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ABSTRACT: A new non-parametric method of density estimation for univariate data is

presented. The underlying idea is to estimate a transformation of the data so that the

transformed data behave like a sample from some fixed distribution, for example, a stan-

dard Gaussian (or normal) distribution. The method described in this paper estimates the

transformation by minimizing the integrated squared second derivative of the transformation

subject to an upper bound on a weighted sum of squared deviations between observed and

expected order statistics. This method has the attractive feature that an educated choice of

the upper bound on the weighted sum of squares can be made a priori.
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1 Introduction

Let X1, · · · , Xn be independent random variables from some (unknown) density f . The

problem of nonparametrically estimating f has been extensively studied and a variety of

methods exist, among them kernel estimation, nearest-neighbor estimation, penalized like-

lihood estimation and orthogonal series estimation; Silverman (1986) gives a complete and

excellent account of these methods. The purpose of this paper is to outline a somewhat

different method of density estimation based on estimating a transformation of the data so

that the transformed data looks like a random sample from some known distribution. We

concentrate on the case where the known distribution is standard Gaussian.

Suppose the data are transformed by some monotone function g so that the density of

g(Xi) is f0; it then follows that the density of Xi is given by f(x) = |g′(x)|f0(g(x)). (If f0

is a uniform density on (0, 1) then g is the distribution function of the data and g ′ is the

density.) This suggests that f can be estimated by estimating a smooth transformation g

so that g(X1), · · · , g(Xn) behave like a sample from f0. A simple approach to estimating

g can be obtained by looking at a quantile-quantile plot of the data for the distribution

corresponding to f0; if F−1
0 is the inverse of the distribution function corresponding to f0

and F−1
0 (i/(n + 1)) (say) is plotted against the i-th order statistic Xi:n then an estimator

of g is obtained by fitting a smooth (monotone) curve through these points. When viewed
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this way, the estimation of g becomes similar to a scatterplot smoothing problem. To be

somewhat more precise, take f0 to be the standard Gaussian density and state the estimation

problem as follows:

minimize
∫ ∞

−∞

(g′′(x))2 dx subject to
n∑

i=1

ω2(pi:n)(g(Xi:n)− Φ−1(pi:n))
2 ≤ S2 (1)

where pi:n = (i−0.375)/(n+0.25) or (i−0.5)/n or i/(n+1), for example; Φ−1 is the inverse

distribution function of a standard Gaussian distribution and ω2(t) = φ2(Φ−1(t))/(t(1− t))

where φ is the standard Gaussian density function. If the sample is from a standard Gaussian

distribution, then Var(Xi:n) ≈ ω−2(pi:n)/n. Note also that for i < j,

Cov(Xi:n, Xj:n) ≈
pi:n(1− pj:n)

nφ(Φ−1(pi:n))φ(Φ−1(pj:n)))
;

it is not clear how much is lost by not considering the dependence between order statistics.

The parameter S2 obviously controls the smoothness of the estimated transformation g;

a reasonable choice of S2 will guarantee that for data from a Gaussian distribution, the

estimated transformation ĝ will be nearly linear in the sense that
∫
(ĝ′′)2 is small or zero.

To solve (1), we introduce a Lagrange multiplier λ, a slack variable z2 and minimize

∫ ∞

−∞

(g′′(x))2 dx + λ

[
n∑

i=1

ω2(pi:n)(g(Xi:n)− Φ−1(pi:n))2 + z2 − S2

]
. (2)

This approach is, in many ways, an elaboration of an approach suggested by Parzen (1979).

Good and Gaskins (1980) also use goodness-of-fit techniques (χ2 and Kolmogorov-Smirnov

tests) for selecting smoothness parameters for penalized likelihood density estimators.

