
Demonstration of the Central Limit Theorem for sums of

independent but not identically distributed random variables

Introduction

Suppose that X1, · · · , Xn are independent random variables and S = X1 + · · · + Xn. In

certain cases (for example, when {Xi} have normal distributions or Poisson distributions),

we can obtain the exact distribution of S but typically, we are forced to use approximations

(normal, Poisson and others); these approximations typically require n to be reasonably

large although they are often adequate for small values of n.

In this document, we will outline a method for computing exact the exact distribution of

S when the summands {Xi} take values on a finite set of non-negative integers. We can then

use these exact distribution to examine the adequacy of normal approximations (motivated

by the Central Limit Theorem) under various conditions.

The probability generating function

Suppose that X is a discrete random variable whose possible values are the integers 0, 1,

2, · · · , ℓ and define the probability mass function

f(x) = P (X = x) for x = 0, 1, 2, · · · , ℓ.

Then we can define the probability generating function1

p(t) = E(tX) =
ℓ∑

x=0

f(x)tx.

It is easy to see that p(t) is a polynomial of order ℓ whose coefficients are the probabilities

f(0), · · · , f(ℓ); thus if we are given the probability generating function of a random variable

(taking non-negative integer values) then we can determine the probability distribution of

the random variable. In fact, if we know that P (X ≤ ℓ) = 1 then it is sufficient to know the

values of the probability generating function p(t) at ℓ+ 1 values of t in order to recover the

probabilities f(0), · · · , f(ℓ).

Now suppose that we have n independent random variables X1, · · · , Xn, with probability

mass functions f1(x), f2(x), · · · , fn(x), whose possible values are 0, · · · , ℓ; the probability

generating function of Xi is

pi(t) =
ℓ∑

x=0

fi(x)t
x.

1The probability generating function is related to the moment generating function m(t) = E[exp(tX)] of

X by the relation m(t) = p(exp(t)).

1

If S = X1 + · · · + Xn then the possible values of S are the integers 0, 1, 2, · · · , nℓ and the

probability generating function of S is

ps(t) = E(tS) =
n∏

i=1

pi(t) =
nℓ∑

x=0

P (S = x)tx.

Using the same argument as above, in order to evaluate the distribution of S, we need only

evaluate its probability generating function at nℓ+ 1 values of t and therefore we need only

evaluate p(t) at nℓ+1 values of t. The key to efficiently computing the distribution of S lies

in determining at which nℓ+ 1 values of t we should evaluate ps(t) = p1(t)× · · · × pn(t).

It turns out that there is no difficulty in defining the probability generating functions

p1(t), · · · , pn(t) and ps(t) for complex-valued t of the form exp(ιθ) = cos(θ) + ι sin(θ) (where

ι2 = −1). In particular, we will evaluate p1(t), · · · , pn(t) at points t0, · · · , tnℓ where

tj = exp
(
−2πι

j

nℓ+ 1

)
= cos

(
2π

j

nℓ+ 1

)
− ι sin

(
2π

j

nℓ+ 1

)
. (1)

The resulting sequence pi(t0), · · · , pi(tnℓ) turns out to be the discrete Fourier transform of

the probabilities fi(0), · · · , fi(nℓ) where fi(ℓ + 1) = fi(ℓ + 2) = · · · = fi(nℓ) = 0. After

computing ps(tj) = p1(tj) × · · · × pn(tj) for j = 0, · · · , nℓ, we can recover the probability

mass function of S by using computing the inverse discrete Fourier transform. The discrete

Fourier transform and its inverse will be discussed in the next section.

The discrete Fourier transform

The discrete Fourier transform (DFT) of a sequence of numbers x0, · · · , xm−1 is a sequence

of complex numbers x̂0, · · · , x̂m−1 defined by

x̂j =
m−1∑

k=0

exp
(
−2πι

j

m
k
)
xk =

m−1∑

k=0

xk cos
(
2π

j

m
k
)
− ι

m−1∑

k=0

xk sin
(
2π

j

m
k
)
. (2)

Given the DFT, it is possible to recover the original sequence by the inversion formula

xj =
1

m

m−1∑

k=0

exp
(
2πι

j

m
k
)
x̂k (j = 0, · · · ,m− 1) (3)

The DFT (and its inverse) can be computed using an algorithm called the Fast Fourier

Transform (FFT), which can be remarkably computationally efficient. (It is most efficient

when m is a product of small prime numbers, the best case being when m = 2r.)

Assessing normal approximations using DFTs

Under various conditions on the summands X1, · · · , Xn, the distribution of S = X1+· · ·+Xn

will be approximately normal with mean E(S) and variance Var(S). Roughly speaking,

2

normal approximations will hold for sums of bounded random variables provided that none

of the summands contributes too much of the variance of S, that is,

max
1≤i≤n

Var(Xi)

Var(S)
= max

1≤i≤n

Var(Xi)

Var(X1) + · · ·+Var(Xn)
(4)

is not too large. (For random variables that are not bounded, more sophisticated conditions

based on higher moments of Xi are needed; for example, setting µi = E(Xi), a normal

approximation for the distribution of S will be valid if

E[|X1 − µ1|
3] + · · ·+ E[|Xn − µn|

3]

{Var(S)}3/2

is not too large.)

