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Abstract: Suppose that X1, · · · , Xn are i.i.d. random variables with distribu-

tion function F . It is well known that if F is differentiable at the α-quantile

q(α) with F ′(q(α)) > 0 then the sample quantile is asymptotically normal. In

this note we compare this standard quantile estimator to one obtained by tak-

ing weighted averages of sample quantiles from non-overlapping subsamples or

from balanced overlapping subsamples. It is straightforward to show that these

“average-of-subsample-quantile” estimators are first-order equivalent to the stan-

dard estimator. Second order properties however differ in an interesting fashion.

While the standard estimator might be intuitively expected best, it is possible

to outperform that estimator in a certain sense. We also indicate connections to

recently developed methods based on averaging of estimates from bootstrap sam-

ples (bagging and bragging) and from without replacement subsamples (subag-

ging). Finally, we show how results generalize when the standard differentiability

condition on F is relaxed.

1 Introduction

Suppose that X1, · · · , Xn are independent, identically distributed (i.i.d.) random variables

with distribution function F . The α quantile of F , q(α) can estimated non-parametrically

by q̂n(α) minimizing the objective function

hn(t) =
n∑

i=1

ρα(Xi − t) (1)
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where ρα(x) = x[α − I(x < 0)]. In the case where the minimizer of (1) is not unique, we

can define q̂n(α) to be the mid-point of the set of minimizers or, alternatively, one of the

end-points of this set. In any event, if F is differentiable at q(α) with F ′(q(α)) = f(q(α)) > 0

then
√
n (q̂n(α)− q(α))

d−→ N
(

0,
α(1− α)

f 2(q(α))

)

with the result holding for any sequence {q̂n(α)} of minimizers of (1).

In this article, we will attempt to “improve” the asymptotic linearity of the estimator

q̂n(α) by combining quantile estimators from subsamples. More precisely when f(q(α)) > 0,

we have the Bahadur-Kiefer (Bahadur, 1966; Kiefer, 1967) representation

√
n(q̂n(α)− q(α)) =

1

f(q(α))
√
n

n∑

i=1

{α− I[Xi < q(α)]}+ R̂n(α) (2)

where the remainder term R̂n(α) = Op(n
−1/4); this remainder term can be thought of as

representing the deviation from linearity of q̂n(α). It is straightforward to construct first

order equivalent estimators q̃n(α) such that

√
n(q̃n(α)− q(α)) =

1

f(q(α))
√
n

n∑

i=1

{α− I[Xi < q(α)]}+ R̃n(α) (3)

where R̃n(α) 6= R̂n(α). A natural question to ask is whether or not it is possible to improve

on the linearity of q̂n(α), that is, to construct an estimator q̃n(α) satisfying (3) such that its

remainder R̃n(α) is “smaller” than R̂n(α) in (2).

The paper is organized as follows: In section 2, we discuss first order theory of quantile

estimators that combine estimators from subsamples; in section 3, we derive some second

order results for estimators satisfying (3); in section 4, we discuss second order theory for

quantile estimators obtained via bagging and subagging; finally in section 5, we consider

asymptotic theory in non-standard cases.

2 Combining information from subsamples; first order

theory

There are a number of ways of constructing subsamples. We start by dividing X1, · · · , Xn

into k non-overlapping subsamples of length n1, · · · , nk. Define q̂(1)
n (α) to be the sample α

quantile of X1, · · · , Xn1
, q̂(2)

n (α) to be the sample α quantile of Xn1+1, · · · , Xn1+n2
and so on.

The quantile estimators q̂(1)
n (α), · · · , q̂(k)

n (α) can be combined in a number of ways. For

example, we could define an estimator q̃n(α) to be a weighted average of the subsample
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estimators or the median (or some other order statistic); the latter type of estimator might

be viewed as a generalization of Tukey’s (1978) “ninther”.

One possible consideration for combining subsample quantiles is computational. While

a sample quantile requires only O(n) computational effort (like the sample mean), it also

requires O(n) storage; combining subsample quantiles will typically involve the same compu-

tational effort while reducing the storage necessary. These issues are discussed, for example,

in Rousseeuw and Bassett (1990), Hurley and Modarres (1995), and Dor and Zwick (1999).

The following result gives a convolution-type theorem for estimators that combine the

information in q̂(1)
n (α), · · · , q̂(k)

n (α).

THEOREM 1. Assume F ′(q(α)) = f(q(α)) and suppose that

q̃n(α) = gn

(
q̂(1)
n (α), · · · , q̂(k)

n (α)
)

where

(a) ni/n→ λi > 0 as n→∞ for i = 1, · · · , k,
(b) gn(xn) → g0(x0) for all sequences {xn} converging to x0, and

(c) {gn} and g0 are location and scale equivariant in the following sense: gn(ax + b1) =

a gn(x) + b for all b and a > 0.

Then
√
n(q̃n(α)− q(α))

d−→ 1

f(q(α))
(W + V )

where W ∼ N (0, α(1− α)) and V is independent of W .

Proof. Let W1, · · · ,Wk be independent N (0, α(1− α)) random variables. Then




√
n(q̂(1)

n (α)− q(α))
...

√
n(q̂(k)

n (α)− q(α))




d−→ 1

f(q(α))




λ
−1/2
1 W1

...

λ
−1/2
k Wk




and so

√
n(q̃n(α)− q(α)) = gn

(√
n(q̂(1)

n (α)− q(α)), · · · ,√n(q̂(k)
n (α)− q(α))

)

d−→ 1

f(q(α))
g0

(
W1/λ

1/2
1 , · · · ,Wk/λ

1/2
k

)
.

