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I.1 The Problem

- a theory of statistical inference is (should be?) a signi�cant component
of the language of science

- why?, there are scienti�c questions we want to know the answer to which
can�t be known categorically

- consider a real world object or concept Ψ

Ψ = the half-life of a neutron

Ψ = the median annual income of a student at U of T

Ψ = the current rate of increase in mean annual global temperature

Ψ = a measure of the relationship between the consumption of alcohol
and the fat content of the liver

Ψ = a graph describing the in�uences of some variables on each other

Ψ = the closing price of a particular stock on the third Friday of a month
...
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- two basic questions that a scientist is concerned with re Ψ

(1) E - estimation - what value does Ψ take?
(2) H - hypothesis assessment - does Ψ take the value ψ0?

- how to go about answering these questions?

- a scientist conducts an experiment n independent times which produces
data

x = (x1, x2, . . . , xn)

- e.g. n measurements of the half-life of a neutron

- the scientist believes that the experiment will produce data that in some
way re�ects the value of Ψ

- for a variety of reasons the data x1, x2, . . . , xn varies and this typically
means that the answers to E and H cannot be de�nitive
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- what to do? two broad approaches based on the data x

(1) the evidential approach (Fisher) - x contains evidence concerning the
answers to E or H and the goal is to produce answers that accurately
re�ect this evidence and its quality

(2) the behavioristic (decision-theoretic) approach (Neyman) - the
goal is to minimize error where error in the answers to E or H is measured
in some fashion (often counterfactually through repeated performances)

E both have the goal of producing an estimate ψ(x) but the evidential
approach wants an estimate together with a measure of its accuracy, while
the behavioristic approach wants an optimal estimate with respect to the
error criterion chosen

H the evidential approach has the goal of asserting either evidence against
or in favor of ψ0, together with an assessment of the strength of this
evidence, while the behavioristic approach either optimally accepts or
rejects ψ0

- often these two approaches are somewhat confounded with no clear
justi�cation for doing so
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The Problem of Statistical Inference: produce a theory (whether
evidential or behavioristic) that will always produce satisfactory
answers to E and H for any Ψ.

- a number of solutions have been proposed which we�ll discuss here

- do any succeed?

- basic principle: a potential theory needs to be based on a consistent idea
and if a theory produces clearly bad answers to reasonable problems, or
perhaps even no answer at all, then that theory is not a solution to this
problem

- is that a problem?

My Answer: to be a major, positive part of the scienti�c enterprise, the
subject of Statistics needs to address this issue and o¤er a sound reasoning
process (our real goal) to answer E and H

- the discussion here involves a degree of idealization, e.g., the data are
always collected correctly (meaning later), so caveats may be in order in
particular applications, but we want a solid core
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I.2 Measurement and Design

- recall that the experiment is designed so that the data x in some way
re�ects the value of Ψ

- a poorly designed experiment may not do this well

- e.g. a sample of students at U of T is drawn but only from one class

- the design of the experiment is important

- what does it mean for an experiment to be well-designed?

- a subject in itself but a few things to note about design for this course
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Measurements

- the data arises as the result of taking measurements, the scientist
chooses what to measure and the measurement accuracy of each xi

- all measurements are discrete (made to �nite accuracy) and there is an
upper limit on the number that can be taken

- so continuity and in�nity are idealizations that may lead to convenient
approximations but ....

Sample size n

- for a variety of reasons, the data values vary

- we will assume that n is under our control so we can control the
statistical accuracy of the answers to E and H

- if n cannot be controlled, then that is a defect of the experiment, not
the theory

- any theory needs to be clear about when a particular application doesn�t
measure up
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I.3 Ingredients
I.3.1 The Basic Inference Base

- if we could devise a satisfactory theory of inference based only on the
data, that would be ideal but this does not "seem" possible

- the primary candidates for theories of inference all contain some or all of
the following ingredients which must be speci�ed by the statistician

- a theory is then applied to the ingredients to produce answers to E and
H, the inferences

- it is assumed that the data x 2 X (the sample space) can be described
as arising from a (true) probability distribution in a set, called the model,
given by

ffθ : θ 2 Θg
where, for each θ 2 Θ, fθ is a probability density on X wrt some support
measure ν so