In this section, we will use the DFT to compute the exact probability distribution of

S = X1 + · · · + Xn where X1, · · · , Xn are independent random variables (taking values

0, 1, · · · , ℓ) with probability mass functions f1(x), · · · , fn(x). As noted above, the possible

values of S are 0, 1, · · · , nℓ. The distribution of S can be determined by first computing the

DFTs of the sequences of probabilities {fi(0), fi(1), · · · , fi(nℓ)} (for i = 1, · · · , n and setting

fi(ℓ + 1) = · · · = fi(nℓ) = 0) taking an n-fold product of the DFTs, and then taking the

inverse DFT of this product to yield the distribution of S.

More precisely, the steps of the algorithm are as follows:

1. Compute the DFT (defined in (2)) of fi(0), · · · , fi(nℓ) (for i = 1, · · · , n):

f̂i(j) =
nℓ∑

k=0

exp
(
−2πι

j

nℓ+ 1
k
)
fi(k) = pi(tj)

where tj is defined in (1).

2. Take n-fold products:

f̂s(j) =
n∏

i=1

f̂i(j) = ps(tj)

3. Take the inverse DFT (defined in (3)) of f̂s(0), · · · , f̂s(nℓ):

fs(j) = P (S = j) =
1

nℓ+ 1

nℓ∑

k=0

exp
(
2πι

j

nℓ+ 1
k
)
f̂s(k)

for j = 0, · · · , nℓ.

The algorithm above can be implemented quite simply in R using the R function fft to

compute both the DFT and its inverse. The R function given below takes an n × (ℓ + 1)

matrix of probabilities with the values in the i-th row corresponding to the distribution of

Xi. The output includes the vector of probabilities giving fs(x) for x = 0, 1, · · · , nℓ as well

as the mean and variance of S.

3

dist.sum <- function(probs) {

k <- ncol(probs)

n <- nrow(probs) # number of summands

x <- c(0:(n*(k-1))) # range of the sum of n random variables

dft <- 1

m <- 0

v <- 0

for (i in 1:n) {

p <- as.vector(probs[i,])

now pad the vector with zeros so that it has the same length as x

p <- c(p,rep(0,length(x)-k))

update mean and variance

m <- m + sum(p*x)

v <- v + sum(p*(x-sum(x*p))^2)

take the DFT of p and multiply by previous value of dft

dft <- dft*fft(p)

}

take the inverse DFT of dft to obtain the distribution of S

p.sum <- fft(dft,inv=T)/length(x)

the probability distribution of the sum will be contained in

the real components of probs.fft.inv; in theory, the imaginary

component is exactly 0 but computationally the imaginary component

persists due to rounding error

p.sum <- Re(p.sum)

output <- list(x=x,probs=p.sum,mean=m,var=v)

output

}

The output of the command r <- dist.sum(probs) is an object r consisting of four com-

ponents, rx, rprobs, r$mean, and r$var, which contain, respectively, the possible values

of S, the the corresponding probabilities for the distribution of S, the mean of S, and the

variance of S.

Example 1. Suppose that X1, · · · , X20 are independent random variables with

fi(x) = P (Xi = x) =
1

i+ 1
for x = 0, · · · , i

Note that the distributions of Xi are all uniform with means ranging from 0.5 (for i = 1) to

10 (for i = 20) and variances ranging from 0.25 to 36.67. The following R code illustrates

the use of the function dist.sum to determine the distribution of S = X1 + · · ·X20:

4

60 80 100 120 140 160

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

x

pr
ob

ab
ili

tie
s

Figure 1: Exact probability distribution (lines) of S in Example 1 with its normal approxi-

mation (solid curve).

> # compute matrix of probabilities

> probs <- NULL

> for (i in 1:20) {

+ probs <- rbind(probs,c(rep(1/(i+1),i+1),rep(0,20-i)))

+ }

> r <- dist.sum(probs)

> plot(rx,rprobs,type="h",xlab="x",ylab="probabilities",xlim=c(50,160))

> lines(r$x,dnorm(r$x,r$mean,sqrt(r$var)),col="red")

The distribution of S with its normal approximation (with mean E(S) = 105 and variance

Var(S) = 274.17) is shown in Figure 1; the normal approximation appears to be very good

in this case. The key here is the fact that no summand Xi contributes too much to the

variance of S; the ratio in (4) for this example is 0.13.

Example 2. Again we assume that X1, · · · , X20 are independent random variables with

fi(x) = P (Xi = x) = 1/2 for x = i− 1, i and i = 1, · · · , 19

and

f20(x) = P (X20 = x) =
1

21
for x = 0, 1, · · · , 20.

Again we will use the function dist.sum to compute the distribution of S = X1+ · · ·+X20.

5

160 170 180 190 200 210 220

0.
00

0.
02

0.
04

0.
06

x

pr
ob

ab
ili

tie
s

Figure 2: Exact probability distribution (lines) of S in Example 2 with its normal approxi-

mation (solid curve).

> # compute matrix of probabilities

> probs <- c(1/2,1/2,rep(0,19))

> for (i in 2:19) {

+ probs <- rbind(probs,c(rep(0,i-1),1/2,1/2,rep(0,20-i)))

+ }

> probs <- rbind(probs,rep(1/21,21))

> r <- dist.sum(probs)

> plot(rx,rprobs,type="h",xlab="x",ylab="probabilities",xlim=c(160,220),

+ ylim=c(0,0.065))

> lines(r$x,dnorm(r$x,r$mean,sqrt(r$var)),col="red")

Figure 2 shows the distribution of S compared to a normal density with mean E(S) = 190.5

and variance Var(S) = 41.42; clearly, the normal approximation is not at all adequate here.

In this particular example, the variance of S is dominated by the random variable X20 (whose

variance is 36.67), which contributes 88.5% of the variance of S, which violates our heuristic

for normal approximations based on the ratio (4).

6