Finally, suppose that W ′
1, · · · ,W ′

k are independent random variables with

W ′
i ∼ N (θ, λ−1

i α(1− α))
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where θ is unknown and all other parameters are known. Then we have a one-parameter

exponential family for which S =
∑k

i=1 λiW
′
i is a sufficient and complete statistic for θ

while g0(W
′
1, · · · ,W ′

k) − S is ancillary. Thus by Basu’s Theorem, S is independent of

g0(W
′
1, · · · ,W ′

k)− S (for all θ). The conclusion of the theorem follows by noting that when

θ = 0, g0(W1/λ
1/2
1 , · · · ,Wk/λ

1/2
k ) has the same distribution as g0(W

′
1, · · · ,W ′

k) and S has the

same distribution as W . 2

It is easy to construct examples of estimators satisfying the conditions of Theorem 1

whose limiting distribution has V 6= 0 and W +V is not normally distributed. For example,

we could take q̃n(α) to be some fixed order statistic of q̂(1)
n (α), · · · , q̂(k)

n (α); further examples

are given in Knight (2002).

Note that Theorem 1 can be extended to overlapping subsamples under certain conditions.

For example, consider a situation where the subsamples each have size approximately λn

with “adjacent” subsamples have an overlap of ρn observations so that every observation

is included in ` > 1 of the k subsamples. Then the subsample quantiles q̂(1)
n (α), · · · , q̂(k)

n (α)

satisfy

√
n




q̂(1)
n (α)− q(α)

...

q̂(k)
n (α)− q(α)




d−→ N (0,Σ)

where Σ is a circulant matrix. In this case, Theorem 1 still holds for estimators of the form

q̃n(α) = gn(q̂(1)
n (α), · · · , q̂(k)

n (α)) for gn satisfying the conditions of Theorem 1. To see this,

note that the limiting distribution of
√
n(q̃n(α)− q(α)) can be represented as g0(W ) where

W ∼ N (0,Σ); if W
′ ∼ N (θ1,Σ) then 1T

W
′ is sufficient and complete for θ when Σ is

known (since Σ−1 is also a circulant matrix) and the remainder of the proof is the same.

Similarly, we can extend Theorem 1 to estimators based on “running quantiles”. For some

λ ∈ (0, 1), we define q̂n(α; u) to be the α quantile of the subsample {Xbnuc+1, · · · , Xbn(u+λ)c}
where Xn+k = Xk for k ≥ 1. Then the process

Qn(u) =
√
n(q̂n(α; u)− q(α))

converges weakly to a zero-mean Gaussian process Q(u) with

E[Q(u)Q(v)] =
α(1− α)

λf 2(q(α))
Cλ(u, v)

where

Cλ(u, v) =
1∑

s=−1

(
1− 1

λ
|u− v + s|

)
I (|u− v + s| ≤ λ) . (4)
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Then for estimators q̃n(α) = gn(q̂n(α; ·)) where gn(fn) → g0(f0) whenever fn(t) → f0(t)

uniformly over compact sets and gn(a f + b) = a gn(f) + b, we have

√
n(q̃n(α)− q(α))

d−→
∫ 1

0
Q(u) du+ V (5)

where the random variables in the limit are independent; note that

∫ 1

0
Q(u) du ∼ N

(
0,
α(1− α)

f 2(q(α))

)

and so we have another extension of Theorem 1. For any fixed λ ∈ (0, 1), the estimator

q̃n(α) =
∫ 1

0
q̂n(α; u) du (6)

satisfies (5) with V = 0.

In general, the estimators considered in Theorem 1 are in fact “argmin” estimators. More

precisely, if q̃n(α) = gn(q̂(1)
n (α), · · · , q̂(k)

n (α)) (where the subsample quantiles {q̂(j)
n (α)} are from

either disjoint or overlapping subsamples) then q̃n(α) minimizes the objective function

h̃n(t) = inf{h(1)
n (t1) + · · ·+ h(k)

n (tk) : gn(t1, · · · , tk) = t}

where

h(j)
n (tj) =

∑

i∈Ij

ρα(Xi − tj)

for j = 1, · · · , k where Ij is the index set for subsample j.

EXAMPLE 1. We consider the case of four overlapping subsamples each containing 3/4

of the observations so that each observation is contained in exactly three subsamples. The

covariance matrix of the asymptotic distribution of the subsample quantiles is

Σ =
4α(1− α)

3f 2(q(α))




1 2/3 2/3 2/3

2/3 1 2/3 2/3

2/3 2/3 1 2/3

2/3 2/3 2/3 1




We then define

q̃n(α) =
1

4

[
q̂(1)
n (α) + · · ·+ q̂(4)

n (α)
]
,

which has the same limiting distribution as the (full) sample quantile q̂n(α). The “implied”

objective function h̃(t) for q̃n(α) can be evaluated for each t by minimizing a quantile re-

gression objective function. This objective function (for α = 1/2) is shown in Figures 1
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Figure 1: Comparison of h̃n (solid line) to hn (dashed line) for a sample of 100 N (0, 1)

random variables; both h̃n and hn have been scaled to facilitate the comparison.

and 2; in Figure 1, we take 100 observations from a N (0, 1) distribution while in Figure

2, we have 100 observations from a density with f(q(1/2)) = 0 (for which the asymptotics

described in Theorem 1 do not hold. (In both Figures 1 and 2, the range of values given on

the x-axis is a non-parametric approximate 95% confidence interval for the median based on

order statistics; see Efron (1982) for details.) In the latter case, the asymptotic distributions

of the two estimators will be different and, perhaps not surprisingly, hn and h̃n are quite

different; in contrast, in the “regular” case, the agreement between hn and h̃n can be very

close as is the case in Figure 1. 3

Under the conditions of Theorem 1 (assuming the sample quantiles are computed from

disjoint subsamples),
√
n(q̃n(α)− q(α)) converges in distribution to the minimizer of

Z(u) = inf{Z(1)(u1) + · · ·+ Z(k)(uk) : g0(u1, · · · , uk) = u}

where

Z(j)(uj) = −λ1/2
j Wjuj +

1

2
λjf(q(α))u2

j

where W1, · · · ,Wk are independent N (0, α(1− α)) random variables.
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Figure 2: Comparison of h̃n (solid line) to hn (dashed line) for a sample of 100 random

variables from a distribution with f(q(1/2)) = 0; both h̃n and hn have been scaled to

facilitate the comparison.
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3 Some second order theory

As indicated in section 2, there is a wide variety of estimators satisfying (3) with R̃n(α) =

op(1). In this section, we will take a closer look at the second order behaviour of some of

these estimators.

