “hit the limit” in a finite number of steps. For a mathematical

proof of the existence of such T , we refer readers to [51], [57] and [58].

The CFTP strategy, in a nutshell, is to identify the aforementioned stopping time T via

coupling. To see how it works, let us first map t to −t and hence relabel X
(x)
T→0 as X

(x)
−T→0,

which makes the meaning from the past clearer. That is, there is a chain coming from the

infinite past (and hence negative time) whose value at the present time t = 0 is the draw from

the desired stationary distribution. This is because coming from infinite past and reaching

the present time is mathematically the same as starting from the present time and reaching

the infinite future. However, this equivalence will remain just a mathematical statement if

we really have to go into the infinite past in order to determine the current value of the chain.

But the fact that the backward sequence can hit the limit in a finite number of steps suggests

that for a given infinite sequence {ξt, t = −1, . . .}, there exists a finite T such that when

t ≥ T , X
(x)
−t→0 will no longer depend on x, that is, all paths determined by {ξt, t = −1, . . .}

will coalesce by time 0, regardless of their origins at the infinite past. It was proved in [14]

that such coupling is possible if and only if the Markov chain {X1, X2, . . .} determined by ϕ

is uniformly ergodic.

1.2.3 Challenges for Routine Applications

Clearly once all paths coalesce, their common value X0 = X
(x)
−T→0 is a genuine draw from the

stationary law Π. Therefore, the CFTP protocol relies on our ability to design the MCMC
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process given by ϕ or more generally by the transition kernel K such that the coalescence of

all paths takes place for moderate values of T . This requirement poses immediate challenges

in its routine applications, especially for Bayesian computation, where S typically contains

many states, very often uncountably many. The brute-force way of monitoring each path

is infeasible for two reasons. First, it is simply impossible to follow infinitely many paths

individually. Second, when the state space is continuous, even if we manage to reduce the

process to just two paths (as with the monotone coupling discussed below), the probability

that these will meet is zero if they are left to run independently. Therefore, our first challenge

is to design the algorithm so that the number of paths shrinks to a finite one within a few

steps. A hidden obstacle in this challenge is being able to figure out exactly which paths

will emerge from this reduction process as they are the ones that need to be monitored until

coalescence. The second challenge is to find effective ways to “force” paths to meet, that is,

to couple them in such a way that, at each step, the probability that they take the same

value is positive.

The rest of this chapter will illustrate a variety of methods designed to address both

challenges and other implementation issues. We do not know any universal method, nor do

we believe it exists. But there are methods for certain classes of problems, and some of them

are rather ingenious.

1.3 Coalescence Assessment

1.3.1 Illustrating Monotone Coupling

Suppose the space S is endowed with a partial order relationship ≺ so that

x ≺ y ⇒ ϕ(x, ξ) ≤ ϕ(y, ξ) (1.3.1)

for any x, y ∈ S, ξ ∈ Λ and where ϕ is an SRS as in (1.2.1). If we can find the minimum

and maximum states Xmin, Xmax ∈ S with respect to the order ≺, then we can implement

this monotone coupler—as defined by (1.3.1)—in which it is sufficient to verify the coupling

of the paths started at these two extremal points because all other states are “squeezed”

between them. Therefore, the monotone coupler is an efficient way to address the first
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challenge discussed in Section 1.2.3. For illustration, consider the random walk with state

space S = {0.25, 0.5, 2, 4}, with probability p moving up or staying if the chain is already at

the ceiling state Xt = 4, and probability 1−p moving down or staying if already at the floor

state Xt = 0.25. It is easy to see that this construction forms a monotone chain, expressible

as Xt = ϕ(Xt−1, ξt), where ξt ∼ Bernoulli(p) and its value determines the direction of the

walk, with one going up and zero going down.

Figure 1.1 shows a realization of the CFTP process, corresponding to

{ξ−8, ξ−7, . . . , ξ−2, ξ−1} = {0, 1, 0, 1, 1, 1, 1, 0}. (1.3.2)

One can see that the order between paths is preserved by ϕ. In particular, all the paths are

at all times between the paths started at Xmin = 0.25 (solid line) and Xmax = 4 (dashed line),

respectively. Therefore, in order to check the coalescence of all four paths, we only need to

check if the top chain starting from X = 4 and the bottom chain starting from X = 0.25 have

coalesced. In this toy example, the saving from checking two instead of all four is obviously

insignificant, but one can easily imagine the potentially tremendous computational savings

when there are many states, such as with the Ising model applications in [51].

1.3.2 Illustrating Brute-force Coupling

This toy example also illustrates well the “brute-force” implementation of CFTP, that is,

checking directly the coalescence of all paths. Figure 1.1 establishes that for any infinite

binary sequences {ξt, t ≤ −1}, as long its last eight values (i.e., from t = −8 to t = −1) are

the same as that given in (1.3.2), the backward sequence given in (1.2.3) will hit the limit

X = 2, that is, the value of the coalesced chain at t = 0. Pretending that the monotone

property was not noticed, we can still check the coalescence step by step for all paths. Or

more efficiently, we can use the “binary back-off” scheme proposed in [51], that is, whenever

a check fails to detect coalescence, we double the number of “backward” steps. Specifically,

imagine we first made one draw of ξ, and it is zero (corresponding to ξ−1 = 0). We compute

X
(x)
−1→0 of (1.2.3) for all values of x ∈ S, which lead to

X
(4)
−1→0 = 2, X

(2)
−1→0 = 0.5, X

(0.5)
−1→0 = X

(0.25)
−1→0 = 0.25, (1.3.3)
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−8 −6 −4 −2 0

1
2

3
4

time

X

Figure 1.1: Illustration of a monotone SRS which preserves the natural order on the real line
(i.e., paths can coalesce but never cross each other). Different lines represent sample paths
started from different states.
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indicating that coalescence has not occurred. We therefore double the number of steps going

back which requires only one new draw from ξ ∼ Bernuolli(p), as we already have ξ−1 = 0. It

is important to emphasize here that we always reuse the draws of ξt’s that we have already

made because the point here is to simply check what the coalesced value would be for a

given infinite sequence of {ξt, t ≤ −1}. The device of making draws starting from t = −1

and going backward is the ingenious part of CFTP because it allows us to determine the

property of an infinite sequence by revealing and examining only a finite number of its last

elements. That is, since the remaining numbers in the (infinite) sequence cannot alter the

value of the chain at t = 0, we do not even need to care what they are.

Now this new draw yields ξ = 1, and hence we have {ξ−2, ξ−1} = {1, 0}, which is then

used to compute (1.2.3) again but with T = −2:

X
(4)
−2→0 = X

(2)
−2→0 = 2, X

(0.5)
−2→0 = 0.5, X

(0.25)
−2→0 = 0.25, (1.3.4)

hence, again, no coalescence. Once again we double the steps and go further back to T = −4,

which means we need two more draws of ξ’s, and this time they both are one, yielding

{ξ−4, ξ−3, ξ−2, ξ−1} = {1, 1, 1, 0}. Since we only need at most three consecutive upwards

steps to bring any state to the ceiling state X = 4, the {1, 1, 1, 0} sequence immediately

implies that

X
(x)
−4→0 = ϕ(4, 0) = 2, for all x ∈ S.

We therefore have detected coalescence after going back to only T = −4. This is not in any

contradiction to Figure 1.1, but points to an even stronger statement that only the last four

elements in the sequence (1.3.2), {ξ−4, ξ−3, ξ−2, ξ−1} = {1, 1, 1, 0}, not the entire 8 elements,

are really relevant.