Pθ(B) =
Z
B
fθ(z) νX (dz) = probability unobserved x 2 B � X
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- θ is the model parameter and Θ is the model parameter space

- it is assumed that θ indexes, namely, fθ1 6= fθ2 whenever θ1 6= θ2 (no
nonidenti�ability)

- interest is in inference about ψ = Ψ(θ) 2 Ψ(Θ) = set of possible values
of Ψ

- note - ψ corresponds to something in the real world typically a
characteristic of fθ

- Ψ�1fψg may not be singleton for any ψ

All models are wrong (fθ is not the true distribution of x for any
θ 2 Θ) but it is required that ψtrue 2 Ψ(Θ).

- recall the goal is inference about Ψ and not necessarily identifying the
true distribution
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- the model ffθ : θ 2 Θg is a device to further inference
- a valid question, however, is whether or not the model is so wrong that
our inferences about Ψ are badly a¤ected by this

- partly this can be answered through model checking (later)

- the model is a subjective choice but model checking involves seeing if
our choice is contradicted by the objective, if collected correctly, data

- with enough data, it will be concluded that the model is wrong, so the
real goal is to see if our choice renders inferences about Ψ substantially in
error

- in general, checking any choices made against the data is at least a
partial response to the criticism of subjectivity
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Example neutrino mass

- Ψ = mass of a certain kind of neutrino 2 [0,∞)
- since mass measurements are nonnegative, physicist assumes single
measurement is coming from a distribution in

fgammarate (α, β) : θ = (α, β) 2 Θ = [1,∞)� [0,∞)g where

fθ(z) =
βα

Γ(α)
zα�1e�βz for z > 0

and ψ = Ψ(θ) = Ψ(α, β) = (α� 1)/β = the mode of the distribution
(does this representation make sense?, why not use the mean
ψ = Ψ(θ) = Ψ(α, β) = α/β?)

- multiple measurements are treated as an iid sample from this model

- interest is in estimating ψ and assessing whether or not H0 : ψtrue = 0 is
true or false

- note - ψ = 0 i¤ α = 1 i¤ x
iid� exponentialrate (β)

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/sta422/sta4222026.html ()Theory of Statistical Inference - Lecture I STA422 and STA2162 2026 11 / 21



- so indeed the true mass is captured by the model (through ψ) as well as
the accuracy of the measurement process (through σ2 = α/β2 2 [0,∞))
- but is there any reason to assume a gamma distribution for the
measurement process?

- there will also be a ∆ = the di¤erence that matters

- since we are measuring the mass of each observed neutrino to �nite
accuracy we will not get exact 0�s for the measurements but rather, if the
true mass is in [0,∆), then we can conclude that there is evidence in favor
of the mass being 0

- so really want to assess H0 : ψtrue 2 [0,∆] �
- we call I = (ffθ : θ 2 Θg, x) = the basic inference base

- probably should consider ∆ as part of this too as it is part of the design
in that it bears on what is a suitable n
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I.3.2 Basic Decision Theory Inference Base

- to the basic inference base add a loss function
Loss : Θ�Ψ(Θ)! [0,∞) where Loss(θ,ψ) = 0 i¤ ψ = Ψ(θ)

- e.g. Loss(θ,ψ) = (Ψ(θ)� ψ)2 (squared-error loss) or
Loss(θ,ψ) = jΨ(θ)� ψj (absolute error loss)
- then a statistical procedure d(x) 2 Ψ(Θ), called a decision function
here, is considered wrt the expected losses it leads to

R(θ, d) = Eθ(Loss(θ, d)) =
Z
X
Loss(θ, d(x))fθ(x) νX (dx)

= risk function of d (�x d and vary θ)

- d1 is preferred to d2 whenever R(θ, d1) � R(θ, d2) for every θ 2 Θ and
the inequality is strict for at least one θ

- is there an optimal d?, why expected loss?
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- Loss is a subjective choice (often for convenience, as in squared-error
loss) and, in general, there is no methodology for checking it against the
data

- call ILoss = (ffθ : θ 2 Θg, Loss, x) the decision-theoretic inference base
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I.3.3 Bayesian Inference Base

