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This manual presents examples of the use of Symbolic Computation for Statistical
Inference using R. A full discussion of the theory on which the computations are based is
found in the book by Jamie Stafford and the author of the same title. This
implementation uses simpler notation appropriate for computing in R. General
procedures are defined which may be used for specific problems. These applications are
illustrated by computing unbiased estimates of moments and cumulants, and the means,
variances and other moments of

1) correlation coefficients

1i) maximum likelihood estimates

1i1) more general M-estimates

1v) deviance or log likelihood ratio

V) generalized signed roots of deviance
The results are expressed as expansions in 1/n, one over the sample size. They may
computed to any order. The resulting expressions can be evaluated for numerical data.

This introduction covers the case of independent and identically distributed random
variables. Extensions to p-dimensional parameters have been developed and are
discussed separately. The discussion presents the one dimensional, real case.

WHAT IS THE USE OF DOING IT SYMBOLICALLY
Symbolic calculation is useful for speed and generality.

The computed symbolic expressions involve simple averages and functions. As a result
they are evaluated very quickly and precisely. This speed is useful in applications
involving repeated calculations as for example in Monte Carlo. The expressions for
symbolic moments are equivalent to bootstrap estimates with a large number of
bootstrap samples. (The symbolic results are exact or correct to n(-k/2) where the
bootstrap estimates based on m bootstrap samples are correct to m”(-1/2).)

The expressions are general. Their application requires the definition only of
expectations of simple random variables. For example, the calculation of properties of a
likelihood ratio statistic requires only the definition of the expectation of the products of
log-likelihood derivatives. These can be specified for any distribution.



SOURCE CODE

The basic procedures are contained in the file SCSI.1.0.2.txt. The file can be obtained
from http://www fisher.utstat.utoronto.ca/david/Sym2006/Sym2006.html . To use the
procedures, begin the R code with

source(file="http://www.fisher.utstat.utoronto.ca/david/Sym2006/SCSI.1.0.2.txt")
Alternatively, save the file
http://www .fisher.utstat.utoronto.ca/david/Sym2006/SCSI.1.0.2.txt

to a convenient location and modify the following the source statement to point the that
location.

SYMBOLIC FUNCTION S
The calculations are defined by the function S. This function has one argument, a string
containing the expression to be evaluated.
USAGE
S( text )
The functions are rather easy to use. For example, the function EA computes
expectations, E, from averages, A. To compute the expected value of the product of two
averages,
S( EA( A(X) * A(Y) ) )
produces the expression
((1 + =-1* 1/n)) * (E(X) * E(Y)) + ( 1/n) * E(X * Y)
The function CE computes cumulants, C, from expectations, E. The command
S( CE(EA(A(X) * A(Y))) )
produces
(C(X) * C(Y)) + ( 1/n) * C(X,Y)
an expression involving the covariance.
Fisher computed unbiased estimates of cumulants. These are expressed in terms of
averages. Here, the simple function AE produces the unbiased estimates expressed in

averages, A, from expectations, E. The unbiased estimate of the fourth cumulant is
computed by expressing the cumulant in terms of expectations and then applying AE.



ac4 <- S( AE( EC( C( X, X, X, X ) ) ) )
The result is rather lengthy but is simply evaluated numerically.
n <- 100; X <- rnorm(n); Eval( ac4d )

The function, S, returns an object which can be used by other R functions. The R
function, Eval, evaluates objects numerically. For this reason, the results are expressed in
simple text with no subscripts or foreign alphabets. We are comforted by the Red Green
maxim: if folks don’t find you pretty, they should find you useful. In some places,
harmless redundant parentheses appear. Note however that the objects returned are rather
special. Evaluation of addition, multiplication etc. of these objects should be done with
the function s. Eval converts the objects to expressions which are then evaluated in R.

The function s is rather simple. It can be used for the types of expression illustrated here.
For clarity and other reasons, it is useful to break up a complex expression and assign the
intermediate results as is illustrated in the correlation example below.

The symbolic calculations involve simple objects and basic transformations described
below. These simple operations permit quite complex calculations such as signed roots
of log likelihood ratios.

FUNDAMENTAL OBJECTS

The objects of statistics are typically expressed as averages, expectations (moments) and
cumulants denoted here by A, E, C respectively. The standard calculations of statistics
may be described as transformations of objects of one type into object to another type.
For example, consider the estimate of a population mean. The estimate is the sample
average, denoted here by A(X). The variance of this estimate is expressed in terms of
expectations E: ( E(X*X) — E(X)*E(X) )/n. An object composed of averages, A, has
been transformed into an object composed of expectations, E. Since almost all estimates
can be expressed in terms of averages, and most statistical properties can be expressed in
terms of expectations, this is a very common and useful transformation. The calculation
involves of a transformation of averages into expectations. Several useful transformations
have been implemented. The objects and the transformations are described below.