1.3.3 General Classes of Monotone Coupling

One may wonder when such ordering exists in more general situations and, if so, what

important classes of distributions can be identified to satisfy (1.3.1). Such questions have

been investigated by [20] and [24] in the case of monotone (also called attractive) and anti-

monotone (also called repulsive) distributions Π. Suppose S = Zd, for some set Z ⊂ R. We
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consider the component-wise partial order on S so that x ≺ y if and only if xi ≤ yi for all

1 ≤ i ≤ d. The probability measure P on S is defined to be monotone if for each 1 ≤ i ≤ d

P (Xi ≤ s|X[−i] = a) ≥ P (Xi ≤ s|X[−i] = b), ∀ s ∈ S (1.3.5)

whenever a ≺ b in Zd−1, where X[−i] = (X1, . . . , Xi−1, Xi+1, . . . , Xd). Similarly, P is called

anti-monotone if

P (Xi ≤ s|X[−i] = a) ≤ P (Xi ≤ s|X[−i] = b), (1.3.6)

whenever a ≺ b in Zd−1.

This definition of monotonicity via all full conditional distributions P (Xi|X[−i]), i =

1, . . . , d was motivated by their use with the Gibbs sampler. In particular, (1.3.1) and

(1.3.5) are easily connected when the sampling from P (Xi ≤ s|X[−i] = a) is done via the

inverse CDF method. Put Fi(s|a) = P (Xi ≤ s|X[−i] = a) and assume that the ith com-

ponent is updated using ϕi(x, U) = (x1, x2, . . . , xi−1, inf{s : Fi(s|x[−i]) = U}, xi+1, . . . , xd),

with U ∼ Uniform(0, 1). If we assume x ≺ y, then from (1.3.5) we get

ϕi(x, U) ≺ ϕi(y, U) (1.3.7)

because inf{s : Fi(s|x[−i]) = U} ≤ inf{s : Fi(s|y[−i]) = U}. Applying (1.3.7) in sequential

order from i = 1 to i = d, as in a Gibbs-sampler fashion, we can conclude that for U⃗ =

{U1, . . . , Ud}, the composite map

ϕ(x, U⃗) = ϕd(ϕd−1(. . . ϕ2(ϕ1(x, U1), U2), . . .), Ud−1), Ud) (1.3.8)

is monotone in x with respect to the same partial order ≺.

In the case of anti-monotone target distributions, it is not hard to see that the ϕ(x, U⃗)

of (1.3.8) is also anti-monotone with respect to ≺ if d is odd, but monotone if d is even.

Indeed, the ceiling/upper and floor/lower chains switch at each step (indexed by i = 1 to

i = d), that is, the ceiling chain becomes the floor chain and vice-versa. This oscillation

behavior, however, still permits us to construct bounding chains that squeeze in between all

the sample paths such that the general coalescence can be detected once the bounding chains

have coalesced. See for example [20], which also discusses other examples of monotone target

distributions; also see [9] and [27].
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1.3.4 Bounding Chains

In a more general setup, [24] discusses the use of bounding chains without any condition of

monotonicity. To better fix ideas, consider the following simple random walk with state space

S = {0.25, 0.5, 2} and with transition probability matrix (where the (1, 1) entry corresponds

to the probability that the chain stays at 0.25)

A =

(
p 1− p 0
0 p 1− p
p 0 1− p

)
.

Unlike the previous random walk, the recursion defined by the matrix A is neither monotone

nor anti-monotone with respect to the natural order on the real line. For example, with

ξ ∼ Bernoulli(p), and if ξ = 1, we have ϕ(0.25, ξ) = 0.25 < ϕ(0.5, ξ) = 0.5 > ϕ(2, ξ) = 0.25,

where ϕ is the chain’s SRS. In contrast to the previous random walk, here ξ = 1 can indicate

both moving up or down depending on the starting position, and this is exactly the reason

which destroys monotonicity with respect to the same ordering as in the previous random

walk example. (This, of course, by no means implies that no (partial) ordering existed under

which the SRS is monotone; seeking such an ordering is indeed a common implementation

strategy for perfect sampling.)

In Figure 1.2 we show one run of the CFTP algorithm implemented for this simple example

with p = 0.1, where {ξ−8, . . . , ξ−1} = {0, 1, 0, 0, 0, 0, 0,−1}. One can see that the three paths

cross multiple times and no single path remains above or below all the others at all times. A

bounding chain, in the general definition introduced by [24], is a chain {Yt : t ≥ 0} defined

on 2S , the set of all subsets of S, with the property that if X
(x)
t ∈ Yt for all x ∈ S then

X
(x)
t+1 ∈ Yt+1 for all x ∈ S; evidently Y0 needs to contain all values in S. If, at some time t,

Yt is a singleton then coalescence has occurred. Clearly, there are many ways to define the

chain Yt but only a few are actually useful in practice and these are obtained, usually, from

a careful study of the original chain Xt.

For instance, in our example we notice that after one iteration Y0 = S will become either

Y1 = {0.25, 0.5} or Y1 = {0.5, 2}, depending on whether ξ = 1 or ξ = 0, and therefore Yt

will always be a subset of these two sets (possibly themselves). Therefore, for t ≥ 1, the
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−8 −6 −4 −2 0

0
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1
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1
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2
.0

time

X

Figure 1.2: Non-monotone Markov chain. The dashed and solid lines mark the bounding
processes.
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updating rule Yt+1 = Ψ(Yt, ξ) can be simplified to

Ψ(Yt, ξ) =


Yt, if ξ = 1 and Yt = {0.25, 0.5};

{0.25, 0.5} if ξ = 1 and Yt = {0.5, 2};
{0.5, 2}, if ξ = 0 and Yt = {0.25, 0.5};
{2}, if ξ = 0 and Yt = {0.5, 2};

ϕ(Xt, ξ), if Yt = {Xt}.

(1.3.9)

One can see then that having the ordered triplet {1, 0, 0} in the ξ-sequence triggers coales-

cence after which one simply follows the path to time zero.

Two essential requirements for an effective bounding chain are that (I) it can detect

coalescence of the original chain and (II) it requires less effort than running all original

sample paths. The chain Yt ≡ {S} for all t is a bounding chain and satisfies (II), but clearly

it is useless. As an example of bounding chains that do not satisfy (II), consider the dashed

path and solid path in Figure 1.2. Here the dashed path is the maximum value attained by

all paths at each time t, and the solid path is for the minimal value (both have been slightly

shifted for better visualization). For each time t, the interval between the dashed and the

solid paths, denoted by Ỹt, clearly forms a bounding chain. But unlike Yt of (1.3.9), the

updating function for Ỹt is not easy to define so running Ỹt involves checking the extremes

of all the paths for Xt and is, thus, as complicated as running all paths for Xt.

As far as general strategies go, [20] shows how to construct bounding chains when each

component of the random vectorX is updated via a Gibbs sampler step, whereas [24] presents

a general method for constructing bounding chains and applies it to problems from statis-

tical mechanics and graph theory. From the time of this chapter’s initial publication, [54]

provides a composition strategy of alternating between a monotonic and an anti-monotonic

perfect sampling algorithm to significantly improve the computational efficiency. It is also

an example of using discrete data augmentation to achieve effective coalescence, a strategy

we shall illustrate in Section 1.5.3.

1.4 Cost-saving Strategies for Implementing Perfect Sampling

The vanilla CFTP described in Section 1.2 suffers from two main drawbacks. First, the

implementation “from the past” requires storing the random seeds used in the backward
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process until coupling is observed and a random sample is obtained. Second, the impatient

user cannot abandon runs that are too long without introducing sampling bias, because the

coupling time T is correlated with the sample obtained at time zero. In the following two

sections we provide intuitive explanations of the read-once CFTP and Fill’s interruptible

algorithm, designed respectively to address these two drawbacks.