A variation of (1) that is somewhat more familiar in the case of scatterplot smoothing is

minimize
n∑

i=1

wi(yi − g(ti))
2 + λ

∫ ∞

−∞

(g′′(t))2 dt (3)

where λ is a fixed constant whose value is usually data dependent, the yi’s are responses

and the ti’s covariates. This particular modification is necessary for scatterplot smoothing

because a reasonable “target” value of the weighted residual sum of squares in (3) is seldom

known a priori. (As noted by Reinsch (1967), if yi = g0(ti) + εi and Var(εi) = σ2/wi with

σ2 known, then it would seem that we could put a reasonable upper bound on the weighted

residual sum of squares in (3); for example, in the scatterplot smoothing setting, a naive

value of S2 would be nσ2. However, as pointed out by several authors (Wold, 1974; Wahba,

1975a), such naive choices of S2 typically undersmooth the data.) A density estimation
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method similar in spirit to (1) is the penalized likelihood method of Silverman (1982) in

which f̂ is chosen to maximize the penalized log-likelihood

n∑

i=1

ln f(Xi)− αR(f)

subject to ∫ ∞

−∞

f(x) dx = 1

for some α ≥ 0 and roughness penalty R(f); however, as in the smoothing spline case, the

“optimal” value of α is typically data dependent. In contrast to these latter two situations,

we will show that the structure of (1) allows us to make a reasonably educated choice of S2,

which is independent of the data.

The solution ĝ of (1) is a cubic spline with knots at X1, · · · , Xn; if ĝ is monotone then

the density estimator f̂ is

f̂(x) = C(ĝ, n)
ĝ′(x)√

2π
exp(−ĝ2(x)/2) (4)

where C(ĝ, n) is some normalizing constant. However, there is no guarantee that ĝ is mono-

tone; this potential difficulty will be addressed later.

Throughout the remainder of this paper, we will assume that f0 is the standard Gaussian

density; however, the basic approach should be applicable to other densities. For example,

one might be tempted to take f0 to be a uniform density on (0, 1) but this poses the addi-

tional constraints that ĝ(x) lie between 0 and 1 since ĝ(x) is an estimator of the underlying

distribution function; this is similar to the approach taken by Wahba (1971, 1975b) where

an interpolating polynomial is fitted to the empirical distribution function and then differ-

entiated to obtain a density estimator. Another density estimation method using splines is

the histospline approach of Boneva et al (1971), which uses splines to construct a density

estimator from a histogram. Transforming to a distribution whose support is the real line is

attractive for similar reasons to those used for analyzing probabilities on the logit or probit

scale for binary data. The choice of goodness-of-fit criterion used here is also somewhat ar-

bitrary but is attractive from a computational standpoint and from the fact that the decay

of ω(t) to 0 near t = 0 or 1 provides some resistance against isolated extreme data points

(although, obviously, we do not want resistance against clumps of extreme data points).

Another approach that uses splines is due to Kooperberg and Stone (1991) who use maxi-

mum likelihood estimation to estimate ln(f) by a function from a space of cubic splines with

predetermined knots; the number of knots is then determined according to some scheme.
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2 Choice of smoothing parameter

In the case of smoothing splines, only rarely can the choice of S2 in (1) or, equivalently, of

λ in (3) be specified a priori, the reason being that typically we do not know the variance

of the response at a given point. The standard approach, here, is to use the data to choose

the parameter; some variation of cross-validation is commonly used. Similarly, most non-

parametric density estimators depend on smoothness parameters that will typically be data

dependent. However, the structure of (1) allows for an educated choice of the parameter S2

(independent of the data) by considering the distribution of the minimized weighted sum of

squares in (1) in a very special case.

Suppose that X1, · · · , Xn are known to be a sample from a Gaussian distribution with

unknown mean and variance. In this case, the natural density estimator is given by

f̂n(x) =
1

σ̂
√

2π
exp

(
−(x− µ̂)2

2σ̂2

)
=

1

σ̂
φ
(

x− µ̂

σ̂

)

where µ̂ and σ̂2 are estimators of the mean and variance. A possible, albeit inefficient,

method of estimating these parameters is to minimize

S2

n(a, b) =
n∑

i=1

ω2(pi:n)(aXi:n + b− Φ−1(pi:n))2 (5)

over all a and b; if â and b̂ are the minimizing values then σ̂ = 1/â and µ̂ = −b̂/â. The

estimators of the mean and variance are not as important as is the distribution of Sn(a, b)

at its minimum. It seems reasonable to believe that knowledge of the distribution of S2
n(â, b̂)

will give us some insight as to the choice of S2 in (1); that is, we should try to estimate the

transformation g so that

S2

n∑

i=1

ω2(pi:n)(ĝ(Xi:n)− Φ−1(pi:n))2

lies somewhere in the centre of the distribution of S2
n(â, b̂), for example E[S2

n(â, b̂)] or some

intermediate quantile of the distribution of S2
n(â, b̂). The rationale is that we should expect

approximately the same “goodness of fit” for our transformed data as we would obtain for