A: AVERAGES

Averages are denoted by A. Here we create and print the average of the product of two
variables X and Y. The input and output have been cut and pasted from R. The input
lines are shown here with the prompt “<”. These commands may be executed by cutting
the line from the text — without the prompt “<” -- and pasting the cut into R.

> axy <- S( A(X*Y) ); axy
A(X * Y)



One linear property of averages has been implemented as can be seen from the
following.

> S( A(2*X + 3*Y) )
(2) * A(X) +
(3) * A(Y)

EVAL: NUMERICAL EVALUATION

The assigned expressions may be evaluated for data using the function Eval, and
compared to the stand numerical calculation. The requires the definition of n, the sample
size, and values for the variables. The evaluation of the symbolic expression is given with
the standard numerical result.

> n<- 10; X <- 1l:n; Y<- n:1;
> c¢( Eval(axy), mean(X*Y))
[1] 22 22

The standard R syntax may be used for arithmetic expressions. For example, here we give
the expression for the Gaussian MLE estimate of variance.

> estvarx <- S( A(X*X) - A(X)*A(X) );
> estvarx
A(X * X) +

(-1) * (A(X) * A(X))

The expression is compared with the standard R numerical calculation.

> c¢( Eval(estvarx), var(X)*(n-1)/n )
[1] 8.25 8.25

E: EXPECTED VALUES OR MOMENTS

Expected values, or moments, are denoted by E. Here we give the expected value of a
linear combination of random variables.

>S( E(2*X + 3*Y) )
(2) * E(X) + (3) * E(Y)

CHANGING THE TYPES OF OBJECTS

The objects, A, C, and E are related by simple, fundamental transformations. Each type
may be transformed to another. These transformations correspond to common statistical
calculations. The transformations are denoted by pairs of letters. The first letter denotes
the type of the result, and the second, the type of the argument. Thus EA produces



expectations from averages. It is applied to averages. The transformations may be
composed. The notation helps in checking whether the calculation is meaningful. Thus
CE(EA(AC(...))) makes sense and all letters except the first come in pairs. But
EC(EA(AC(...))) does not because the first operator, EC, should have cumulants (C) as its
argument where in fact it has expectations produced by EAC(...).

EA: EXPECTATION Computing expected values of expressions involving averages.

The transformation that produces the expected value of an expression involving averages
is denoted by EA. This transformation assumes that the A’s represent the average of n
independent realizations of random variables. The expected value of the estimate of
variance may be computed by

> eestvar <- S( EA(A(X*X) - A(X)*A(X)) )
> eestvar

(( -1 * 1/n + 1)) * E(X * X) +
(( -1 + 1/n)) * (E(X) * E(X))

AE: UNBIASED ESTIMATES Computing unbiased estimates of expectations

The above example shows the bias of the MLE estimate of variance. The unbiased
estimate of variance may be simply computed using the operator AE.

> uestvar <- S({( AE(E(X*X)- E(X)*E(X)) ); uestvar
(( 1/(n-1) + 1)) * A(X * X) +
(( -1 + -1+* 1/(n-1))) * (A(X) * A(X))

This result can be checked numerically by evaluating the expression and comparing it to
the usual estimate of variance.

> c¢( Eval(uestvar), var(X) )
[1] 9.166667 9.166667

CE: Computing a cumulant expression from one involving expectations

Moments or expectations can be reexpressed in terms of cumulants. The following
example shows that the variance is just the second cumulant.

> S( CE(E(X*X)- E(X)*E(X)) )
C(X,X)

EC: Computing a expectation expression from one involving cumulants

Cumulants can be expressed in terms of expectatations.

>S( EC(C(X,X)) )



(-1) * (E(X) * E(X)) +
E(X * X)

BE: Computing the bootstrap estimate from a parameter expressed as expecations.

Most statistical parameters may be expressed in terms of expectations. Expectations are
just averages with respect to a distribution. The basic bootstrap estimate computes the
corresponding expression in terms of averages with respect to the empirical distribution.
These averages are just the simple averages denoted by A. So the symbolic computation
of a simple bootstrap estimate is achieved by simply changing the E’s to A’s. (The
symbolic bootstrap is not computationally intensive.) The operator BE does this. Here
we compute the bootstrap estimate of a variance.