As a starting point, we will look at estimators of q(α) constructed by combining sample

quantiles from disjoint subsamples. Under the conditions of Theorem 1, an optimal estimator

of q(α) based on q̂(1)
n (α), · · · , q̂(k)

n (α) is

q̄n(α) =
k∑

i=1

ni

n
q̂(i)
n (α) ≈

k∑

i=1

λiq̂
(i)
n (α), (7)

which satisfies
√
n(q̄n(α)− q̂n(α)) = op(1).

Intuitively, the sample quantile q̂n(α) should be a better estimator of q(α). To investigate

this, we look at the second order representations of both estimators:

√
n(q̂n(α)− q(α)) =

1

f(q(α))
√
n

n∑

i=1

{α− I[Xi < q(α)]}+ R̂n(α) (8)

√
n(q̄n(α)− q(α)) =

1

f(q(α))
√
n

n∑

i=1

{α− I[Xi < q(α)]}+ R̄n(α). (9)

The following theorem gives the joint asymptotic behaviour of R̂n(α) and R̄n(α).

THEOREM 2. Define q̄n(α) as in (7) and suppose that

(a) F (q(α) + t)− α = t f(q(α)) + o(t3/2) as t→ 0, and

(b) ni/n = λi + o(n−1/4) for i = 1, · · · , k.
Then for R̂n(α) and R̄n(α) defined in (8) and (9), we have

n1/4

(
R̂n(α)

R̄n(α)

)
d−→
(
R̂0(α)

R̄0(α)

)

where

R̂0(α) =
1

f(q(α))

k∑

i=1

λ
1/4
i Bi


 λ

1/2
i W

f(q(α))




R̄0(α) =
1

f(q(α))

k∑

i=1

λ
1/4
i Bi

(
Wi

f(q(α))

)
;

B1, · · · , Bk are independent Gaussian processes with E[(Bi(s) − Bi(t))
2] = f(q(α))|s − t|,

W1, · · · ,Wk are independent N (0, α(1 − α)) random variables that are independent of the

Bi’s, and

W =
k∑

i=1

λ
1/2
i Wi.
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Proof. For notational convenience, relabel the observations Xij for i = 1, · · · , k and j =

1, · · · , ni. Define

Z(i)
n (u) =

ni∑

j=1

[
ρα

(
Xij − q(α)− u/

√
n
)
− ρα (Xij − q(α))

]

for i = 1, · · · , k and

Zn(u) =
k∑

i=1

Z(i)
n (u).

Note that
√
n(q̂(i)

n (α)− q(α)) minimizes Z(i)
n and

√
n(q̂n(α)− q(α)) minimizes Zn. Moreover,

Z(i)
n and Zn can be approximated by (respectively)

Z̄(i)
n (u) = − u√

n

ni∑

j=1

{α− I[Xij < q(α)]}+
λif(q(α))

2
u2

Z̄n(u) = − u√
n

k∑

i=1

ni∑

j=1

{α− I[Xij < q(α)]}+
f(q(α))

2
u2

=
k∑

i=1

Z(i)
n (u).

Then

n1/4(Z(i)
n (u)− Z̄(i)

n (u))

= n−1/4
ni∑

j=1

∫ u

0

[{
I[Xij ≤ q(α) + t/

√
n]− I[Xij ≤ q(α)]

}
− f(q(α))

t√
n

]
dt

=
∫ u

0
Y (i)

n (t) dt

and

n1/4(Zn(u)− Z̄n(u)) =
k∑

i=1

∫ u

0
Y (i)

n (t) dt

where Y (i)
n

d−→ −λ1/4
i Bi(λ

1/2
i ·) and B1, · · · , Bk are independent Gaussian processes. Then

following Knight (1998), we have

n1/4R̂n(α)
d−→ 1

f(q(α))

k∑

i=1

λ
1/4
i Bi


 λ

1/2
i W

f(q(α))




and

n1/4R̂(i)
n (α) = n1/4


√n(q̂(i)

n (α)− q(α))− 1

λif(q(α))
√
n

ni∑

j=1

{α− I[Xij < q(α)]}



d−→ 1

λ
3/4
i f(q(α))

Bi

(
Wi

f(q(α))

)
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where
1√
ni

ni∑

j=1

{α− I[Xij < q(α)]} d−→Wi

(as ni →∞) and

1√
n

k∑

i=1

ni∑

j=1

{α− I[Xij < q(α)]} d−→W =
k∑

i=1

λ
1/2
i Wi.

Thus

n1/4R̄n(α) = n1/4
k∑

i=1

λiR̂
(i)
n (α) + op(1)

d−→ 1

f(q(α))

k∑

i=1

λ
1/4
i Bi

(
Wi

f(q(α))

)
,

which completes the proof. 2

Using properties of the two-sided Brownian motions, we have

Var[R̂0(α)] =
[2α(1− α)]1/2

f 2(q(α))
√
π

Var[R̄0(α)] =
[2α(1− α)]1/2

f 2(q(α))
√
π

k∑

i=1

λ
1/2
i

Cov[R̂0(α), R̄0(α)] =
[2α(1− α)]1/2

2f 2(q(α))
√
π

k∑

i=1

λ
1/2
i

[
1 + λ

1/2
i − (1− λi)

1/2
]
.

Note that Var[R̂0(α)] < Var[R̄0(α)]. (Duttweiler (1973) shows that if F (x) is twice differen-

tiable at x = q(α) then

√
nE[R̂2

n(α)] = Var(R̂0(α)) + o(n−1/4+δ)

for any δ > 0.) Moreover, both R̂0(α) and R̄0(α) are uncorrelated with W1, · · · ,Wk:

Cov(R̂0(α),Wi) = 0

Cov(R̄0(α),Wi) = 0

for i = 1, · · · , k.
Since q̂n(α) and q̄n(α) are equivalent to first order, any convex combination of the two

will have the same first order representation although the variance of the second order term

will vary. For some t ∈ [0, 1] define

q̃n(α) = t q̂n(α) + (1− t) q̄n(α)
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and note that

√
n(q̃n(α)− q(α)) =

1

f(q(α))
√
n

n∑

i=1

{α− I[Xi < q(α)]}+ t R̂n(α) + (1− t) R̄n(α)

with

n1/4
[
t R̂n(α) + (1− t) R̄n(α)

]
d−→ t R̂0(α) + (1− t) R̄0(α).

