
Jackknife variance estimator for the sample median

Introduction

If X1, · · · , Xn are independent continuous random variables with common density f(x) and θ

is the median of the distribution (that is, F−1(1/2) = θ) then we know that an approximation

to the variance of the sample median (or more precisely, any order statistic X(k) with k/n ≈
1/2) is given by 1/(4nf 2(θ)). In order to use this approximation to obtain an estimate of

the standard error of the sample median, we would need to obtain a good estimate of f(θ).

However, densities are not that easy to estimate and so we might think to use the jackknife

to estimate the variance of the sample median.

However, as mentioned in lecture, the jackknife variance estimator fails as an variance

estimator for the sample median (and, in fact, for all sample quantiles). Essentially, the

reason for this failure is the fact that the sample median is not sufficiently well-approximated

by an average of random variables. In the next section, we will look at the behaviour of the

jackknife variance estimator when the sample size is even.

The jackknife and spacings

To get a sense of why the jackknife fails, we will consider the sample median when the sample

size is even, i.e. n = 2m. (A similar analysis can be done when n is odd but is somewhat

messier!)

Define θ̂ to be the usual sample median (that is, the average of the two middle order

statistics) and θ̂−i to the sample median with Xi deleted from the sample. Then it follows

that the leave-one-out estimators satisfy θ̂−i = X(m) for m values of i and θ̂−i = X(m+1) for

m values of i. Now

θ̂• =
1

n

n∑

i=1

θ̂−i =
1

2
(X(m) +X(m+1))

and so

V̂arjack(θ̂) =
n− 1

n

n∑

i=1

(θ̂−i − θ̂•)
2

=
n− 1

4
(X(m+1) −X(m))

2.

If the jackknife variance estimator works then it should be approximately equal to

1/(4nf 2(θ)) for large n; in other words, nV̂arjack(θ̂) should converge to 1/(4f 2(θ)). How-

ever,

nV̂arjack(θ̂) =
n− 1

4n

{
n(X(m+1) −X(m))

}2
.

Using our results on spacings, it follows that

n(X(m+1) −X(m))
d−→ 1

f(θ)
W
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where W has an Exponential distribution with mean 1. Thus

nV̂arjack(θ̂)
d−→ 1

4f 2(θ)
W 2

where the limit is a random variable (taking values on the positive real line) and not a

constant. Note that P (W 2 ≤ 1) = P (W ≤ 1) = 1 − exp(−1) = 0.632, which suggests that

the jackknife variance estimator will tend to underestimate the variance of the median more

than it will overestimate the variance of the median.

Example: Naive confidence intervals using the jackknife

Naively, we might use the interval
[
θ̂ − 1.96×

{
V̂arjack(θ̂)

}1/2
, θ̂ + 1.96×

{
V̂arjack(θ̂)

}1/2]

as an approximate 95% confidence interval for the population median θ = F−1(1/2).

The following R code estimates the coverage of this naive 95% confidence interval in

the case of a Logistic distribution with a sample size of n = 50 with data generated using

theta = F−1(1/2) = 0. In the simulation, we generate 10000 samples of size n = 50 from the

Logistic distribution with θ = 0 and for each sample, compute the upper and lower limits of

the naive confidence interval; we can estimate the true coverage probability by

estimated coverage probability =
number of intervals containing 0

10000
.

(This estimate will be accurate to about 0.01.)

> cover <- 0

> for (i in 1:10000) {

+ x <- sort(rlogis(50)) # 50 observations from Logistic median 0

+ med <- median(x)

+ jackse <- sqrt(49*(x[26]-x[25])^2/4) # jackknife standard error

+ lower <- med - 1.96*jackse # lower limit

+ upper <- med + 1.96*jackse # upper limit

+ if (upper*lower<=0) cover <- cover + 1

+ }

> cover/10000 # estimated coverage probability

[1] 0.6979

Thus the coverage of the naive 95% confidence interval is actually closer to 70%. This is con-

sistent with our observation in the previous section that the jackknife tends to underestimate

the variance of the sample median.
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Figure 1: Density of V (black) with a N (0, 1) density (red) for comparison

Some theory

Can the coverage probability in this example be explained theoretically? Note that this

naive jackknife confidence interval uses the pivot

θ̂ − θ
{
V̂arjack(θ̂)

}1/2 ,

which converges in distribution (for even sample sizes n = 2m as m → ∞) to V = Z/W

where Z and W are independent with Z ∼ N (0, 1) and W Exponential with mean 1. The

density of V is1

fV (x) =
1√
2π

∫
∞

0
w exp(−w) exp

(
−w2x2

2

)
dw

=
1

x2
√
2π

− exp(1/(2x2))[1− Φ(1/|x|)]
|x|3

and the distribution function of V is

FV (x) =
∫

∞

0
exp(−w)Φ(wx) dw

1The conditional distribution of V given W = w is N (0, 1/w2) and so we can determine the density of V

by integrating the conditional density multiplied by the marginal density of W .
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where Φ(t) is theN (0, 1) distribution function. Note that for larger values of |x| (for example,

|x| > 4),

fV (x) ≈
1

x2
√
2π

− 1

2|x|3 ,

which indicates that the tails of V are very heavy; for example, E(|V |) = E(|Z|)E(W−1) =

∞ since E(W−1) = ∞. The density fV (x) is shown in Figure 1 with a N (0, 1) density for

comparison.