1.4.1 Read-once CFTP

Read-once CFTP (Ro-CFTP) as proposed by Wilson ([60]) is a clever device that turns

CFTP into an equivalent “forward-moving” implementation. It collects the desired i.i.d.

draws as the process moves forward and without ever needing to save any of the random

numbers previously used. The method starts with a choice of a fixed block size K, such that

the K-composite map

ϕK(x; ξ⃗) = ϕ(ϕ(. . . ϕ(ϕ(x, ξ1), ξ2), . . . , ξK−1), ξK), (1.4.1)

where ξ⃗ = {ξ1, . . . , ξK}, has a high probability to coalesce, that is, the value of ϕK(x; ξ⃗)

will be free of x, or equivalently, all paths coalesce within the block defined by ξ⃗. In [60], it

is suggested to select K such that the probability for ϕK to coalesce, denoted by pK , is at

least 50%. Given such a ϕK , we first initialize the process by generating i.i.d. ξ⃗j, j = 1, 2, . . .

until we find a ξ⃗j0 such that ϕK(x; ξ⃗j0) coalesces. Without loss of generality, in the top panel

of Figure 1.3, we assumed that j0 = 1; and we let S0 = ϕK(x; ξ⃗j0). We then repeat the

same process, that is, generating i.i.d. ξ⃗j’s until ϕK(x; ξ⃗) coalesces again. In the top panel

of Figure 1.3, this occurred after four blocks. We denote the coalescent value as S1. During

this process, we follow from block to block only the coalescence path that goes through S0

while all the other paths are reinitialized at the beginning of each block. The location of the

coalescence path just before the beginning of the next coalescent composite map is a sample

from the desired Π. In Figure 1.3 this implies that we retain X1 as a sample. The process

then is repeated as we move forward, and this time we follow the path starting from S1 and

the next sample X2 (not shown) is the output of this path immediately before the beginning

of the next coalescent block. We continue this process to obtain i.i.d. draws.

The connection between the Ro-CFTP and CFTP may not be immediately clear. Indeed,
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S
0 X1

S1

0 T 2T 3T 4T 5T

0-4T -3T -2T -T

S1 X1

Figure 1.3: Top: The read-once CFTP with blocks of fixed length. Bottom: Comparison with
CFTP2.

in the vanilla CFTP, the concept of a composite/block map is not emphasized because,

although we “back-off” in blocks, we do not require to have a coalescent composite map of

fixed length. For instance, if we set K = 4, we can see that in Figure 1.1 the paths started

at −2K coalesce in the interval (−K, 0) rather than within the block (−2K,−K). However,

suppose we consider a modified implementation of the vanilla CFTP, call it CFTP2, in which

we go back from time zero block by block, each with size K, until we find a block that is

coalescent, that is, all paths coalesce within that block. Clearly, if we trace the path from

the coalescent value from that block until it reaches time zero, it will be exactly the same

value as found by the original vanilla CFTP because once the coalescence takes place, all

paths will stay together forever. The bottom panel of Figure 1.3 illustrates CFTP2, where

the fourth block (counting backward from t = 0) is the coalescent block, and X1 is our draw.

Note that the probability of coalescence within any given block is the same, implying that

the number of blocks between S0 and S1, say J , is a random variable that has a geometric

distribution. Figure 1.3 shows that Ro-CFTP yields a path in which once S0 is recorded, the
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sample X1 is collected after J − 1 blocks (in this case J = 4). The bottom panel illustrates

that the corresponding CFTP2 sample is obtained from a path in which the first coalescent

block is the J-th one from the origin. We prove below that after a coalescent block, it is

most efficient to update the path for J−1 blocks before recording a sample from the target.

The resemblance of the bottom panel and the first three blocks in the top panel (counting

forward from time t = 0) is intended to highlight the equivalence between Ro-CFTP and

CFTP2. On its own, CFTP2 is clearly less cost-effective than CFTP because by insisting

on having block coalescence, it typically requires going back further in time than does the

original CFTP (since block coalescence is a more stringent detecting criterion, as discussed

above). However, by giving up a bit on the efficiency of detecting coalescence, we gain the

independence between the block coalescent value S0 and the entire backward search process

for S0 and hence we can reverse the order of the search without affecting the end result.

As this independence is the backbone of the Ro-CFTP, here we show how critically it

depends on having fixed-size blocks. Intuitively, when the blocks all have the same size,

they all have the same probability to be a coalescent block, and the distribution of the

coalesced state given a coalescent block is the same regardless which block it is. To confirm

this intuition and see how it implies the independence, let us define the block random vector

ξ⃗−t = (ξ−tK , ξ−tK+1 . . . , ξ−tK+K−1) and, for a given set ξ⃗−t, t = 1, 2, . . ., let T be the first t

such that ϕK(x; ξ⃗−t) coalesces, and let S0 = ϕK(x; ξ⃗−T ) be the coalescent value. Also let

Cj = {ϕK(x, ξ⃗−j) coalesces}, that is, the event that the jth block map coalesces. Then

{T = t} = (∩t−1
j=1C

c
j ) ∩ Ct. For notational simplicity, denote Aj = {ϕK(x, ξ⃗−j) ∈ A} and

Bj = {Ξj ∈ B}, where A and B are two arbitrary (measurable) sets on the appropriate

probability spaces, and Ξj = {ξ⃗−1, . . . , ξ⃗−j}. Then for any positive integer t,

P (S0 ∈ A, T = t,ΞT−1 ∈ B) = P (At ∩ [∩t−1
j=1C

c
j ∩ Ct] ∩Bt−1)

= P (At ∩ Ct)P (∩t−1
j=1C

c
j ∩Bt−1) = P (At|Ct)P (Ct)P (∩t−1

j=1C
c
j ∩Bt−1) (1.4.2)

= P (At|Ct)P (Ct ∩t−1
j=1 C

c
j ∩Bt−1) = P (A1|C1)P (T = t, BT−1).

In deriving the above equalities, we have repeatedly used the fact that {At, Ct} are inde-

pendent of {At−1, Bt−1, Ct−1} since they are determined respectively by ξ⃗−t and {ξ⃗j, j =

−1, . . . ,−(t − 1)}. The last switching from P (At|Ct) to P (A1|C1) is due to the i.i.d. na-
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ture of {At, Ct}’s, because all blocks have the same size K. This switching is critical in

establishing the factorization in (1.4.2), and hence the independence.

Clearly, as depicted in Figure 1.3, the output of CFTP2, namely X1, can be expressed

as M(S0, T,ΞT−1), where M is a deterministic map. The aforementioned independence

ensures that if we can find {T̃ ,ΞT̃−1} such that it has the same distribution as {T,ΞT−1}
and is independent of S0, then X̃1 = M(S0, T̃ ,ΞT̃−1) will have the same distribution as

X1 = M(S0, T,ΞT−1), and hence it is also an exact draw from the stationary distribution

Π. Because {ξ⃗−1, ξ⃗−2, . . . , } are i.i.d., obviously the distribution of {T,ΞT−1} is invariant

to the order at which we check for the block coalescence. We therefore can reverse the

original backward order into a forward one and start at an arbitrary block which must be

independent with S0. This naturally leads to the Ro-CFTP, because we can start with

the block immediately after a coalescence has occurred (which serves as S0), since it is

independent of S0.

Moreover, the number of blocks and all the block random numbers (i.e., ξ’s) needed before

we reach the next coalescent block represents a sample from the distribution of {T,ΞT−1}.
(It is worth emphasizing that each coalescent composite map fulfills two roles as it marks the

end of a successful run (inclusive) and the beginning of a new run (exclusive).) Alternatively,

(1.4.2) implies that we can first generate T from a geometric distribution with mean 1/pK

(recall pK is the probability of coalescence within each block), and then generate T − 1 non-

coalescent blocks, via which we then run the chain forward starting from S0. This observation

has little practical impact since pK is usually unknown, but it is useful for understanding

the connection with the splitting chain technique that will be discussed in Section 1.5. The

forward implementation brought by Ro-CFTP makes it also easier to implement the efficient

use of perfect sampling tours proposed by [44], which will be discussed in Section 1.6.