Since the remainder term above is asymptotically uncorrelated with the first order term, we

can try to minimize the asymptotic variance of the remainder term; note that Var[t R̂0(α) +

(1− t) R̄0(α)] is minimized (for given λ1, · · · , λk) at

t(λ1, · · · , λk) =
Var[R̄0(α)]− Cov[R̂0(α), R̄0(α)]

Var[R̄0(α)] + Var[R̂0(α)]− 2Cov[R̂0(α), R̄0(α)]
.

We can also minimize Var[t R̂0(α)+(1−t) R̄0(α)] over all t, k, and non-negative λi’s satisfying

λ1 + · · ·+ λk = 1.

THEOREM 3. Var[t R̂0(α) + (1 − t) R̄0(α)] is minimized at k = 2, λ1 = λ2 = 1/2 and

t = 1/
√

2.

Proof. For fixed k and t, Var[t R̂0(α) + (1− t) R̄0(α)] is a symmetric function of λ1, · · · , λk

so we can assume that λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0. Moreover, we can focus on local minima for

which λ1 ≥ λ2 ≥ · · · ≥ λk > 0. For fixed t and k, the local minima of Var[t R̂0(α) + (1 −
t) R̄0(α)] occur at λ1 = · · · = λk = 1/k, in which case

Var[t R̂0(α) + (1− t) R̄0(α)]

=
[2α(1− α)]1/2

f 2(q(α))
√
π

[
t2 + (1− t)2

√
k + t(1− t)

(
1 +

√
k −

√
k − 1

)]
.

For given k, this is minimized over t at tk = (
√
k +

√
k − 1− 1)/(2

√
k − 1), yielding

Var[tk R̂0(α) + (1− tk) R̄0(α)] =
[2α(1− α)]1/2

f 2(q(α))
√
π

√
k(k − 1) +

√
k +

√
k − 1− k

2
√
k − 1

which in turn is minimized over k = 1, 2, · · · at k = 2 with t2 = 1/
√

2. 2

At the optimal values λ1 = λ2 = 1/2 and t0 = 1/
√

2, we have

Var[t0R̂0(α) + (1− t0)R̄0(α)]

Var[R̂0(α)]
=
√

2− 1

2
≈ 0.9142.

This ratio can be improved upon by considering average running quantile estimators defined
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Figure 3: Plot of Var[R̃0(α;λ)]/Var[R̂0(α)] (log scale) versus λ.

at the end of section 2. For fixed λ ∈ (0, 1), define q̃n(α) as in (6); then

√
n(q̃n(α)− q(α)) =

1

f(q(α))
√
n

n∑

i=1

{α− I[Xi ≤ q(α)]}+ R̃n(α;λ)

with

n1/4R̃n(α;λ)
d−→ R̃0(α;λ)

1

λ3/4f(q(α))

∫ 1

0
Bλ

(
Wλ(u)

f(q(α))
; u

)
du

where Bλ(t; u) is a zero mean Gaussian process with

E[Bλ(t; u)Bλ(s; v)] =
1

2
f(q(α)) (|s|+ |t| − |s− t|)Cλ(u, v)

and Wλ(u) is a Gaussian process (which is independent of Bλ(t; u)) with E[Wλ(u)Wλ(v)] =

α(1− α)Cλ(u, v) where Cλ(u, v) is defined in (4). Then

Var[R̃0(α;λ)]

=
1

λ3/2f 2(q(α))

∫ 1

0

∫ 1

0
E

[
Bλ

(
Wλ(u)

f(q(α))
; u

)
Bλ

(
Wλ(v)

f(q(α))
; v

)]
du dv

=
1

2λ3/2f 2(q(α))

∫ 1

0

∫ 1

0
Cλ(u, v) {E [|Wλ(u)|+ |Wλ(v)| − |Wλ(u)−Wλ(v)|]} du dv

=
[2α(1− α)]1/2

√
πλ3/2f 2(q(α))

∫ 1

0

∫ 1

0
Cλ(u, v)

{
1− 1

2
[2− 2Cλ(u, v)]

1/2
}
du dv.

12



The double integral above is not difficult to evaluate as it is easy to see that the inner integral

(with respect to u) does not depend on v although there does not appear to be a simple

closed-form expression for it. Nonetheless, for given α and λ, it can be easily integrated

numerically; a plot of Var[R̃0(α;λ)]/Var[R̂0(α)] versus λ is shown in Figure 3. Var[R̃0(α;λ)]

is minimized at λ0 ≈ 0.7377 with

Var[R̃0(α;λ0)]

Var[R̂0(α)]
= 0.7773.

The ratio is less than 1 for values of λ in the interval (0.3880, 1) and blows up as λ ↓ 0.

The second order behaviour is somewhat different for smoother estimators; in particular,

there is an interesting bias/variance tradeoff in the remainder term. For example, suppose

that θ̂n minimizes
n∑

i=1

ρ(Xi; t)

where ρ(x; t) is at least three times differentiable, convex function in t for each x. If ψ(x; t),

ψ′(x; t), and ψ′′(x; t) are the first three derivatives (with respect to t) of ρ(x; t) then (under

appropriate regularity conditions), we have

√
n(θ̂n − θ) = − 1

E[ψ′(X1; θ)]
√
n

n∑

i=1

ψ(Xi; θ) +Rn.

For the remainder term Rn, we have

n1/2Rn
d−→W V − 1

2
W 2E[ψ′′(X1; θ)] = R0

where

1

E[ψ′(X1; θ)]
√
n




n∑

i=1

ψ(Xi; θ)

n∑

i=1

{ψ′(Xi; θ)− E[ψ′(Xi; θ)]}




d−→
(
W

V

)
∼ N (0, C).

