
Review (MR3407720) for Mathematical Reviews of
�Owhadi, H. and Scovel, C. (2016) Brittleness of Bayesian inference

and new Selberg formulas.
Communications in Mathematical Sciences 14, no. 1, 83�145.�

Michael Evans
Department of Statistics, University of Toronto

This paper is concerned with quantifying uncertainties in the estimation of
quantities of interest. The problem is formulated in a Bayesian context and in
essence is concerned with the robustness of certain Bayesian estimates to the
choice of the prior. The "brittleness" referenced in the title refers to the fact
that, depending on the class of priors used and how robustness is measured, the
estimates in question can perform maximally badly. Bayesian robustness has an
extensive literature, see Berger (1994) and Rios Insua and Ruggeri (2000) among
many others, and while this paper is a signi�cant contribution, various issues
associated with the use of statistical inference methods in practice, suggest that
the results need to be interpreted with caution.
The subject of statistical inference is about formulating rules that one is to

apply to data x to determine what evidence x provides concerning questions of
interest such as, what is the value of some quantity of interest (estimation) or
does a quantity of interest take a particular speci�ed value (hypothesis assess-
ment). So a methodology is required that extracts from x an estimate of the
quantity of interest, together with a measure of the accuracy of the estimate,
or an indication of whether the data provides evidence either for or against a
hypothesized value, together with a measure of the strength of this evidence. To
this end a model fP� : � 2 �g is chosen where P� is a probability measure on the
set X of possible data values and � is a parameter indexing the possible measures.
The data x was supposedly generated from one of the P� and its corresponding
parameter value is denoted �true: The quantity of interest can then be expressed
as � = �(�); for some function � de�ned on �; and inference is to be made
concerning the value �true = �(�true): Supposing now that � is real-valued, the
model induces bounds L1 = inf�2� �(�) � �true � U1 = sup�2��(�) on the
unknown value �true which have nothing to with the data and, as such, have
nothing to do with the evidence.
The data x does not arise simply by being generated from a probability

distribution on X . Rather x is produced via a process of measurement. As such,
the set of possible data values is �nite because all measurements are bounded
and made to a �nite accuracy. Furthermore, � corresponds to something with a
real-world interpretation and isn�t just a mathematical variable. For example,
if �true 2 [0; 1] is the proportion of opioid users in a particular population,
then it is known to be a member of a �nite set of rational numbers that lie
in a relatively small, and known, subinterval [l; u] of [0; 1]; given what we know
about the population and about the extent of opioid use. In essence, a statistical
problem is always �nite in nature.
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The fact that a statistical problem is essentially �nite doesn�t mean that
in�nities cannot, or should not, be used as, for example, taking the family
fP� : � 2 �g to consist of continuous distributions on an in�nite X . It does im-
ply, however, that the use of such objects be reasonable approximations to the
underlying possible distributions. There are mathematical simplicities available
when employing such approximations that are too valuable to give up by being
overly rigorous in the modelling. It does not make sense to argue, as a justi-
�cation for using continuous distributions, that the measurements could have
been made to a �ner accuracy because, in the actual application, the accuracy
is �xed. So discretization is not an approximation to a true continuous reality,
it is the other way around in statistical problems. As such, valid choices of
fP� : � 2 �g have to re�ect this and cannot be too general. No real constraints
are placed on the models considered in the paper.
There are also costs for generality. For one thing the interval [L1; U1] may

be too wide in the sense that is known in the application context that �true lies
in a much shorter subinterval [l; u]; as in the opioid user example. It is the case,
however, that even quite constrained models for this problem will have [L1; U1]
too wide as it is not a good idea to completely disallow the possibility that
�true =2 [l; u]: Our knowledge about �true is then perhaps best expressed via a
prior probability distribution � on �; as a way of putting soft constraints on
the possible values for �true: In the opioid user example, � could be taken to be
a beta(�; �) distribution where � and � are chosen to put a large amount of the
prior mass on the interval [l; u]: The speci�cation of the prior then completes
the ingredients of the statistical inference problem as considered in the paper.
There is another cost to generality and this manifests as strange behavior

for perfectly reasonable inference methodologies. For example, the maximum
likelihood estimator has all the consistency properties you would want of an es-
timator in the �nite context, but unless constraints are placed on fP� : � 2 �g;
such consistency is lost. So is this a failure for maximum likelihood methodol-
ogy or are the models where this phenomenon arises de�cient in some sense?
Such a question is only answered through consideration of the real-world con-
texts where statistics is to be applied and it is reasonable to argue in favor
of maximum likelihood. This leaves somewhat open the question of determin-
ing relevant conditions that the mathematical models used in inference need
to satisfy to avoid such pathologies, but the answer is surely not to just ac-
cept a general mathematical formulation that does not re�ect reality. A simple
criterion to employ to avoid such contexts, and the ensuing doubts they raise
about methodology, is to ask whether or not the paradox or counterexample in
question will arise when everything is �nite. If not, then it is undoubtedly the
case that the negative result is due to the generality and regularity conditions
are required on the ingredients in the mathematical formulation so that such
problems are avoided.
To assess the robustness of Bayesian inferences, the paper introduces a