1.4.2 Fill’s algorithm

Fill’s algorithm [12] and its extension to general chains [13] breaks the dependence between

the backward time to coalescence and the sample obtained at time zero. In the following we

use the slightly modified description from [43].
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The algorithm relies on the time reversal version of the Markov chain designed to sample

from Π. If the original chain has transition kernel K(x, ·), then the time reversal version has

kernel K̃(z, ·), such that

k̃(x|z)π(z) = k(z|x)π(x), ∀ (x, z) ∈ S × S, (1.4.3)

where for simplicity of presentation, we have assumed the stationary law Π has density π,

and K(x, ·) and K̃(z, ·) have kernel densities k(·|x) and k̃(·|z) respectively. It also requires

that given a particular path X0 → X1 → . . . → Xt, we can sample, conditional on the

observed path, a sample of the same length from any state in S.

The algorithm starts by sampling a random Z ∈ S from an arbitrary distribution P0

(with density p0) that is absolutely continuous with respect to Π, and by selecting a positive

integer T . The first stage is illustrated in the top panel of Figure 1.4: using the reversal

time chain we simulate the path Z = XT → XT−1 → . . . → X1 → X0 (note that the arrow

is pointing against the time’s direction). In the second stage, we sample forward from all

the states in S conditional on the existing path X0 → X1 → . . . → XT = Z (note that this

path is considered now in the same direction as time). The conditional sampling is the main

difficulty encountered when implementing Fill’s algorithm because while the initial run of the

chain is done in the time-reversed order (from XT = Z to X0), the conditioning is done on

the path defined by that initial run that is now considered in the chronological order (from

X0 to Z). For instance, suppose one runs the former using recursion Xt−1 = ϕ←(Xt, Vt−1)

and the latter using Xt = ϕ→(Xt−1, Ut). If the chain {Xt} is reversible then ϕ← = ϕ→ but

one must still determine the distribution of the sequence {Ut : 0 ≤ t ≤ T} conditional on

yielding the path X0 → X1 . . . → XT = Z. When the chain is non-reversible, one must also

determine ϕ→ from ϕ←.

To illustrate, consider the multimodal target that was introduced in [15]:

π(x, y) ∝ exp

(
−8x2y2 + x2 + y2 − 4xy − 8x− 8y

2

)
.

Sampling from π can be done via a Gibbs sampler that consists of two steps:

xt+1|yt ∼ N

(
2yt + 4

8y2t + 1
,

1

8y2t + 1

)
; (1.4.4)

yt+1|xt+1 ∼ N

(
2xt+1 + 4

8x2
t+1 + 1

,
1

8x2
t+1 + 1

)
. (1.4.5)
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For each step of the forward chain one can define a recursion function ϕ→((xt, yt);ut+1, wt+1).

Updating x with (1.4.4) corresponds to

xt+1 = ϕx,→((xt, yt);ut+1) =
2yt + 4

8y2t + 1
+ ut+1

(
1

8y2t + 1

)1/2

(1.4.6)

while (1.4.5) is done via

yt+1 = ϕy,→((xt+1, yt);wt+1) =
2xt+1 + 4

8x2
t+1 + 1

+ wt+1

(
1

8x2
t+1 + 1

)1/2

, (1.4.7)

where ut+1 and wt+1 are iid N(0, 1) random variables. Putting these two steps together, we

have

(xt+1, yt+1) = ϕ→((xt, yt);ut+1, wt+1) = ϕy,→((ϕx,→((xt, yt);ut+1), yt);wt+1). (1.4.8)

In this case, the chain’s transition kernel is not reversible. However, the reverse chain is run

simply by reversing the order of updates so that

(xt, yt) = ϕ←((xt+1, yt+1); vt, zt) = ϕx,→((xt+1, ϕy,→((xt+1, yt+1); zt)), vt), (1.4.9)

where vt and zt are iid N(0, 1).

To implement Fill’s algorithm, we first need run the reverse chain to obtain a path

(xT , yT ) → (xT−1, yT−1) → . . . (x1, y1) → (x0, y0). In the second stage, we need to run

the chain in chronological order conditional on “hitting” (x1, y1) → . . . → (xT , yT ) with the

path that is started in (x0, y0).

This implies finding the conditional distribution of (u1, w1), . . . (uT , wT ), given the forward

trajectory (which is itself imposed by the reverse chain run). In this case, the conditional

distribution of each (ui, wi) is a Dirac measure with mass in a point characterized by (xi, yi)

and (xi−1, yi−1). For example, the random deviates that will transition the forward chain

from (x0, y0) to (x1, y1) must satisfy

u1 =

(
x1 −

2y0 + 4

8y20 + 1

)(
1

8y20 + 1

)−1/2
and

w1 =

(
y1 −

2x1 + 4

8x2
1 + 1

)(
1

8x2
1 + 1

)−1/2
.
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Note that u1, w1 are different from v0, z0 since the latter satisfy a slightly different set of

conditions

v0 =

(
y0 −

2x1 + 4

8x2
1 + 1

)(
1

8x2
1 + 1

)−1/2
and

z0 =

(
x0 −

2y0 + 4

8y20 + 1

)(
1

8y20 + 1

)−1/2
.

Unfortunately, when the forward recursion is more complex, identifying the conditional dis-

tribution of the random variates {(ut, wt) : 1 ≤ t ≤ T} can be very difficult, thus hindering

the broad application of Fill’s algorithm.

If by time T all the paths have coalesced, as depicted in the middle panel of Figure 1.4

(where we used monotone coupling for simplicity of illustration, but the idea is general), we

retain X0 as a sample from π, as shown in the bottom panel of Figure 1.4, and restart with

a new pair (Z, T ). Otherwise, we select a new T or we restart with a new pair (Z, T ).

To understand why the algorithm produces i.i.d. samples from π, we first note that (1.4.3)

holds in the more general form

k̃t(x|z)π(z) = kt(z|x)π(x), ∀ (x, z) ∈ S × S, (1.4.10)

where kt is the kernel density of the t-step forward transition kernel Kt and k̃t is for the

corresponding time reversal one, K̃t. Fill’s algorithm retains only those paths from Z to X0

(obtained via K̃T ) such that the corresponding kT (z|x) is free of x—and hence it can be

expressed as hT (z)—due to coalescence; in this sense Fill’s algorithm is a case of rejection

sampling. Therefore, using (1.4.10) the probability density for those retained X0’s is

p(x) =

∫
k̃T (x|z)p0(z)dz =

∫
π(x)hT (z)

π(z)
p0(z)dz ∝ π(x), (1.4.11)

and hence the correctness of the sampling algorithm (see also [6]). Note that here, for

simplicity, we have deliberately blurred the distinction between the fixed t in (1.4.10) and

potentially random T in (1.4.11); in this sense (1.4.11) is a heuristic argument for building

intuition rather than a rigorous mathematical proof. In its general form, Fill’s algorithm

can search for the coalescence time T just as with CFTP—see [13] for a detailed treatment

of the general form of Fill’s algorithm, including a rigorous proof of its validity. Also see [6]
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Figure 1.4: Illustration of Fill’s algorithm
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for an alternative proof based directly on the rejection-sampling argument, as well as for a

numerical illustration.

1.5 Coupling Methods

All algorithms described so far require the coupling of a finite or infinite number of paths in

finite time. This is the greater difficulty of applying perfect sampling algorithms to continu-

ous state spaces, especially those with unbounded spaces (which is the case for most routine

applications in Bayesian computation) and this is where the greatest ingenuity is required to

run perfect sampling in more realistic settings. A good coupling method must be usable in

practice and it is even better if it is implementable for different models with the same degree

of success. In this section, we review some of the most useful coupling techniques, which

essentially belong to two different types: (I) induce a “common regeneration state” that all

sample paths must enter with a positive probability; and (II) explore hidden discretization

and hence effectively convert the problem into one with a finite state space.