On the other hand, if θ̂(1)
n , · · · , θ̂(k)

n are estimators based on subsamples of lengths n1, · · · , nk

and

θ̄n =
k∑

i=1

ni

n
θ̂(i)

n

then
√
n(θ̄n − θ) = − 1

E[ψ′(X1; θ)]
√
n

n∑

i=1

ψ(Xi; θ) +R′
n

where

n1/2R′
n

d−→
k∑

i=1

λ
1/2
i

{
Wi Vi −

1

2
W 2

i E[ψ′′(X1; θ)]
}

= R′
0

13



and (W1, V1), · · · , (Wk, Vk) are i.i.d. pairs of random variables have the same distribution as

(W,V ) with (
W

V

)
= λ

1/2
1

(
W1

V1

)
+ · · ·+ λ

1/2
k

(
Wk

Vk

)
.

Note that Var(R0) = Var(R′
0) and

Cov (R0, R
′
0) = Var(R0)

k∑

i=1

λ
3/2
i ,

which implies that the variance of the limiting remainder term t R0 + (1 − t)R′
0 for the

estimator t θ̂n + (1 − t) θ̄n is always minimized when t = 1/2. Moreover, Var[(R0 + R′
0)/2]

can be made close to Var(R0)/2 by taking k large and the λi’s uniformly small (for example,

λi = 1/k). On the other hand, if E(R0) 6= 0 then |E[t R0 +(1− t)R′
0]| is minimized at t = 1.

4 A step beyond: bagging, subagging, and bragging

In the previous section, we saw that we could achieve a second order improvement of a sample

quantile by combining it with an estimator constructed by taking averages of subsample

quantiles. A possible concern with these estimators is the fact that they are not invariant

under permutations of the data and hence are not functions of the order statistics, which,

if X1, · · · , Xn are i.i.d. with unknown continuous distribution function F , is the sufficient

statistic for F . In this section, we will consider estimators based on averaging (essentially)

all possible subsample quantiles; these estimators will be invariant under permutations.

Suppose that q̂∗n(α) minimizes

h∗n(t) =
n∑

i=1

∆∗
niρα(Xi − t) (10)

where ∆∗
n = (∆∗

n1, · · · ,∆∗
nn) is a random vector independent of the Xi’s. We will construct

an estimator of q(α) by averaging the q̂∗n(α)’s over the distribution of ∆∗
n:

q̃n(α) = E∗[q̂∗n(α)].

If ∆∗
n has a multinomial distribution with ∆∗

n1+· · ·+∆∗
nn = n then q̃n(α) is Breiman’s (1996)

“bagged” estimator. If the ∆∗
ni’s are exchangeable 0/1 random variables with P ∗(∆∗

ni = 1) =

λn → λ > 0 and ∆∗
n1 + · · ·+ ∆∗

nn = nλn then q̃n(α) is the average of all possible subsample

quantiles from subsamples of length nλn; we will call these latter estimators “subagged

estimators” after Bühlmann and Yu (2002). Asymptotics for bagged and subagged estimators

have been considered by, among others, Bühlmann and Yu (2002), Buja and Stuetzle (2002),
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and Friedman and Hall (2000). Some properties of the bagged sample median are discussed

in Grandvalet (2004). Bühlmann (2003) proposed replacing the averaging of estimators from

bootstrap samples by a more robust estimator; he uses the median and calls the resulting

procedure “bragging”.

If q̂∗n(α) minimizes (10) then we have the Bahadur-Kiefer representation

√
n(q̂∗n(α)− q(α))

=
1

f(q(α))
√
n

n∑

i=1

[{α− I[Xi ≤ q(α)]}+ {∆∗
ni − E(∆∗

ni)} {α− I[Xi ≤ q(α)]}] + R̂∗
n(α)

where

P ∗
[
n1/4R̂∗

n(α) ∈ A
]

d−→ P ∗

[
1

f(q(α))
B(W +W ∗) ∈ A

]

where B is a two-sided Brownian motion, W and W ∗ are independent normal random vari-

ables (independent of B), and the randomness in the limiting probability is induced by B

and W .

Second order representations for the bagged and subagged estimators can be obtained

by averaging over the distribution of W ∗ conditional on B and W . Both the bagged and

subagged estimators of q(α) satisfy

√
n (q̃n(α)− q(α)) =

1

f(q(α))
√
n

n∑

i=1

{α− I[Xi ≤ q(α)]}+ R̃n(α).

For the bagged estimator, we have

n1/4R̃n(α)
d−→
∫ ∞

−∞
B(W + u)φα (f(q(α)) u) du

where φα(x) is the density function of a N (0, α(1− α)) random variable, W ∼ N (0, α(1−
α)/f 2(q(α))), and B is a two-sided Brownian motion with E[(B(s)−B(t))2] = f(q(α))|s−t|.

For the subagged estimators, the limiting distribution of n1/4R̃n(α) depends on the sub-

agging fraction λ; in particular, we have

n1/4R̃n(α)
d−→ λ1/2

(1− λ)1/2

∫ ∞

−∞
B(W + u)φα

(
λ1/2f(q(α))

(1− λ)1/2
u

)
du = R̃0(α;λ)

where B and φα are defined as before. Note that the limit for the bagged estimator is

the same as that of a subagged estimator with λ = 1/2 and that R̃0(α; 1) = R̂0(α), where

R̂0(α) is defined in the previous section. (More generally, if we take bootstrap samples of

size m 6= n then the resulting bagged estimators are equivalent to subagged estimators with

λ = m/(m + n).)
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The variance of R̃0(α;λ) is

Var[R̃0(α;λ)] =
[2α(1− α)]1/2

f 2(q(α))π1/2

[
1

λ1/2
− (1− λ)1/2

(2λ)1/2

]

and

Cov[R̃0(α;λ1), R̃0(α;λ2)] =
[2α(1− α)]1/2

2f 2(q(α))π1/2


 1

λ
1/2
1

+
1

λ
1/2
2

−
(
λ1 + λ2 − 2λ1λ2

λ1λ2

)1/2



= K(λ1, λ2).