It is possible to numerically integate to evaluate FV (x) at a given x but FV (x) can be

approximated very easily by the simple Monte Carlo estimate

F̂V (x) =
1

N

N∑

i=1

Φ(Wix)

where W1, · · · ,WN are independent Exponential random variables with mean 1. Likewise,

we can estimate the density fV (x) by

f̂V (x) =
1

N

N∑

i=1

Wiφ(Wix) =
1

N

N∑

i=1

Wi√
2π

exp

(
−W 2

i x
2

2

)

UsingN = 106, we can estimate the large sample coverage probability, P (−1.96 ≤ V ≤ 1.96),

of the naive confidence interval using the following R code:

> w <- rexp(1000000)

> mean(pnorm(1.96,0,1/w)-pnorm(-1.96,0,1/w))

[1] 0.6947249

This estimate is consistent with the coverage probability that we saw in the Logistic example.

If we consider confidence intervals of the form
[
θ̂ − tp ×

{
V̂arjack(θ̂)

}1/2
, θ̂ + tp ×

{
V̂arjack(θ̂)

}1/2]

how large does tp need to be in order for the confidence interval to have (approximately)

100p% coverage? To do this, we simply need to find tp such that P (−tp ≤ V ≤ tp) = p.

Table 1 gives the values of tp for various values of p.

p 0.50 0.70 0.80 0.90 0.95 0.99

tp 0.92 2.01 3.35 7.34 15.33 79.16

Table 1: Values of tp for various confidence levels p

We can now repeat the earlier experiment now using t0.95 = 15.33, which hopefully should

give a coverage for the confidence interval closer to 0.95.
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> cover <- 0

> for (i in 1:10000) {

+ x <- sort(rlogis(50)) # 50 observations from Logistic median 0

+ med <- median(x)

+ jackse <- sqrt(49*(x[26]-x[25])^2/4) # jackknife standard error

+ lower <- med - 15.33*jackse # lower limit

+ upper <- med + 15.33*jackse # upper limit

+ if (upper*lower<=0) cover <- cover + 1

+ }

> cover/10000 # estimated coverage probability

[1] 0.9534

Towards a better confidence interval

The key to finding a better confidence interval lies in finding a better estimator of 1/f(θ);

in the jackknife with n = 2m, this is estimated by n(X(m+1) −X(m)).

Suppose that a and b are positive integers with a < n/2 < b where r = b− a is relatively

small compared to n. Then

n

r
(X(b) −X(a)) =

1

r

b−1∑

k=a

n(X(k+1) −X(k)).

If a and b are “close” to n/2 then

(
n(X(a+1) −X(a)), · · · , n(X(b) −X(b−1))

)
d−→ (E1, · · · , Er)

where E1, · · · , Er are independent Exponential random variables with mean 1/f(θ). This in

turn suggests that the distribution of n(X(b)−X(a))/r can be approximated by the distribu-

tion of an average of r independent Exponential random variables with mean 1/f(θ).

How can we use this to construct a confidence interval for θ, the population median?

The idea is essentially to choose a and b so that

• r = b− a is as large as possible, and

• the Exponential (with mean 1/f(θ)) approximations to the distributions of n(X(a+1)−
X(a)), · · · , n(X(b) −X(b−1)) are valid.

If these conditions hold then we can estimate the variance of θ̂ by

V̂arr(θ̂) =
n(X(b) −X(a))

2

4r2

and use the pivot
θ̂ − θ

{
V̂arr(θ̂)

}1/2
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Figure 2: Density of V for r = 5 (black) with a N (0, 1) density (red) for comparison

to construct a confidence interval for θ.

We can approximate the distribution of the pivot using a similar approach to that used

earlier. As n → ∞, the distribution of the pivot converges to the distribution of V = Z/W

where (as before) Z ∼ N (0, 1) and W (independent of Z) has a Gamma distribution with

density

gW (x) =
rrxr−1 exp(−rx)

Γ(r)
for x ≥ 0

(where r = b− a). From this, we can obtain the distribution and density functions of V as

follows:

FV (x) =
∫

∞

0
gW (w)Φ(wx) dw

fV (x) =
∫

∞

0
w gW (w)φ(wx) dw.

As r increases, the distribution of V gets closer a N (0, 1) distribution. Figure 2 shows the

density of V for r = 5 with a N (0, 1) density for comparison.
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