> S( BE(E(X*X)- E(X)*E(X)) )
A(X * X) + (-1) * (A(X) * A(X))

EXAMPLE: The bias and variance of the bootstrap estimate of variance

In this example we computed the variance of the bootstrap estimate of variance. First we
compute the bootstrap estimate of variance called bvar.

> varx <- S( E(X*X)- E(X)*E(X) )
> bvar <- S( BE(varx) ); bvar
A(X * X) + (-1) * (A(X) * A(X))

The bias of the bootstrap estimate is simply computed

> S( EA(bvar) - varx )
(-1 * 1/n) * E(X * X) + ( 1/n) * (E(X) * E(X))

The bootstrap variance has a bias which is just the variance times -1/n. It underestimates
the variance.

Next we compute varbvar, the variance of the bootstrap estimate of variance, bvar.
varbvar <- S( EA(bvar*bvar) — EA(bvar)*EA(bvar) )

The resulting expression is rather long. It is more simply expressed in terms of
cumulants using the operator CE.

> S( CE(varbvar) )
((2* 1/n + =2 * 1/n"2)) * (C(X,X) * C(X,X)) +
(( 1/n + -2 * 1/n"2 + 1/n"3)) * C(X,X,X,X)



The variance of bvar depends on the the square of the variance, C(X,X), but also on the
fourth cumulant, C(X,X,X,X) — to the same order, 1/n. This shows the heavy dependence
of variance of the estimate on distribution shape.

ASYMPTOTIC EXPANSIONS

The procedures described above apply to linear combinations of products of fundamental.
To extend calculations to logarithms, MLE’s etc., we need to first convert these into this
form of linear combinations of products. The standard conversion is achieved by
expanding objects in Taylor expansions. These expansions approximate the object to
order nA(-a/2). Machine computations make precise approximation possible.

The first step in investigating an estimate is to compute it’s expansion. The function
APPROX, produces an expansion. Here we produce the expansion of an average A(X) to
order n?-(4/2)

> S( APPROX(A(X),4) )
( E((X))) + Z(X)

The average, A(X), has been replaced by its expectation and the average deviation Z(X) =
A(X - E(X)). Average deviations, Z, are small, typically of order, in probability, of
n(-1/2).

EXPANSION OF FUNCTIONS

Functions of random variables are expanded using standard Taylor series. The following
example gives the expansion of f(A(X)). Note that the expansion stops at the term of
order nA(-4/2). This order was specified above in the approximation of A(X).

>S( f( APPROX(A(X),4) ) )
( £(( E((X))))) +
( £(( E((X))),1)) * 2(X) +
(0.5 * £(( E((X))),2)) * (Z(X) * (X)) +
(0.16666666667 * f(( E((X))),3)) * (Z2(X) * Z(X) * Z(X)) +
(0.041666666667 * f£(( E((X))),4)) * (Z(X) * Z(X) * Z(X) * Z(X))

where the i’th derivative of f is denoted by f( , 1).

Some common functions including log, sqrt and powers, denoted by “A” have been
implemented. The i’th derivative of f is denoted by f( , 1).

> S( log( APPROX(A(X),4) ) )
( log(( E((X))))) +
( (C E((X))))"-1) * Z2(X) +

(-0.5 * (( E((X))))"=2) * (Z(X) * Z(X)) +
(0.333333333333333 * (( E((X))))"=3) * (Z(X) * Z(X) * Z(X)) +
(=0.25 * (( E((X))))"=4) * (Z(X) * Z(X) * Z(X) * Z(X))

EZ: Computing expected values of expressions involving Z’s



The transformation EA computes expectations of expressions involving averages, A.
Asymptotic expansions involve standardized averages, Z. The transformation EZ
computes expected values from Z’s. Here we compute the expected value of the square
root of an average — to order n/\(-4/2)

> S( EZ( sqrt( APPROX(A(X), 4) ) ) )
( (( E((X)))"(0.5))) +
(-0.125 * (( E((X)))*(-1.5))*1/n) * E(z(X) * z(X)) +
(0.0625 * (( E((X)))"(-2.5))*1/n"2) * E(z(X) * z(X) * z(X)) +
(-0.1171875 * (( E((X)))"(-3.5))*1/n"2) * (E(z(X) * z(X)) *
E(z(X) * z(X)))

The result is expressed in terms of expectations of centered random variables z(X) = X —
E(X).

EXAMPLE: CORRELATION

The properties of the correlation coefficient are known for the Gaussian distribution.
Here we show how the moments of the statistic can be computed in general. This is
illustrated by evaluating the moments for the empirical distribution. Defining other
functions for E, will yield moments for any distribution.