The variance above is minimized at λ = 1/2 and so bagging or subagging with fraction 1/2 is

optimal in this sense. In fact, we can go a step further. Defining q̃n(α;λ) to be the subagged

estimator with fraction λ, if we define the estimator

q̆n(α;µ) =
∫

[0,1]
q̃n(α;λ)µ(dλ)

for a probability measure µ (or signed measure with
∫
[0,1] µ(dλ) = 1) then

√
n(q̆n(α;µ)− q(α)) =

1

f(q(α))
√
n

n∑

i=1

{α− I[Xi ≤ q(α)]}+ R̆n(α;µ)

where

n1/4R̆n(α;µ)
d−→
∫

[0,1]
R̃0(α;λ)µ(dλ) = R̆0(α;µ).

Defining

ϕ(µ) = Var[R̆0(α;µ)]

=
∫ 1

0

∫ 1

0
K(λ1, λ2)µ(dλ1)µ(dλ2),

it follows that ϕ is minimized at the measure putting all its mass at 1/2; this follows since

for any signed measure µ with
∫
[0,1] µ(dλ) = 1,

Cov[R̃0(α; 1/2), R̆0(α;µ)] =
∫

[0,1]
K(λ, 1/2)µ(dλ)

=
∫

[0,1]
K(1/2, 1/2)µ(dλ)

= Var[R̃0(α; 1/2)]

(since K(λ, 1/2) = K(1/2, λ) = K(1/2, 1/2) for 0 ≤ λ ≤ 1) and so

Var[R̃0(α; 1/2)] ≤ Var[R̆0(α;µ)]
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by applying the Cauchy-Schwarz inequality. This suggests that bagging (or subagging with

λ = 1/2) may be optimal from the point of view of reducing the nonlinearity of the sample

quantile. Note that
Var[R̃0(α; 1/2)]

Var[R̂0(α)]
=

1√
2
≈ 0.7071,

which is smaller than the best ratio given in section 3.

Both the bagged and subagged estimators can be thought of as L-estimators of q(α) in

the sense that they are weighted averages of order statistics. Suppose we define

q̃n(α) =
∫
q̂n(α + t/

√
n) νn(dt) (11)

where {νn} is a sequence of probability measures (or signed measures with
∫
νn(dt) = 1 for

all n) converging weakly to ν; that is, such that νn(A) → ν(A) for A such that ν(∂A) = 0.

For bagging and subagging, the measure ν corresponds to a zero mean normal distribution

whose variance depends on α and λ; for example, for subagging with fraction λ, this variance

is α(1−α)λ/(1−λ). (See also Grandvalet (2004).) First order equivalence of the estimators

defined in (11) with the sample α quantile q̂n(α) follows if
∫
t νn(dt) → 0; we then obtain

the representation

√
n(q̃n(α)− q(α)) =

1

f(q(α))
√
n

n∑

i=1

{α− I[Xi ≤ q(α)]}+ R̃n(α; νn)

where

n1/4R̃n(α; νn)
d−→ 1

f(q(α))

∫
B(W + t/f(q(α))) ν(dt) = R̃0(α; ν)

where B and W are defined as above. In this case, the asymptotic variance Var[R̃0(α; ν)] is

minimized over signed measures ν at the probability measure ν0 corresponding to a normal

distribution with mean 0 and variance α(1 − α); note that this optimal measure ν is the

same as the limiting measure used for bagging. The proof of this follows by noting that

Cov
[
R̃0(α; ν0), R̃0(α; ν)

]
= Var

[
R̃0(α; ν0)

]

for any probability measure ν; as before, this implies that

Var
[
R̃0(α; ν0)

]
≤ Var

[
R̃0(α; ν)

]

with equality if, and only if, ν = ν0.

An estimator q̃n(α) of the form (11) can itself be bootstrapped, for example, to estimate

either its standard error or the standard error of the sample quantile q̂n(α). Hall and Martin
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(1988) show that if σ̂2
n(α) is the variance of the bootstrap distribution of the sample quantile

q̂n(α) then

n1/4

(
nσ̂2

n(α)− α(1− α)

f 2(q(α))

)
d−→ −2

∫ ∞

−∞
wB(w)φα(f(q(α))w) dw

∼ N
(

0,
2[α(1− α)]3/2

π1/2f 4(q(α))

)
.

Using similar techniques for the estimators q̃n(α) with νn
d−→ ν and

∫
t νn(dt) → 0, the

bootstrap variance estimator σ̃2
n(α) satisfies

n1/4

(
nσ̃2

n(α)− α(1− α)

f 2(q(α))

)

d−→ −2
∫ ∞

−∞

∫ ∞

−∞
wB(w + t/f(q(α)))φα(f(q(α))w) dwν(dt)

∼ N
(
0, γ2(α; ν)

)

where

γ2(α; ν)

= − 2

f 4(q(α))

∫ ∫ ∫ ∫
ww′|(w − w′) + (t− t′)|φα(w)φα(w′) dw dw′ ν(dt)ν(dt′)

where, as before, φα(x) is the density of a N (0, α(1− α)) random variable.

Perhaps surprisingly, the variance γ2(α; ν) decreases as the dispersion of ν increases. More

precisely, for a given measure ν, define ντ by ντ (A) = ν(τ−1A); then γ2(α; ντ ) is a decreasing

function of τ . This suggests that the bootstrap standard error estimator improves by taking

a weighted average of order statistics within a wider window; however, the bias of q̃n(α) as

an estimator of q(α) will typically also increase with the dispersion of νn and this tradeoff

must be taken into account in choosing νn. However, bootstrapping an estimator q̃n(α)

of the form (11) in order to estimate the sampling distribution or standard error of q̂n(α)

is similar in spirit (although not equivalent) to the smoothed bootstrap (where bootstrap

samples are drawn from a smoothed empirical distribution), which is known to have some

attractive properties for sample quantiles.