class of priors �; that includes the base prior, and considers the values L2 =
inf�2�E�(� j x)(�(�)) and U2 = sup�2�E�(� j x)(�(�)) where E�(� j x) denotes ex-
pectation with respect to the posterior distribution �(� jx): Clearly L1 � L2
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and U2 � U1: Here the paper does make a step towards making sure that the
discussion is not just about mathematics but re�ects a real-world context, when
the posterior distribution is introduced. For it is well-known that the de�ni-
tion of conditional probability through the Radon-Nikodym theorem allows for
nonregular conditional probabilities and these are not appropriate but just a
product of the mathematical formulation. As such the paper demands that the
probability of the observed data be positive, e¤ectively restricting to the dis-
crete case to avoid this pathology. A better approach might be to restrict the
ingredients of the problem in such a way that a regular conditional probability
exists and is obtained via a limiting process. In that way the bene�ts of using
continuous distributions (as approximations) could be retained.
The size of the interval [L2; U2] is then taken as a measure of the robustness

of the Bayesian estimate E�(� j x)(�(�)) of �true: It is not clear, however, why
E�(� j x)(�(�)) is to be taken as the estimate, except that is the Bayes rule
when quadratic loss is employed. But why is quadratic loss the relevant loss
function and why is a loss function even necessary for inference? There are other
approaches to selecting an estimator based on the evidence that do not require a
loss function. For scienti�c inference loss functions have a key weakness in that
they are not checkable against the data for their suitability, in contrast to both
the model and the prior. So it should be noted that the discussion of robustness
here is really focused on only one estimator.
Setting concerns with the choice of estimator aside, consider the possible

values for [L2; U2]: The brittleness of Bayesian inference is interpreted to mean
that L2 � L1 and U2 � U1. If inf�2��(�) and sup�2� �(�) are �nite and
assumed by �; then the prior � concentrated on f� : �(�) = inf�2� �(�)g gives
L2 = L1 and � concentrated on f� : �(�) = sup�2� �(�)g gives U2 = U1: So, if
� is too large, brittleness isn�t informative. Accordingly, the family � of priors
used is key to determining the relevance of the interval [L2; U2] for measuring
robustness and various families have been considered in the literature.
The speci�c problem of estimating the mean of an arbitrary distribution

concentrated on [0; 1] is discussed in the paper. The family � is then taken to
be the set of all probability distributions such that the sequence given by the
�rst n moments (�1(�); : : : ; �n(�)) of a distribution P� on [0; 1]; is uniformly
distributed on the space of all possible such truncated moment sequences. The
brittleness result is established in that context. It is not at all clear, however,
why this � is an appropriate family of priors to employ for the purpose of
assessing robustness. Without a clear justi�cation the result has little impact
as it may simply be too large a family of priors.
At this point it is well to re�ect back on the purpose of a theory of statistical

inference. Certainly data and the questions of scienti�c interest come �rst. The
role of the ingredients speci�ed by the statistician, here fP� : � 2 �g and �; is
to formalize the reasoning process from the data to answering the questions of
interest. The formalization arises through the speci�cation of a theory that leads
to, for example, an estimate of a quantity of interest and an assessment of the
error in this estimate. The value of such a formal theory resides in part, in how
convincing it is in expressing the evidence appropriately. While there is debate
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about what that theory is, it is worth remarking that that there is a theory that
leads to an estimate of �true that is completely robust to the marginal prior ��;
although not to the conditional prior on nuisance parameters. Furthermore, the
assessment of the uncertainty in the estimate also possesses optimal robustness
properties, A discussion of such an approach to inference can be found in Evans
(2015). The overall point here is that the rules for inference play a signi�cant role
in determining robustness, with some approaches leading to much more robust
inferences than others. There is no reason to always think of basing estimation
on minimizing quadratic loss, as the developments in the paper implicitly do.
Suppose that a theory of inference has been settled on and so an estimate

of �true has been determined. That is not the end of the story. For there
are still the ingredients that go into the theory, beyond the data, to produce
the inferences, namely, fP� : � 2 �g and �: If these are grossly in error, then
surely the inferences are of suspect validity even if the inferences possess optimal
robustness properties. The model fP� : � 2 �g is considered suspect if the data
x is surprising for every P� and the prior is suspect if there is prior-data con�ict,
namely, the truth lies in the tails of the prior. There are consistent methods
for checking models and for checking priors. Logically one checks a model �rst
and, if the model passes, then checks the prior. If a model or prior fails, then
modi�cations are required. Interestingly, it is typically much clearer how one is
to select a new prior to avoid the con�ict, based on the idea of one prior being
weakly informative with respect to another. Also, it is interesting to note that
it is precisely when a prior is in con�ict with the data that it can be expected
that inferences will be highly nonrobust with respect to the prior. A relevant
reference that discusses these issues is Evans (2015).
The paper is interesting and contains results of value relevant to Bayesian

robustness. In a sense the formulation of the problem seems to be too mathe-
matically general to regard the results as entirely convincing. It is acknowledged,
however, that �nding the precise regularity conditions needed to make the use
of very general models compatible with a satisfactory theory of inference is not
an easy task, but it is a necessary one.
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