Gaussian data (with unknown location and scale). With a view to getting a good finite

sample approximation to the distribution of S2
n(â, b̂), we will now consider the asymptotic

behaviour of

A2

n(u, v) =
n∑

i=1

ω2(pi:n)(un−1/2Xi:n + vn−1/2 + Xi:n − Φ−1(pi:n))2 (6)
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where, without loss of generality, we assume that the Xi’s are Gaussian with mean 0 and

variance 1. Note that A2
n(u, v) = S2

n(un−1/2 +1, vn−1/2). The following proposition says that

the minimum of S2
n (or that of A2

n) converges in distribution.

PROPOSITION. Define S2
n(a, b) as in (5) and let S2

n(â, b̂) be its minimum. If the Xi’s are

Gaussian then

S2

n(â, b̂) →d some A2

with the exact form of A2 defined below in (7).

Proof. To prove this result we start by defining A2
n(u, v) as in (6) and expanding; hence

A2

n(u, v) =
1

n

n∑

i=1

ω2(pi:n)(uXi:n + v)2

+
2

n

n∑

i=1

ω2(pi:n)(uXi:n + v)
√

n(Xi:n − Φ−1(pi:n))

+
1

n

n∑

i=1

ω2(pi:n)n(Xi:n − Φ−1(pi:n))
2

≈
∫

1

0

ω2(t)(uF̂−1

n (t) + v)2 dt

+2
∫

1

0

ω2(t)(uF̂−1

n (t) + v)
√

n(F̂−1

n (t)− Φ−1(t)) dt

+
∫

1

0

ω2(t)n(F̂−1

n (t)− Φ−1(t))2 dt

where F̂−1
n is the empirical quantile function, that is, the inverse of the empirical distribution

function. Now using some well-known results (Shorack and Wellner, 1986) concerning the

convergence of the Gaussian quantile process
√

n(F̂−1
n −Φ−1) and the fact that ω(t)(F̂−1

n (t)−
Φ−1(t)) converges uniformly to 0 in probability, we get

A2

n(u, v) →d

∫
1

0

ω2(t)(uΦ−1(t) + v)2 dt + 2
∫

1

0

ω(t)(uΦ−1(t) + v)W (t) dt +
∫

1

0

W 2(t) dt

where W (t) = [t(1 − t)]−1/2B(t) with B a Brownian bridge process (that is, a Gaussian

process with E(B(s)) = 0 for all s and E(B(s)B(t)) = s(1− t) for s ≤ t). More importantly

(noting that
∫

1

0
ωr(t)Φ−1(t) dt = 0 for r ≥ 0),

min
u,v

A2

n(u, v) →d A2 (7)

=
∫

1

0

W 2(t) dt− ‖ωΦ−1‖−2

(∫
1

0

ω(t)Φ−1(t)W (t) dt
)2

−‖ω‖−2

(∫
1

0

ω(t)W (t) dt
)2
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where ‖y‖2 =
∫

1

0 y2(t) dt. 2

Note that the first term of A2 is the weak limit of the so-called Anderson-Darling test

statistic. To three decimal places, ‖ωΦ−1‖2 = 0.269 and ‖ω‖2 = 0.479. The mean of A2 is

0.346 while the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 99th percentiles are 0.12,

0.16, 0.18, 0.23, 0.30, 0.41, 0.54, 0.64 and 0.93 respectively. (The mean of A2 was evaluated

by numerical integration while the quantiles are estimates based on 5000 simulations.) A

gamma distribution fitted by matching first and second moments agrees fairly closely with

the empirical simulation distribution; the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th and

99th percentiles of a gamma distribution with mean 0.346 and variance 0.0259 are 0.08, 0.13,

0.16, 0.23, 0.32, 0.44, 0.56, 0.65 and 0.82. The convergence of min A2
n(u, v) to A2 seems to

be reasonably rapid although the quantiles of min A2
n(u, v) seem to converge to those of A2

from below.