1.5.1 Splitting Technique

A very common technique for coupling MCMC paths is initiated in [49] and discussed in

detail by [58]. Consider the Markov chain X t defined using the transition kernel K and

suppose there is a set C (called small set) and there exist t > 0, 0 < ϵ < 1, and a probability

measure ν such that

Kt(x, dy) ≥ ϵν(dy), ∀ x ∈ C,

where Kt represents the t-step transition kernel. Thus, for any x ∈ C

Kt(x, dy) = ϵν(dy) + (1− ϵ)
Kt(x, dy)− ϵν(dy)

1− ϵ
= ϵν(dy) + (1− ϵ)Q(x, dy), (1.5.1)

where Q(x, dy) = [Kt(x, dy)− ϵν(dy)]/(1− ϵ). The representation given by (1.5.1) is impor-

tant because with probability ϵ the updating of the chain will be done using the probability

measure ν, that is, independently of the chain’s current state. If at time t all the paths are

in set C and all the updates use the same random numbers ξ that lead to the transition

into the ν component of (1.5.1), then all paths will coalesce at time t + 1, even if there
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are uncountably many. However, for a set C ⊂ S it will be difficult, if not impossible, to

determine whether it contains all paths at a given time. This problem is alleviated in the

case of CFTP where the existence of successful coupling has been shown (see [14]) to be

equivalent to the uniform ergodicity of the chain X t, in which case the small set is the whole

sample space, S, so all paths are automatically within a small set at all times. An example

where this idea has been brought to fruition is the multigamma coupler introduced by [41],

following the gamma coupler of [30]. The method is further developed by [40] in the context

of perfect sampling from continuous state distributions.

The multigamma coupler applies when the update kernel density f(·|x) of the Markov

chain is known. In addition, it requires that there is a nonnegative function r such that

f(y|x) ≥ r(y), ∀x, y ∈ S. (1.5.2)

If we denote ρ =
∫
r(y)dy > 0, then in line with the splitting technique discussed above we

can write

P (Xt+1 ≤ y|Xt = x) = ρR(y) + (1− ρ)Q(y|x), (1.5.3)

where R(y) = ρ−1
∫ y

−∞ r(v)dv and Q(y|x) = (1− ρ)−1
∫ y

−∞[f(v|x)− r(v)]dv.

As a simple example, assume that the transition kernel has the Gamma density f(y|a, bx) =
ya−1bax exp(−ybx)/Γ(a), where a is fixed, bx depends on the previous state Xt = x but it is

always within a fixed interval, say bx ∈ [b0, b1], where b0 and b1 are known constants. Then

we can set r(y) = ya−1ba0 exp(−yb1)/Γ(a), which yields ρ = (b0/b1)
a. At each t, we sample

ξ ∼ Bernoulli(ρ), and if ξ = 1, we draw y from Gamma(a, b1), and let all paths Xt+1 = y

regardless of their previous states, hence coalescence takes place. If ξ = 0, then we draw

from the Q component in (1.5.3) (though this step requires drawing from a non-standard

distribution).

In situations when no uniform bound can be found on S for (1.5.2) to hold, [41] propose

partitioning S = S1 ∪ . . . ∪ Sm and bounding the kernel density f on each S i with ri

and introduce a partitioned multigamma coupler for this setting. A more difficult coupling

strategy has been described in [28] in the case of geometrically (but not necessarily uniformly)

ergodic chains, though the approach has not been implemented on a wider scale.
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There is a direct connection between the multigamma coupler and the Ro-CFTP in Sec-

tion 1.4.1. With a block of size K = 1 the multigamma coupler construction implies that

the probability of coalescence within the block is ρ. As described above, we can therefore

sample a geometric T with success probability ρ, and start from a coalesced value, namely,

an independent draw from R(y) in (1.5.3). We then run the chain forward for T − 1 steps

conditioning on non-coalesced blocks, namely, we use the Q component of (1.5.3) as the

transition kernel. The resulting value then is an exact draw from Π ([41]).

There is also a close connection between the multigamma coupler and the slice sampler

(see Section 1.5.4), as both can be viewed as building upon the following simple idea: for a

given (not necessarily normalized) density g(y), if (U, Y ) is distributed uniformly on Ωg =

{(u, y) : u ≤ g(y)}, then the marginal density of Y is proportional to g(y). Therefore, when

f(y|x) ≥ r(y) for all x and y, we have

Ωr = {(u, y) : u ≤ r(y)} ⊂ Ωf,x = {(u, y) : u ≤ f(y|x)}, ∀ x ∈ S. (1.5.4)

For simplicity of illustration, let us assume all Ωf,x are contained in the unit square [0, 1]×
[0, 1]. Imagine now we use rejection sampling to achieve the uniform sampling on Ωf,x for a

particular x by drawing uniformly on the unit square. The chance that the draw (u, y) will

fall into Ωr is precisely ρ, and more importantly, if it is in Ωr, it is an acceptable proposal for

f(y|x) regardless of the value of x because of (1.5.4). This is the geometric interpretation of

how the coalescence takes place for splitting coupling, which also hints at the more general

idea of coupling via a common proposal, as detailed in the next section.

1.5.2 Coupling via a Common Proposal

The idea of using a common proposal to induce coalescence was given in [5] as a way to

address the second challenge discussed in Section 1.2.3. (Note however that this strategy

does not directly address the first challenge, namely discretizing a continuous set of paths

into a finite set; that challenge is addressed by, for example, the augmentation method

described in the next subsection, or by other clever methods such as the multishift coupler

in [61].) Imagine that we have managed to reduce the number of paths to a finite one. In

practice, it may still take a long time (possibly too long) before all paths coalesce into one.
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Intuitively, one would like to make it easier for paths that are close to each other to coalesce

faster.

Remarkably, the description of coupling via a common proposal can be formulated in a

general setting irrespective of the transition kernel used for the chain, as long as it has a

density. Suppose the chain of interest has transition kernel with the (conditional) density

f(·|Xt). Instead of always accepting the next state asXt+1 ∼ f(·|Xt), we occasionally replace

it with a random draw Ỹ sampled from a user-defined auxiliary density g. Thus, the Xt+1

from the original chain plays the role of a proposal and is no longer guaranteed to be the

next state; we therefore relabel it as X̃t+1.

Instead, given Xt = x, the next state Xt+1 is given by the following updating rule,

Xt+1 =

 Ỹ , if f(Ỹ |x)g(X̃t+1)

f(X̃t+1|x)g(Ỹ )
> U ;

X̃t+1, otherwise.

(1.5.5)

where U ∼ Uniform(0, 1) and is independent of any other variables. In other words, the

above coupler makes a choice between two independent random variables X̃t+1 and Ỹ using

a Metropolis-Hastings (M-H) acceptance ratio. Note that the M-H accept-reject move is

introduced here simply to ensure that the next state of the chain has distribution density

f(·|Xt) even if occasionally the state is “proposed” from g. The coupling via a common

proposal tends to increase the propensity of coalescing paths that are close to each other.

More precisely, suppose that two of the paths are close, i.e. X
(1)
t ≈ X

(2)
t . Then the ratios

(1.5.5) will tend to be similar for the two chains, which implies that both chains will likely

accept/reject Ỹ simultaneously.

It is also worth emphasizing that the above scheme requires a modification in order to be

applicable to Markov chains whose transition kernels’ densities are not available (either they

do not exist or not easily computable). For example, for an M-H algorithm, coupling can

be done at the level of proposals using an independent auxiliary variable generated from an

auxiliary density g as in [5].