Analysis of the bragged estimator (Bühlmann, 2003) is somewhat different. Here we will

consider the general case where q̃n(α) minimizes

E∗ [|q̂∗n(α)− t|p]

where E∗ denotes expectation with respect to the bootstrap distribution and p ≥ 1; for

p = 2, we obtained the bagged estimator while for p = 1, we obtain the median of the
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bootstrap distribution. (We can also replace | · |p by some other symmetric loss function but

for the asymptotics, it is the behaviour of the loss function near 0 that is important.) For

each p ≥ 1, we still obtain the representation

√
n(q̃n(α)− q(α)) =

1

f(q(α))
√
n

n∑

i=1

{α− I[Xi ≤ q(α)]}+ R̃n(α)

where now

n1/4R̃n(α)

d−→
(
f(q(α))

∫ ∞

−∞
|u|p−2φα(f(q(α)) u) du

)−1 ∫ ∞

−∞
B(W + u)|u|p−2φα(f(q(α)) u) du

=
π1/2f(q(α))p−2

[2α(1− α)](p−2)/2Γ((p− 1)/2)

∫ ∞

−∞
B(W + u)|u|p−2φα(f(q(α)) u) du

for p > 1 and

n1/4R̂n(α)
d−→ 1

f(q(α))
B(W )

where the two-sided Brownian motion B and the normal random variable W are defined as

above. Note that the limiting distribution of the remainder in the case of bragging with the

median is identical to that for the sample quantile itself. For p > 1, bragging is asymptotically

equivalent (to second order) to estimators of the form (11) where {νn} converges weakly to

a probability measure ν whose density is

ϕν(t) =
π1/2

[2α(1− α)](p−2)/2Γ((p− 1)/2)
|t|p−2φα(t).

It is worth noting that the effect bagging and subagging on smoother estimators is some-

what different. As in section 3, suppose that θ̂n minimizes

n∑

i=1

ρ(Xi; t)

where ρ(x; t) is at least three times differentiable, convex function in t for each x. If ψ(x; t),

ψ′(x; t), and ψ′′(x; t) are the first three derivatives (with respect to t) of ρ(x; t) then (under

appropriate regularity conditions), we have

√
n(θ̂n − θ) = − 1

E[ψ′(X1; θ)]
√
n

n∑

i=1

ψ(Xi; θ) +Rn.

For the remainder term Rn, we have

n1/2Rn
d−→W V − 1

2
W 2E[ψ′′(X1; θ)] = R0
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where

1

E[ψ′(X1; θ)]
√
n




n∑

i=1

ψ(Xi; θ)

n∑

i=1

{ψ′(Xi; θ)− E[ψ′(Xi; θ)]}




d−→
(
W

V

)
∼ N (0, C).

Defining θ̃n to minimize
n∑

i=1

∆∗
niρ(Xi; t)

for the ∆∗
ni’s defined for bagging and subagging, we obtain

√
n(θ̃n − θ) = − 1

E[ψ′(X1; θ)]
√
n

n∑

i=1

ψ(Xi; θ) +R′
n

where the limiting distribution of
√
nR′

n depends on the type of subsampling. For bagging,

we obtain

√
nR′

n
d−→W V − 1

2
W 2E[ψ′′(X1; θ)] + E(W V )− 1

2
E(W 2)E[ψ′′(X1; θ)]

while for subagging with fraction λ, we get

√
nR′

n
d−→W V − 1

2
W 2E[ψ′′(X1; θ)] +

1− λ

λ

{
E(W V )− 1

2
E(W 2)E[ψ′′(X1; θ)]

}
.

From this analysis, it appears that bagging and subagging can have only a negative effect

(by increasing the bias) of the estimator. A more complete analysis (c.f. Friedman and Hall,

2000; Chen and Hall, 2001) shows that bagging and subagging can improve the mean square

error properties of non-linear estimators. Buja and Stuetzle (2002) examine the smoother

effects of bagging and subagging on estimators θ̂n having the form θ̂n = ϑ(X1, · · · , Xn) where

ϑ(·) is symmetric in its arguments; they show that the von Mises expansion of the appropriate

functional is always finite.

5 Non-standard conditions

The differentiability condition on F assumed to this point can be generalized; the techniques

used to determine limiting distributions remain more or less the same although the limiting

distributions themselves will change. Define ψδ(t) to be a non-decreasing function satisfying

(for some δ ≥ 0)

ψδ(t) → ±∞ as t→ ±∞
ψδ(a t) = a1/δψδ(t) for a > 0. (12)
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When δ > 0, ψδ has the form

ψδ(t) =




c+t

1/δ for t > 0,

−c−(−t)1/δ for t < 0,
(13)

where 0 < c+, c− ≤ ∞ and at most one of c+ and c− is infinite. ψ0 has the form

ψ0(t) =





0 for −a− < t < a+,

+∞ for t > a+,

−∞ for t < −a−,

(14)

where 0 ≤ a+, a− <∞ and at most one of a+ and a− is 0.

Given ψδ(t), suppose that for some sequence of constants {an}, we have

lim
n→∞

√
n(F (q(α) + t/an)− α) → ψδ(t). (15)

where ψδ is defined as in (13) or (14); the constants an are of the form an = nδ/2L(n) where

L(n) is a slowly varying function. If F has a density f then δ < 1 implies that f(q(α)) = 0

while if δ > 1 then f(x) ↑ ∞ as x→ q(α).

The form of ψδ(t) and {an} determine, respectively, the limiting distribution and the

convergence rate of the sample quantile q̂n(α) minimizing (1); in particular, we have

an(q̂n(α)− q(α))
d−→ ψ↔δ (W )

where W ∼ N (0, α(1− α)) and

ψ↔δ (x) =





inf{t ≤ 0 : ψδ(t) ≥ x} if x < 0

0 if x = 0

sup{t ≥ 0 : ψδ(t) ≤ x} if x > 0.

(16)

When ψδ(t) is continuous (and strictly increasing) ψ↔δ = ψ−1
δ . The scaling condition (12) for

ψδ implies that each ψ↔δ satisfies a scaling condition: For each a > 0,

ψ↔δ (a x) = aδ ψ↔δ (x) (17)

for some δ ≥ 0.