The expansion to order n*(2/2) is defined. The first step specifies expansions of the first
and second sample moments required.

sax <- S( APPROX(A(X), 2) )
say <- S( APPROX(A(X), 2) )
saxx <- S( APPROX(A(X*X), 2) )
saxy <- S( APPROX(A(X*Y), 2) )
sayy <- S( APPROX(A(Y*Y), 2) )

VVVVYV

Expansions of square roots are used to define the statistic.

cxxX <- S( saxx - sax*sax )
cxy <- S( saxy - say¥*say )
cyy <- S( sayy - sax*say )
corxy <- S(cxy*cxx”(-1/2)*cyy”(-1/2) )

VVVYV

The expectation and variance are computed below.

> Ecorxy <- S( EZ(corxy) )
> Vecorxy <- S( EZ(corxy*corxy)-Ecorxy*Ecorxy )

The resulting expressions are lengthy. However, they may be evaluated numerically.
Here we evaluate them for the empirical distribution. In this case, E() is an average. The
required functions are defined.



> E<- function(x){mean(x)}
Gaussian data were generated with true correlation 1/sqrt(2).

> set.seed(42)

> n <- 100; 2zl <- rnorm(n); z2 <- rnorm(n)
> X <- z1 - mean(zl)

> Y <- 21422 - mean(zl+z2)

The expectation and variance of the statistic are computed for the empirical distribution.

> Eval(Ecorxy)
[1] 0.753956

> Eval(Vcorxy)
[1] 0.002475547

The asymptotic variance for the Gaussian distribution with correlation, r is (1-rA2)A2 /n.
In this case the value would be 0.0025. The expression for the variance permits
evaluation for any distribution.

AVERAGES OF FUNCTIONS: ROOTS OR INVERSES

Likelihood and M-estimates are defined in terms of averages of functions. For example,
M-estimates are defined as the root, thetahat, of the equation A(psi(thetahat, X)) =0. To
shorten the expressions, the dependence of the function on X is supressed, and we write
psi(thetahat) for psi(theahat,X) . This gives the the equation A(psi(thetahat)) =0. The
solution thetahat is the inverse average function denoted here by InverseA. The
expansion of thethat about theta is computed below.

> S( InverseA( psi(APPROX(theta,2)) ) )

( theta) +
(-1 * 1/E(psi(( theta),l))) * Z(psi(( theta))) +
( 1/E(psi(( theta),1))"2) *(Z(psi(( theta)))*Z(psi(( theta),1))) +

(-0.5 * 1/E(psi(( theta),1))"3*E(psi(( theta),2))) * (Z(psi((
theta))) * Z(psi(( theta))))

where the order of the expansion if specified by the argument of APPROX.

A LIKELIHOOD EXAMPLE

The maximum likelihood estimate is defined as above where psi is the score function, the
first derivative of log-likelihood function 1. The estimate is computed below.

>S( InverseA( 1(APPROX(theta,2),1l) ) )
( theta) +
(-1 * 1/E(1(( theta),2))) * Z(l(( theta),l)) +
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( 1/E(1(( theta),2))"2) * (2(l(( theta),1)) * Z(l(( theta),2))) +
(-0.5 * 1/E(L(( theta),2))"3*E(L(( theta),3))) * (Z(l(( theta),
1)) * z2(1(( theta),1)))

The average deviance or twice the drop in average log-likelihood is computed below to
order nA(-4/2). The usual theta has been changed to tO to shorten the printed result.

> thetal <- S( APPROX(tO0, 4) )

> thetahat <- S( InverseA( 1l(thetalO, 1) ) )

> hadev <- S( A(l(thetahat)) - A(l(thetal)) )

> S( EZ(hadev + hadev) )

-1 * 1/E(1(( t0),2))*1/n) * E(z(1(( t0),1)) * z(1(( t0),1))) +

1/E(1(( t0),2))"2*1/n"2) * E(z(1(( t0),1)) * z(1(( t0),1)) *
z(l(( t0),2))) +

(-0.333333333333333 * 1/E(L(( t0),2))"3*1/n"2*E(1(( t0),3))) *
E(z(l(( t0),1)) * z(1(( t0),1)) * z(1l(( t0),1))) + ...

(
(

The resulting expression can be evaluated by defining functions for 1, its derivatives and
their expected values.

SIGNED ROOTS

This lengthy example illustrates the use of symbolic computation in a complex
calculation.