The particular choice of S2 depends on the amount of smoothness desired in the estimator

f̂ ; choosing S2 to be the 5th percentile of distribution of A2 would result in a rougher and

less Gaussian estimate than would result by choosing S2 to be the mean or 95th percentile

of the distribution of A2. Obviously, decreasing S2 will increase the chance of capturing

fine details in the density of X but, at the same time, increases the chance of uncovering

spurious details. In some sense, the choice of S2 represents the data analyst’s prior beliefs

(or prejudices) regarding the smoothness of the underlying true density. Some practical

experience has indicated that a “good” choice of S2 is 0.16, the 5th percentile of A2, although

the density estimates themselves are not overly sensitive to the choice of S2 provided that

S2 is not in the tails of the distribution of A2. However, if the data come from a distribution

whose transformation to a Gaussian distribution is highly “eccentric” then a much smaller

value of S2 may be needed to produce a good estimate of the underlying density. It should

be remembered that, while the quantiles of two distributions might be close, their densities

need not be close.

From the preceding discussion, it is clear that a similar approach could be taken with

any density f0 having infinite support simply by changing the weight function ω and noting

that the distribution of A2 will change depend on f0; if F0 is the corresponding distribution

then one would replace Φ−1 by F−1
0 and ω2(t) would become f 2

0 (F−1
0 (t))/(t(1− t)). A further

generalization would be to consider the limiting distribution of

min
β

n∑

i=1

ω2(pi:n)(gβ(Xi:n)− F−1

0 (pi:n))2 (8)
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where {gβ} is a set of monotone transformations (containing all linear transformations)

indexed by a finite dimensional parameter β and the density of g(Xi) is f0 for some g in this

set. The purpose of considering the distribution of (8) (when the density of the Xi’s is f0)

rather than that of
n∑

i=1

ω2(pi:n)(Xi:n − F−1

0 (pi:n))
2

is to guard against oversmoothing the estimated transformation ĝ and the density estimate

f̂ .

3 Practical considerations

3.1 Normalization

The transformation ĝ cannot be unambiguously defined outside of the range of the data.

As a result of this, the appropriate normalization for the density estimator f̂ in (4) is not

obvious. Due to an absence of information, it may not make sense to define the estimator

outside of [X1:n, Xn:n] as is done, for example, in kernel estimation; at the same time, it is

somewhat presumptuous to set f̂(x) to 0 outside the range of the data. A compromise is to

leave f̂(x) undefined outside of [X1:n, Xn:n] and normalize f̂(x) so that the integral of f̂(x)

is slightly smaller than 1; more precisely, if F is the distribution function of the Xi’s then

E[F (Xn:n)−F (X1:n)] = (n−1)/(n+1). This suggests that one might normalize the density

estimator so that its integral from X1:n to Xn:n is (n− 1)/(n + 1); thus a natural choice for

the normalizing constant C(ĝ, n) in (4) is

C(ĝ, n) =
n− 1

n + 1
[Φ(ĝ(Xn:n))− Φ(ĝ(X1:n))]−1.

3.2 Tied observations

In theory, if the Xi’s have a continuous distribution then the probability that Xi = Xj

for i 6= j is 0; however, for a variety of reasons, data sets with tied observations occur

frequently even when a continuous model is appropriate for the data. Also, in certain

situations, an inherently discrete phenomenon is sometimes more conveniently approximated

by a continuous distribution, for example, when the number of possible outcomes is large.

These facts necessitate a change in the formulation of the basic optimization problem.
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Suppose that

Xi−1:n < Xi:n = · · · = Xi+k:n < Xi+k+1:n.