This perhaps is best seen via a toy example. Suppose our target distribution is N(0, 1),

and we adopt a random walk Metropolis, that is, the proposal distribution is q(y|x) =
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N(y − x), where N(z) is the density of N(0, 1). Clearly, because N(z) is continuous, two

paths started in different points of the sample space will have zero probability of coalescing

if we just let them “walk randomly”. To stimulate coalescence, we follow the ideas in [5] and

create an intermediate step in which the proposals used in the two processes can be coupled.

More precisely, at each time t we sample Z̃t+1 ∼ g(·), where g is an auxiliary density

supported on R. Suppose that the proposal for chain i at time t is Ỹ
(i)
t+1 where Ỹ

(i)
t+1 ∼

N(X
(i)
t , 1). We then define

W̃
(i)
t+1 =


Z̃t+1, if

N(Z̃t+1−X(i)
t )g(Ỹ

(i)
t+1)

N(Ỹ
(i)
t+1−X

(i)
t )g(Z̃t+1)

> U

Ỹ
(i)
t+1, otherwise

, (1.5.6)

where U ∼ Uniform(0, 1) is independent of all the other variables. The proposal W̃
(i)
t+1

is accepted using the usual M-H strategy because its density is still the density of the

original proposal, i.e. N(X
(i)
t , 1); the next state is then either W̃

(i)
t+1 (acceptance) or X

(i)
t

(rejection). What has changed is that regardless of which paths the chains have taken, their

M-H proposals now have a positive probability to take on a common value Z̃t+1 for all those

chains for which the first inequality in (1.5.6) is satisfied. This does not guarantee coupling

but it certainly makes it more likely. In Figure 1.5 we show two paths simulated using the

simple model described above, where the two paths first came very close at t = −8 and then

they coalesced at t = −7.

1.5.3 Coupling via Discrete Data Augmentation

Data augmentation ([55]), known also as auxiliary variable method in statistical physics,

is a very effective method for constructing efficient MCMC algorithms; see [59] for a re-

view. It turns out to be useful for perfect sampling as well, because we can purposely

consider auxiliary variables that are discrete and therefore convenient for assessing coales-

cence. Specifically, suppose our target density is f(x), where x may be continuous. Suppose

we have a way to augment f(x) into f(x, l), where l is discrete. If we can perform Gibbs

sampling via f(x|l) and f(l|x), then we automatically will have a Markov sub-chain with

f(l) as the stationary density (note the sub-chain with l only is Markovian because the Gibbs
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Figure 1.5: Illustration of coupling with proposals for two paths.
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sampler here only involves two steps). Therefore, we have effectively turned the continuous

problem for f(x) into a discrete one because once we have an authentic draw from f(l), then

we can easily get a corresponding authentic draw from f(x) by sampling from f(x|l).

To illustrate, consider finite mixtures, where the obvious auxiliary variable is the indicator

variable indicating the mixture component from which a sample is obtained. The coupling

via augmentation has been successfully implemented by [23] in the case of two-component

mixtures of distributions and by [42] in the case of Bayesian mixture priors. Below is one of

the examples discussed by [23], which we recast in order to crystalize the essence of discrete

data augmentation.

Consider the mixture αf0(d) + (1 − α)f1(d), where only the mixture proportion α is

unknown and therefore we seek its posterior density, assuming a uniform prior on (0, 1).

Given a sample {d1, . . . , dn} from the mixture, the posterior for α is proportional to

p(α|d⃗) ∝
n∏

i=1

{αf0(di) + (1− α)f1(di)}, (1.5.7)

involving 2n terms when expanded; note that here we use d⃗ = {d1, . . . , dn} to denote the

data instead of the original {x1, . . . , xn}, to avoid the potential confusion of our generic

notation that uses X for the sampling variable, which is α here. Let the latent variables

z⃗ = {z1, ..., zn} be such that zi = 0 if di has been generated from f0 and zi = 1 if di has been

generated from f1. Then it is easy to see that

P (zi = 1|d⃗, α) = (1− α)f1(di)

αf0(di) + (1− α)f1(di)
:= pi (1.5.8)

and

P (α|z⃗) = Beta

(
n+ 1−

n∑
i=1

zi,

n∑
i=1

zi + 1

)
. (1.5.9)

This implies that we can construct the discrete augmentation as l =
∑

i zi, which has a

non-homogenous binomial (NhB) distribution NhB(n, p⃗), where p⃗ = {p1, . . . , pn}. That is, l
is the sum of n independent but not necessarily identically distributed Bernoulli variables.

Given this data augmentation scheme f(α, l), the algorithm given in [23] can be reformulated

as follows.

1. Because of (1.5.9), given lt = l, we generate αt+1 ∼ Beta(n+ 1− l, l+ 1), which can be
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accomplished by drawing wj ∼ Exponential(1) for j ∈ {1, . . . , n+ 2} and then letting

αt+1 =

n+1−l∑
i=1

wi

n+2∑
i=1

wi

. (1.5.10)

2. Given αt+1 = α, because of (1.5.8), we need to draw lt+1 from NhB(n, p⃗(α)), where

p⃗(α) = {p1, . . . , pn}, with pi ≡ pi(α) given by the right-hand side of (1.5.8). This draw

is accomplished by generating independent ui ∼ Uniform(0, 1) and letting

lt+1 =
n∑

i=1

1{ui ≤ pi}, (1.5.11)

where 1{A} is the usual indicator function of event A.

Combining (1.5.10)-(1.5.11), we see that the SRS from lt to lt+1 can be written as

lt+1 ≡ ϕ(lt; u⃗, w⃗) =
n∑

i=1

1

ui ≤

1 +( ∑n+2
i=1 wi∑n+1−lt

i=1 wi

− 1

)−1
f0(di)

f1(di)

−1 . (1.5.12)

For given u⃗ = {u1, . . . , un} and w⃗ = {w1, . . . , wn}, the function ϕ in (1.5.12) is evidently

increasing in lt and thus defines, with respect to the natural integer ordering, a monotone

Markov chain on the state space Sl = {0, . . . , n}, with the ceiling and floor states given by

l = 0 and l = n. Through data augmentation we therefore have converted the problem of

drawing from the continuous distribution given by (1.5.7) to one in which the sample space

is the finite discrete space Sl, given by (1.5.12), for which we only need to trace the two

extreme paths starting from l = 0 and l = n.

1.5.4 Perfect Slice Sampling

Slice sampling is based on the simple observation that sampling from Π (assumed to have

density π) is equivalent to sampling from the uniform distribution g(u, x) ∝ 1{u≤f(x)} where f

is an un-normalized version of π and is assumed known. One can easily see that the marginal

distribution of x is then the desired one. In turn, the sampling from g can be performed

using a Gibbs scan in which both steps involve sampling from uniform distributions:
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Step I Given Xt, sample U ∼ Uniform(0, f(Xt));

Step II Given U from Step I, sample Xt+1 ∼ Uniform[A(U)], where A(w) = {y : f(y) ≥ w}.

Here, for simplicity, we assume A(U) has finite Lebesgue measure for any U ; more general

implementations of the slice sampler are discussed in [11] and [48]. The coupling for slice

sampling has been designed by [34] under the assumption that there exists a minimal element

xmin ∈ S with respect with the order x ≺ y ⇔ f(x) ≤ f(y).

Specifically, the perfect slice sampler achieves coupling via introducing common random

numbers into the implementation of Steps I-II in the following fashion. For Step I, regardless

of the value ofXt, we implement by drawing ϵ ∼ Uniform(0, 1) and then letting U = U(Xt) =

ϵf(Xt); hence all U(Xt)’s share the same random number ϵ.