The signed root of the deviance or log likelihood ratio is relatively symmetric and has
mean and variance that are relatively constant. It is therefore useful as a basis for
constructing confidence intervals. However in the typical case where the underlying
distribution of the data is not known exactly, the moments of the signed root must be
estimated. In this example, the variance of the signed root is computed and used to
calculate confidence intervals.

Let f be an arbitrary function corresponding to the likelihood. We do not assume that it is
a log density. Its first derivative is used to define the estimate in the same way as the M-
estimate or the mle above. This is used to compute dev, the generalized average
deviance.

thetal0 <- S( APPROX(t0, 4) ) # point of expansion
thetahat <- S( InverseA( f(thetal0, 1) ) ) # estimate
adev <- S( A(f(thetahat)) - A(f(thetal)) )

Next, the signed root of the average deviance is computed. The Taylor expansion of
A(f(thetahat, 1)) gives an expression for A(f(theta0, 1)). Substituting this in the Taylor
expansion of adev gives an expression with (thetahat — theta0)A2 as a factor. The
expansion of the signed root is computed by taking the square root of the second factor.

This done by noting that the Taylor expansion of the deviance can be factored

10
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dt <- S( thetahat - thetal ) #deviation of estimate
el2 <- S( A(f(theta0,2)) ) #average 2nd derivative
mel2 <- S( -el2 ) # times -1

mel2s <- mel2 #make a copy to get expected value
mel2s[2] <- mel2s[3] #set second term to 0

rel2 <- S( sqgrt(mel2s) ) #take its square root

rd <- S( rel2 * dt ) # times deviation

fac <- mel2 # first term of factor

for( i in 3:(length(thetahat)-1)) {

if(i == 3){
rdp <- dt
}
else{
rdp <- S(rdp * dt )
}
deri <- S(paste(" A(f(thetal,",i,”)) ")) #ith derivative
con <- 2/gamma(i+l)- 2/gamma(i) #make constant an approx.
scon<- S(paste("APPROX(",con,",",length(thetahat) -1,")"))
fac <- S( fac + scon*deri*rdp ")
}
rfac <- S( sqgrt(fac) ")

rdev <- S( dt * rfac ") #signed root
The variance is computed as follows.

erdev <- S( EZ(rdev) ) #expected value
erdev2 <- S( EZ(rdev * rdev) )
vrdev <- S( erdev2 - erdev * erdev ) # variance

This variance can be used to compute confidence intervals. This is illustrated for the
scale parameter of a standard exponential distribution. The estimate is specified by
defining f to be the log likelihood.

f<- function(x,i=0){
tl <- ifelse(i == 0, tl <- -log(x),
tl <- (-1)"(i) * gamma(i) * x"(-1))
t2 <- X* (-1)"(i+l)*gamma(i+1)*x"(-(i+1))
(t1+t2)
}

The numerical average deviance is given by

numf <- function(x,sigma){
-log(sigma) - mean(x)/sigma

}

numavd <- function(x,sigma){
2* (numf (x,mean(x)) - numf(x,sigma))
}

The “exact” confidence interval is

11
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numci <- function(x){
mean(x)*2*length(x)*1/(gqchisq(c(0.975,0.025),2*n))
}

The symbolic interval can be compared to the “exact” interval for numerical data.

set.seed(42)

n <- 20

X<- -log(runif(n))
t0 <- mean(X)

Here the expectations, E(), are defined to the expectations with respect to the empirical
distribution. (We leave the definition of E() for known distributions to those who know
precisely the distribution of the data.)

E<- mean

evd <- Eval(vrdev)

deveq <- function(tO0){
numavd(X,t0)-(1.96"2)*evd
}

c(uniroot(deveq,c(mean(X)/2, mean(X)))S$root,
uniroot (deveq,c(mean(X),mean(X)+3))S$root)

[1] 0.4247848 0.9980578

This can be compared to the “exact” interval which could be used if the distribution were
known

numci (X)
[1] 0.4258268 1.0342261

This is compared with 5 bootstrap BCA intervals based on 1000 bootstrap samples

library(boot)
for( i in 1:5){

boot.X <-boot(X,function(x,i) mean(x[i]),R=1000)

print (boot.ci(boot.X,conf=0.975,type="bca")[[4]]1[c(4,5)])
}

to give
[1] 0.3852296 1.0634212
[1] 0.4014010 0.9680726
[1] 0.3775158 0.9894336
[1] 0.3977897 0.9720249
[1] 0.3809278 1.0057228

12



The symbolic intervals are computed very quickly. The bootstrap intervals even with
1000 bootstrap samples show considerable variability.

13

13