THEOREM 4. Suppose that F (x) satisfies (15) at x = q(α) and

q̃n(α) = gn

(
q̂(1)
n (α), · · · , q̂(k)

n (α)
)

where

(a) ni/n→ λi > 0 as n→∞ for i = 1, · · · , k,
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(b) gn(xn) → g0(x0) for all sequences {xn} converging to x0, and

(c) {gn} and g0 are equivariant under non-decreasing transformations:

gn(φ(x1), · · · , φ(xk)) = φ(gn(x1, · · · , xk))

for all non-decreasing functions φ.

Then

an(q̃n(α)− q(α))
d−→ ψ↔δ (W + V )

where ψ↔δ is defined in (16), W ∼ N (0, α(1− α)) and V is independent of W .

The proof of Theorem 4 follows along the same lines as that of Theorem 1 noting that

an(q̂(i)
n (α)− q(α))

d−→ ψ↔δ
(
λ
−1/2
i Wi

)

for independent N (0, α(1 − α)) random variables W1, · · · ,Wk. Theorem 4 can also be ex-

tended to cases where q̂(1)
n (α), · · · , q̂(k)

n (α) are obtained from balanced overlapping subsamples

as in section 2.

The weighted estimator q̄n(α) defined in (7) does not satisfy the equivariance condition

in Theorem 3. For this estimator (under the assumptions of Theorem 3), we have

an(q̄n(α)− q(α))
d−→

k∑

i=1

λiψ
↔
δ

(
λ
−1/2
i Wi

)

=
k∑

i=1

λ
1−δ/2
i ψ↔δ (Wi)

using the scaling condition (17). When ψ↔δ is an odd function (that is, c+ = c− in (13) or

a+ = a− in (14)) then E[ψ↔δ (Wi)] = 0, in which case, we can say that q̂n(α) (and q̄n(α)) are

asymptotically unbiased to first order (that is, to order Op(a
−1
n )); otherwise, the first order

asymptotic bias of q̂n(α) is µ = E[ψ↔δ (W )] = E[ψ↔δ (Wi)]. In this case, we have

E

[
k∑

i=1

λ
1−δ/2
i ψ↔δ (Wi)

]
= µ

k∑

i=1

λ
1−δ/2
i

and so the asymptotic bias of q̄n(α) is worse than that of q̂n(α) unless µ = 0 or δ = 0. It

follows that

Var

(
k∑

i=1

λ
1−δ/2
i ψ↔δ (Wi)

)
=

k∑

i=1

λ2−δ
i Var(ψ↔δ (Wi))




< Var(ψ↔δ (W )) if δ < 1

> Var(ψ↔δ (W )) if δ > 1.

The fact that the variance of the limiting distribution of an(q̄n(α) − q(α)) tends to 0 with

k when δ < 1 suggests that we could improve on the sample quantile by averaging a large
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number of subsample quantiles; this is true provided that the bias of each subsample quantile

is not too severe.

Similar results hold for bagged and subagged estimators. In the case of the bagged

estimator, we have

an(q̃n(α)− q(α))
d−→
∫ ∞

−∞
ψ↔δ (W + u)φα(u) du

while for subagging (with fraction λ) we have

an(q̃n(α)− q(α))
d−→ λ1/2

(1− λ)1/2

∫ ∞

−∞
ψ↔δ (W + u)φα

(
λ1/2u

(1− λ)1/2

)
du = hλ,δ(W ).

In this case, we have a first order asymptotic equivalence between bagging and subagging

with λ = 1/2 and note that as λ ↑ 1, we have

hλ,δ(W ) → ψ↔δ (W ),

which is the limiting distribution of the sample quantile. Likewise, if q̃n(α) is defined as the

L-estimator in (11) with {νn} converging weakly to ν, we have

an(q̃n(α)− q(α))
d−→
∫
ψ↔δ (W + t) ν(dt).

It is interesting to look at the case where ψδ is an odd function. Identifying h1,δ(W ) =

ψ↔δ (W ), it is possible to show that for 0 < δ < 1 and 0 < λ < 1,

0 ≤ h′λ,δ(W ) < h′1,δ(W )

while for δ > 1 and 0 < λ < 1, we have

h′λ,δ(W ) > h′1,δ(W )

where h′λ,δ is the derivative of hλ,δ. Since hλ,δ(0) = 0 for all λ and δ, this implies that bagging

and subagging provide (asymptotically) a contraction of the limiting distribution (compared

to not using bagging or subagging) when δ < 1 and an “expansion” when δ > 1; likewise,

when δ = 0, it’s easy to show that |hλ,0(W )| ≤ |ψ↔0 (W )|. In particular, for any non-negative

“bowl shaped” function ` (that is, the set {x : `(x) ≤ y} is symmetric and convex for each

y > 0), we have for 0 < λ < 1

E [` (hλ,δ(W ))] < E [` (ψ↔δ (W ))] if δ < 1, and

E [` (hλ,δ(W ))] > E [` (ψ↔δ (W ))] if δ > 1.

This confirms the observation made for estimators obtained by combining subsamples; when

δ < 1 (for example, if f(q(α)) = 0) then the efficiency of the sample quantile can be improved

by combining estimators from subsamples while when δ > 1, this approach does not produce

a more efficient estimator.
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6 Final observations

In this paper, we have studied the asymptotic properties of quantile estimators constructed

by combining estimators from subsamples. There are several possible motivations for using

such estimators, one of which is computational; in very large datasets, it may be impossible

to compute an exact sample quantile so approximation using subsample quantiles seems a

reasonable thing to do. Another motivation is more statistically oriented; given the non-

smoothness of sample quantiles, we may wish to consider asymptotically equivalent estima-

tors that are smoother in the sense that they are less sensitive to small changes in the data

as well as having “nicer” statistical properties, for example, better asymptotic linearity. Fi-

nally, in some studies, the only available data is summary data on quantiles as the raw data

may be unavailable for confidentiality or other reasons. This paper was motivated, in part,

by Bassett et al. (2002), in which regression quantile estimation of ACT scores for Illinois

high school students is compared to least squares estimation of conditional quantiles using

within school quantiles of the ACT scores.
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