Given the U = U(Xt) from Step I, we need to implement Step II in such a way that

there is a positive (and hopefully large) probability that all Xt+1 will take the same value

regardless of the value Xt. This is achieved by forming a sequence of random variables

W = {Wj}j=1,2,..., where W1 ∼ Uniform[A(f(xmin))] and Wj ∼ Uniform[A(f(Wj−1))], for

any j ≥ 2. The desired draw Xt+1 is then the first Wj ∈ A(U(Xt)) = A(ϵf(Xt)), that is,

Xt+1 ≡ ϕ(Xt, (ϵ,W)) = Wτ(Xt), (1.5.13)

where τ(x) = inf{j : f(Wj) ≥ ϵf(x)}.

In [34] it is proven that, almost surely, only a finite number of the elements of the sequence

W are needed in order to determine τ(x). The correctness of the algorithm is satisfied if

Wτ(x) ∼ Uniform[A(ϵf(x))], and in [34] this is established by viewing it as a special case of

adaptive rejection sampling. Here we provide a simple direct proof. For any given x, denote

A(x) = A(ϵf(x)), and B
(x)
j = {(W1, . . . ,Wj) : f(Wi) < ϵf(x), i = 1, . . . , j}. Then clearly for

any k ≥ 1, {τ(x) = k} = {Wk ∈ A(x)} ∩ B
(x)
k−1 (assume B

(x)
0 = S for any x ∈ S). Hence, for
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any (measurable) set C ⊂ A(x), we have

P ({Wτ(x) ∈ C}|τ(x) = k) =
P ({Wk ∈ C ∩ A(x)} ∩B

(x)
k−1)

P ({Wk ∈ A(x)} ∩B
(x)
k−1)

=
E
[
E
(
1{Wk ∈ C}1{B(x)

k−1}|W1, . . . ,Wk−1

)]
E
[
E
(
1{Wk ∈ A(x)}1{B(x)

k−1}|W1, . . . ,Wk−1

)]
=

E
[
1{B(x)

k−1}P ({Wk ∈ C}|Wk−1)
]

E
[
1{B(x)

k−1}P ({Wk ∈ A(x)}|Wk−1)
] . (1.5.14)

In the above derivation, we have used the fact that {W1, . . . ,Wk} forms a Markov chain

itself. Given Wk−1 = w, Wk is uniform on A(f(w)) by construction, so P ({Wk ∈ B}|Wk−1 =

w) = µ(B)/µ(A(f(w))), where µ is the Lebesgue measure. Consequently, the last ratio in

(1.5.14) is exactly µ(C)/µ(A(x)), the uniform measure on A(x). It follows immediately that

Wτ(x) ∼ Uniform(A(x)) = Uniform[A(ϵf(x))].

To visualize how Steps I-II achieve coupling, Figure 1.6 depicts the update for two paths

in the simple case in which f is strictly decreasing with support (0, xmin). Suppose the

two chains are currently in X1 and X2. Given the ϵ drawn in Step I, the monotonicity of

f allows us to write A(ϵf(X1)) = (0, A1) and A(ϵf(X2)) = (0, A2). Step II then starts

by sampling W1 ∼ Uniform(0, xmin) and, since it is not in either of the intervals (0, A1) or

(0, A2), we follow by sampling uniformlyW2 ∼ Uniform(0,W1) which is the same as sampling

W2 ∼ Uniform[A(f(W1))] since f is decreasing. Because W2 ∈ (0, A2), we have τ(X2) = 2

so X2 is updated into W2. As W2 ̸∈ (0, A1) we continue by sampling W3 ∼ Uniform(0,W2)

and since W3 ∈ (0, A1) we can set τ(X1) = 3. Thus, in the case illustrated by Figure 1.6

the updates are ϕ(X1,W) = W3 and ϕ(X2,W) = W2. To understand why this construction

creates opportunity for coupling, imagine that the second uniform draw, W2, happens to

be smaller than A1. In this case, τ(X1) = τ(X2) = 2 so both X1 and X2 are updated

into W2 which means that the two paths have coalesced. In fact, for all X ∈ (0, xmin)

with the property that f(X) ≤ f(W1)/ϵ we have ϕ(X,W) = W1 and for all X such that

f(W1)/ϵ < f(X) ≤ f(W2)/ϵ, ϕ(X,W) = W2, and so on. This shows how the continuous set

of paths is discretized in only one update.

Figure 1.6 also illustrates that the density ordering X2 ≺ X1 (since f(X2) < f(X1)) is
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Figure 1.6: Illustration of perfect slice sampling.

consistent with the same ordering for the updates: ϕ(X2,W) = W2 ≺ ϕ(X1,W) = W3

because f(W2) ≤ f(W3) by construction. This is true in general because if X2 ≺ X1, that

is f(X2) ≤ f(X1), then τ(X2) ≤ τ(X1) because A(ϵf(X1)) ⊂ A(ϵf(X2)). Consequently,

Wτ(X2) ≺ Wτ(X1). This property implies that we can implement the monotone CFTP as

described in Section 1.3.1, because a maximal xmax = 0 exists in this case. In situations in

which the extremal states cannot be found, [34] show how to construct bounding processes

for this perfect slice sampler.

1.6 Swindles

The term swindle has traditionally been used in Monte Carlo literature to characterize

any strategy or modification that either reduces the computational effort or increases the

efficiency of the algorithm (e.g., [53] and [17]). Usually, swindles are relatively easy-to-

implement generic methods applicable to a wide class of algorithms. In the following we

describe some of the swindles proposed that are either for or taking advantage of perfect
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sampling ideas.

1.6.1 Integrating Exact and Approximate MCMC Algorithms

It is probably clear by now to the statistician with some travel experience in the MCMC

kingdom that perfect sampling may not be the vehicle that one could take on every trip.

But it is possible to extend its range considerably if we couple it with more traditional

MCMC methods. Here we describe such an approach devised by [37] to deal with Bayesian

computation in cases where the sampling density is known only up to a constant that depends

on the model parameter, and hence the likelihood function itself cannot be evaluated directly.

More precisely, consider the case in which the target of interest is the posterior density

π(θ|y) ∝ p(θ)p(y|θ), where p(θ) is the prior density and p(y|θ) is the sampling density of the

data. There is a large spectrum of problems, e.g., Markov random fields, image analysis,

Markov point processes, Gaussian graphical models, neural networks, for which p(y|θ) is

known only up to a constant, i.e., p(y|θ) = q(y|θ)/Cθ, with the functional form of q known

but the normalizing constant Cθ unknown, in the sense that its value at any particular θ

is hard or even impossible to calculate. Obviously, for such problems, the classical MCMC

approach cannot be directly implemented. For instance, a Metropolis algorithm with a

symmetric proposal, moving from θ → θ′, would require the calculation of the acceptance

ratio

α(θ′; θ) = min

{
1,

p(θ′)q(y|θ′)
p(θ)q(y|θ)

× Cθ

Cθ′

}
(1.6.1)

which involves the unknown ratio of two normalizing constants, Cθ/Cθ′ , a problem which

occurs in many areas (see for example [33], [16], and [32]).

One obvious way to deal with this problem is to use Monte Carlo or other approximations

to estimate each ratio needed in the implementation of Metropolis-Hastings algorithm. A

more creative and “exact” solution is proposed by [37] with the help of perfect sampling.

The idea is to add into the mix an auxiliary variable x such that the chain updates not only θ

but (θ, x) via MH sampling with an acceptance ratio in which no unknown constant appears.

Since the auxiliary variable is just a computational artifact, as long as the marginal distri-

bution of θ is preserved there is a lot of freedom in choosing how to update x. In particular,
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we consider updating (θ, x) via a proposal (θ′, x′) in which the proposal θ′ is generated as

in the original chain (does not depend on x) but x′|θ′, θ, x ∼ q(·|θ′)/Cθ′ . Essentially, x′ is

pseudo-data simulated from the sampling distribution when the parameter is equal to the

proposal, θ′. For the new chain, the acceptance ratio is then

α̃ = min

{
1,

p(θ′)q(y|θ′)q(x|θ)
p(θ)q(y|θ)q(x′|θ′)

}
, (1.6.2)

which no longer involves any unknown normalizing constant.