Then we replace ω2(pi:n) in (1) by
i+k∑

j=i

ω2(pj:n)

and Φ−1(pi:n) by the weighted average




i+k∑

j=i

ω2(pj:n)



−1

i+k∑

j=i

ω2(pj:n)Φ
−1(pi:n).

Finally, we change (1) so that we sum only over the unique Xi’s. An alternative approach

that might be used sometimes is to “jitter” the data by adding random noise to the original

observations.

3.3 Non-monotone transformations

So far, we have assumed that the transformation ĝ is monotone. There is, however, no guar-

antee that the solution to (1) is monotone; in fact, if the data contain extreme outliers then

the solution to (1) will not always be monotone. (The “effective” kernel of the spline smoother

is not positive at all values (Silverman, 1984), hence the possibility of non-monotonicity.)

There are several possible remedies to this, for example, adding the constraint that ĝ′ ≥ 0

or increasing S2 until a monotone solution to (1) exists; in fact, it is possible to reformulate

(1) slightly so that the solution is a monotone spline although no general computing algo-

rithm seems to exist. Two recent papers consider different approaches to monotone splines:

Ramsay (1988) uses integrated B-splines while Kelly and Rice (1990) impose a monotonicity

constraint on the B-spline coefficients. It should be noted that, in this situation, most other

scatterplot smoothers are guaranteed to produce a monotone ĝ due to the monotonicity of

the points {(Xi:n, Φ
−1(pi:n)); i = 1, · · · , n}. However, it is still possible to find the density of

X even if g is non-monotone and the density of g(X) is f0. For each y in the range of g, we

define a number N(y) such that

N(y) = #{x : g(x) = y}.

Then the density of X is simply

f(x) =
|g′(x)|

N(g(x))
f0(g(x))
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(Bickel and Doksum, 1977, p.45).

It is worth noting here that the non-monotonicity of ĝ is seldom a problem from a practical

point of view; that is, almost all data sets encountered in practice will yield monotone ĝ’s.

Non-monotone solutions to (1) occur when a few points are isolated from the rest of the

data set; in this case, no non-parametric procedure can hope to deal with this behaviour

except by pre-transforming the data so that the spacings between adjacent points become

more homogeneous, estimating the density of the transformed data and then transforming

back to the original scale. In a certain sense, a non-monotone solution can serve as a

warning that the data contain outliers and that some remedial action should be taken.

However, pre-transformation is useful even when monotone ĝ’s exist on the untransformed

scale. The pre-transformation approach could be formalized by considering a parametric

class of transformations (for example, Box-Cox transformations), estimating the (parametric)

transformation from the data and then estimating the density of the transformed data;

however, the precise choice of transformation is not as important as is pulling extreme data

closer to the body of the data.

Pre-transforming the data seems also to improves the performance of this method when

the data are restricted to a bounded interval or a half line and a non-negligible fraction of

the data occurs at or near the boundary of the interval or half line; uniform- or exponential-

like data are two such examples. The Gaussian transformation estimators, like many other

nonparametric density estimators, tend to underestimate the density near the boundaries in

such cases if the data are not pre-transformed. Fortunately, these situations are often very

easy to recognize in practice and can be dealt with accordingly. Wand, Marron and Ruppert

(1991) use transformation in connection with kernel estimation to try to minimize the mean

integrated squared error. It should be noted, as Kooperberg and Stone (1991) point out,

that minimizing integrated squared error does not necessarily lead to a qualitatively good

estimate of the density.

3.4 Other smoothers

It is certainly possible to estimate the transformation using other smoothing methods; for

example, one could used a kernel smoother (with bandwidth h) to estimate g so that

ĝh(x) =

∑n
i=1 wh(x−Xi:n)Φ−1(pi:n)∑n

i=1 wh(x−Xi:n)
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or

ĝh(x) =

∑n
i=1 ω2(pi:n)wh(x−Xi:n)Φ

−1(pi:n)
∑n

i=1 ω2(pi:n)wh(x−Xi:n)

and then choose h so that
n∑

i=1

ω2(pi:n)(Φ
−1(pi:n)− ĝh(Xi:n))2 = S2.