A perceptive reader may have immediately realized that the above scheme simply trans-

fers one difficult problem into another, namely, simulating from the original sampling density

p(·|θ′) = q(·|θ′)/Cθ′ . Since Cθ′ is not available, direct methods such as inverse CDF are out

of question (even when they are applicable otherwise). We can of course apply Metropolis-

Hastings algorithm itself for this sampling, which will not require any value of Cθ (since

here we sample for x, not θ). But then we would need to introduce a new proposal, and

more critically we would need to worry about the convergence of this imbedded Metropolis-

Hastings algorithm within each step of creating a proposal (θ′, x′) as called for by (1.6.2).

This is clearly cumbersome and indeed entirely defeats the purpose of introducing x′ in order

to have a “clean” solution to the problem without invoking any approximation (beyond the

original Metropolis-Hastings algorithm for θ). This is where the perfect sampling method-

ologies kick in, because if we have an exact draw from p(x′|θ′), then the acceptance ratio

given in (1.6.2) is exactly correct for implementing the Metropolis-Hastings algorithm for

drawing (θ, x) and hence for θ. This is particularly fitting, since intractable likelihoods are

common in inference for point processes and this is also the area where exact sampling has

been most successful. For instance, in [37], the method is illustrated on the well-known Ising

model which was proposed as a main application in Propp and Wilson’s landmark paper

[51], which is a “must” for any tourist of the magic land of perfect sampling.

We emphasize that the method discussed here is only one among a number of promising

attempts that have been made to couple the power of traditional MCMC with the precision

of perfect sampling such as in [44] and [47]. See also [46] for related ideas and algorithms.
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1.7 Unbiased MCMC: A fertile trade-off?

Perfect sampling’s promise of drawing iid samples from the target has, for the practical

statistician, important consequences as it eliminates the bias in estimation and, perhaps

most importantly, it dissolves the need for computing (or bounding) the distance between

the distribution of the chain at t-th update and the target. However, the original promise

has remained mostly aspirational because perfect sampling remains to this day limited in

its application to statistical computation. Nevertheless, recent developments on unbiased

MC— see Chapter ??? in this handbook for by Yves Atchade and Pierre Jacob for a full

treatment—have demonstrated that coupling can be used more widely and, arguably, much

more effectively as long as one is willing to promise less. This line of work builds on pioneering

ideas of [19] and [18], who put forth strategies for exact estimation of integrals via Markov

chain Monte Carlo, forming the class of so-called unbiased MCMC (UMCMC).

Specifically, the L-lag coupling of [4] and [1] delivers: i) unbiased estimators of E[h(Xπ)]

for any (integrable) h, where Xπ denote a random variable defined by π(X) and ii) a bound

on the total variation distance between πk, the distribution of Xk, and π. This immediately

recovers the two practical consequences of perfect sampling we mentioned above. Switching

from being able to perform iid sampling from the target to unbiased estimation relies on an

apparent trade-off: instead of coupling chains started from all possible values in the state

space, the UMCMC strategy is to couple only two copies of the MCMC chain of interest.

The two chains, say X = {Xt, t ≥ 0} and Y = {Yt, t ≥ 0} are started from the same initial

distribution, are updated using the same transition kernel, and are shifted by a time lag L.

Specifically, the two chains X ,Y are coupled so that there exists with probability one a

finite stopping time τL such that Xt = Yt−L for all t ≥ τL. This construction allows [1] (for

L = 1) and [4] (general L) to show that the following estimator based on both X and Y ,

Hk,L(X ,Y) = h(Xk) +

Jk,L∑
j=1

[
h(Xk+jL)− h(Yk+(j−1)L)

]
, (1.7.1)

where Jk,L = max
{
0, ⌈ τL−L−k

L
⌉
}
, is an unbiased estimator for E[h(Xπ)] for any k ≥ 0 (under

mild conditions). This follows from noticing that (1.7.1) is the same as
∑∞

j=1[h(Xk+jL) −
h(Yk+(j−1)L)] because the terms corresponding to j ≥ Jk,L + 1 are zero due to the coupling
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scheme. Furthermore, for the purpose of calculating expectations, we can replace h(Yk+jL) by

h(Xk+jL) for any j ≥ 0 because they have identical distributions by construction. However,

h(Xk) +
∑∞

j=1[h(Xk+jL) − h(Xk+(j−1)L)] is nothing but limt→∞ h(Xt), which has the same

distribution as h(Xπ).

In our discussion ([10]) of [1] we have identified a simple way to reduce the variance of Hk

via control variates. Specifically, after rearranging the terms in (1.7.1) we find an alternative

form for Hk,

Hk,L(X ,Y) = h(Xk+LJk,L) +

Jk,L−1∑
j=0

[h(Xk+jL)− h(Yk+jL)] . (1.7.2)

that spotlights the time-backwards correction term

Jk,L−1∑
j=0

[h(Xk+jL)− h(Yk+jL)] (1.7.3)

which has known mean zero (conditional on τ), thus making it a natural candidate for a

control variate.

Moreover, [4] have shown that (under mild regularity conditions) the total variation dis-

tance between πk, the distribution of Xk, and π is bounded by a very simple function of τL

and (k, L):

dTV(πk, π) ≤ E[Jk,L]. (1.7.4)

In [8] we explore the use of (1.7.3) to reduce the variance of Hk,L in (1.7.1). Setting,

∆k,j = [h(Xk+jL)− h(Yk+jL)], in [8] we consider control variates of the form
∑

j ηj∆k,j and

derive the optimal choice for the coefficients ηj. The optimality criteria is set in terms

of sharpening the TV distance between πk and π and leads to ηj = 1{Sj>0.5} where Sj =

Pr(J̃k,L ≥ j) = Pr(Jk,L > j) + 0.5Pr(Jk,L = j), for any j ≥ 0. The resulting bound is

always tighter than the total variation bound (1.7.4) but difference is of practical significance

only when τL has a small median - we refer the reader to [8] for additional details and

examples.
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1.8 Where Are The Applications?

The most resounding successes of perfect sampling have been reported from applications

involving finite state spaces, especially in statistical physics (e.g. [51], [25] [20], [52]) and

point processes (e.g. [29], [38], [31], [35], [56], [27], [39], [21], [2]). Other applications include

sampling from truncated distributions (e.g., [50], [3]), queuing ([45]) , Bayesian inference (as

in [41], [42], [36],[22]) and mixture of distributions (see [23], [7]). In the first edition of this

chapter, we commented on the trade-off between perfection and practicality writing that:

“The price one pays for this mathematical precision is that any perfect sampling

method refuses to produce a draw unless it is absolutely perfect, much like a

craftsman reputed for his fixation with perfection refuses to sell a product unless it

is 100% flawless. In contrast, any “non-perfect” MCMC method can sell plenty of

its “products”, but it will either ask the consumers to blindly trust their qualities

or leave the consumers to determine their qualities at their own risk. The perfect

sampling versus non-perfect sampling is therefore a trade-off between quality and

quantity. Like with anything else in life, perhaps the future lies in finding a sensible

balance.”

The emergence of UMCMC is one such instance of a sensible balance. We believe that

more research will be devoted to improve its by-products either through ingenious coupling

techniques or via unbiased estimators with superior properties. We also hope that, just as we

did not anticipate the progress brought on by UMCMC, the future will continue to surprise

us and the ideas put forth by the ambitious project that is perfect sampling will deliver other

methods to strike that elusive perfect balance.
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