The problem with the estimator given above is the fact that, while the estimator of the

transformation itself is quite good, the derivative of the estimator is not so well behaved.

Thus the resulting density estimate can be very wiggly although this can be rectified to

a certain extent by increasing S2, the target value for the weighted sum of squares. This

highlights one very positive feature of smoothing splines: the ability to give good estimates

of the derivatives of a function as well as the function itself.

4 Examples

In this section, we will apply the method described above to five data sets that have been

analyzed using a variety of parametric and non-parametric methods. These examples are

given merely for illustration of the method and as such should not in any sense be construed

as analyses of these data sets. It should be noted, however, that this method produces

estimates that are qualitatively similar to those produced by more “intensive” estimation

techniques. In addition, we will apply the method to artificial data generated from two

distributions. For the first five examples, the raw data (possibly jittered) are plotted on the

x-axis.

4.1 Old Faithful geyser data

Silverman (1986) considers the lengths of 107 eruptions of Old Faithful geyser in Yellow-

stone National Park. The density estimates shown by Silverman indicate that the data are

multimodal. Figure 1 shows the Gaussian transformation density estimates taking S2 to be

0.16, 0.346 and 0.64; all estimates have at least two modes with the smallest value of S2

producing the most pronounced modes.

4.2 Long Beach SO2 data

Leadbetter et al (1980) fit a type I extreme value distribution to 228 monthly maxima (of

hourly averages) of sulfur dioxide concentrations at Long Beach, California from 1956 to
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1974. Figure 2 gives both the Gaussian transformation density estimate (using S2 = 0.16)

and the fitted type I extreme value density

f̂(x) = 0.115 exp(−0.115(x− 14.5)) exp(− exp(−0.115(x− 14.5))).

The parametric estimate is indicated by a dashed line, the Gaussian transformation estimate

by a solid line.

4.3 Buffalo snowfall data

Data sets consisting of seasonal snowfall amounts in Buffalo, New York have been considered

by Parzen (1979) and Tukey (1977). Data from 99 years (1884/85 to 1982/83) (courtesy of

Ned Glick) will be considered here. Two estimates are shown in Figure 3; the first estimate

uses the raw data with S2 = 0.16 while the second estimate uses the logarithms of the

data with S2 = 0.16 and then transforms back to the original scale. The pre-transformed

estimate is indicated with a dotted line; the two estimates are virtually identical. This is

not surprising since, over the range of the data, ln(x) is very nearly linear.

4.4 Hidalgo stamp thickness data

Izenman and Sommer (1988) consider estimating the number of modes in the distribution of

paper thicknesses in the 1872 Hidalgo stamp issue of Mexico. Using “bump-hunting” tech-

niques in connection with kernel estimation, they conclude that 7 modes exist while fitting

a mixture of Gaussian densities indicates either 3 or 5 modes. The Gaussian transformation

estimate (based on 485 observations and using S2 = 0.16) in Figure 4 shows 5 definite modes

and one very small mode.

4.5 Chondrite meteorite data

Data for the distribution of silica in 22 chondrite meteorites are considered by Good and

Gaskins (1980). Their best fitting density estimate was trimodal; they say that this result “is

not surprising because there are several types of chondrite.” The Gaussian transformation

estimate (using S2 = 0.16) as shown in Figure 5 is also trimodal.
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4.6 Bimodal logistic data

Five samples of size 200 were drawn from a density which is a mixture of two logistic densities:

f(x) =
3

4

exp(x + 2.5)

[1 + exp(x + 2.5)]2
+

1

4

exp(x− 2.5)

[1 + exp(x− 2.5)]2

Figure 6 shows the 5 estimated densities using S2 = 0.16; the true density is indicated by

the solid line.

4.7 Log-normal data

Five samples of size 200 were drawn from a log-normal distribution; the logarithms have a

Gaussian distribution with mean 0 and variance 0.25. The density estimates were computed

on the raw data and Figure 7 shows the 5 estimated densities using S2 = 0.16. As before,

the true log-normal density is indicated with a solid line.

5 Comments

5.1 Convergence results

At this point, very little can be said about the convergence properties of the density es-

timators described in this paper; however, it seems reasonable to believe that the rate of

convergence will be similar to that of kernel or penalized likelihood estimators. The rate of

convergence of f̂ to f depends most critically on the rate of convergence of the derivative of

ĝ to its population analogue. In fact, even the most naive estimator of the transformation g

(namely Φ−1(F̂n(·))) is a
√

n-consistent estimator of g (since F̂n is a consistent estimator of

F ). It is easy to show that consistency also hold for the spline estimator ĝ.

Approximating the constraint in (1) as an integral suggests that

S2

n
≥

∫
1

0

ω2(t)(ĝ(F−1(t))− Φ−1(t))2 dt + op(1)

=
∫ ∞

−∞

ω2(F (x))f(x)(ĝ(x)− Φ−1(F (x)))2 dx + op(1).

Since S2/n → 0, this suggests that for any x,

ĝ(x) →p Φ−1(F (x))
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and that the convergence would be uniform over compact sets contained strictly within the

support of the density. Moreover, letting g0(x) = Φ−1(F (x)) be the true transformation to

a Gaussian distribution, we get

S2 ≥
∫

1

0

ω2(t)n(ĝ(F̂−1

n (t))− g0(F̂
−1

n (t)))2 dt

+2
∫

1

0

ω2(t)
√

n(ĝ(F̂−1

n (t))− g0(F̂
−1

n (t)))
√

n(g0(F̂
−1

n (t))− Φ−1(t)) dt

+
∫

1

0

ω2(t)n(g0(F̂
−1

n (t))− Φ−1(t))2 dt + op(1)

From the fact that

sup
ε≤t≤1−ε

√
n(g0(F̂

−1

n (t))− Φ−1(t)) = Op(1)

it follows that

sup
ε≤t≤1−ε

√
n(ĝ(F̂−1

n (t))− g0(F̂
−1

n (t))) = Op(1),

that is, ĝ is a uniformly
√

n-consistent estimator of g0 on compact sets contained strictly

within the support of the distribution. Of course, as mentioned above, it is not the behaviour

of ĝ which determines the behaviour of f̂ as much as the behaviour of ĝ′; ĝ simply allows us to

estimate the (cumulative) distribution function via Φ(ĝ(·)). For example, a piecewise linear

function through the points {(Xi:n, Φ
−1(pi:n)); i = 1, · · · , n} will also be a

√
n-consistent

estimator of g but will not give a consistent estimator of g ′.

6 Concluding Remarks

The purpose of this paper has been to introduce a new method of density estimation based

upon transforming data to a target distribution. This method, while not demonstrably supe-

rior to any existing method, has two attractive features. First, it is intuitively appealing; all

we are doing is estimating a transformation from a quantile-quantile plot and then plugging

in the estimated transformation and its derivative to obtain a density estimate. Second, it

can be viewed as a nearly automatic method in the sense that we can make a reasonable

choice of the parameter independently of the data; for example, there is no cross validation

needed to choose the parameters. However, this automatic aspect is, of course, only a posi-

tive feature if used with an appropriate amount of caution. However, this method produces

estimates which compare favourably with more computationally intense methods.

A possible drawback of this method is that it does not generalize “nicely” to multivariate

data; for example, estimating a vector of transformations seems a non-trivial task. However,

13



one could use this method with the projection pursuit approach of Friedman et al (1984)

which uses univariate density estimates along certain directions to construct a multivariate

density estimate.
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Figure 1: Old Faithful data with
S=0.16, 0.346 and 0.64
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de
ns

ity

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
0

0.
2

0.
4

0.
6

* ** * ** **** * *** * *** *** ** * ** ** * **** *** ** *** ** ** * * ** * ** * *** * ** ** ** *** *** * *** * * ** *** ** *** * *** * * ** *** ** ** *** ****

Figure 2: Sulfur dioxide data
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Figure 3: Buffalo snowfall data
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Figure 4: Chondrite meteorite data
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Figure 5: Hidalgo stamp thickness data
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Figure 6: Bimodal logistic data
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Figure 7: Log-normal data
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