- to the basic inference base we add a prior π = a probability density on Θ
wrt support measure νΘ that re�ects beliefs concerning the true value of θ

Π(A) =
Z
A

π(θ) νΘ(dθ) = probability true value of θ 2 A

measures our initial belief that the true value of θ is in A

- so the Bayesian inference base IBayes = (π, ffθ : θ 2 Θg, x)
- here fθ is the conditional density of x given θ

- the prior and the model imply a joint distribution (θ, x) � π(θ)fθ(x) so,
before seeing x ,

P((θ, x) 2 A� B) =
Z
A

Z
B

π(θ)fθ(x) νX (dx) νΘ(dθ)
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- once x is observed we invoke the
Principle of Conditional Probability: if P(A) is the initial
probability assigned to event A and event C is observed to be
true where P(C ) > 0, then our belief in the truth of A is now
given by P(A jC ) = P (A\C )

P (C ) , the conditional probability of A
given that C is true.

- this leads to the posterior belief that the true value of θ is in A given by

Π(A j x) =
Z
A

π(θ j x) νΘ(dθ)

where

π(θ j x) = π(θ)fθ(x)
m(x)

is the posterior density of θ (the conditional density of θ given x) and

m(x) =
Z

Θ
π(θ)fθ(x) νΘ(dθ)

is the prior density of x called the prior predictive density of x
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note - the "Principle of Conditional Probability" is an axiom of statistical
inference not probability theory

- when interest is in ψ = Ψ(θ) we have the marginal prior

πΨ(ψ) =
Z

Ψ�1fψg
π(θ) νΨ�1fψg(dθ)

and the marginal posterior

πΨ(ψ j x) =
Z

Ψ�1fψg
π(θ j x) νΨ�1fψg(dθ)

Exercise 1. (Assume all measures are discrete) Show that
IBayes = (π, ffθ : θ 2 Θg, x) leads to the same posterior for ψ as

IΨ,Bayes = (πΨ, ffψ : ψ 2 Ψ(Θ)g, x)

where
fψ(x) =

Z
Ψ�1fψg

fθ(x)π(θ jψ) νΨ�1fψg(dθ).

- this is a nice consistency property and it suggests that "integrating out
the nuisance parameters" to obtain fψ is well-justi�ed
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- how do we choose π? elicitation (later) and note the same concern arises
with the choice of the model ffθ : θ 2 Θg
- can the prior π be checked against the data as to its suitability?
checking for prior-data con�ict (later)
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Improper Priors and Empirical Bayes

- it is common to see a prior π used that is improper, namely, π(θ) � 0
for all θ, but

R
Θ π(θ) νΘ(dθ) = ∞, e.g. π(θ) ∝ 1 on Θ = R1

- so, in such a case π is not a probability density and so does not
represents beliefs but then quite often π(θ j x), as de�ned above, satis�esZ

Θ
π(θ j x) νΘ(dθ) = 1

(namely, m(x) =
R

Θ π(θ)fθ(x) νΘ(dθ) < ∞ is a valid normalizing
constant, not a probability density) so formally π(θ j x) is a probability
density

- what then justi�es the use of the formal posterior π(θ j x) to describe
beliefs as it isn�t by the Principle of Conditional Probability?

- similarly, the theory of empirical Bayes, which chooses the prior from a
family fπτ : τ 2 Υg using the data x , does not satisfy the Principle of
Conditional Probability
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I.3.4 Bayesian Decision Theory Inference Base

- this takes the decision theory inference base and adds a prior and we
have the Bayesian decision theory inference base

IBayes ,Loss = (π, ffθ : θ 2 Θg, Loss, x)

- this leads to the prior risk for decision function d given by

r(d) =
Z

Θ
R(θ, d)π(θ) νΘ(dθ)

=
Z

Θ

Z
X
Loss(θ, d(x))fθ(x)π(θ) νX (dx) νΘ(dθ)

=
Z
X

Z
Θ
Loss(θ, d(x))π(θ j x) νΘ(dθ)m(x)νX (dx)

=
Z
X
r(d j x)m(x)νX (dx)

where r(d j x) =
R

Θ Loss(θ, d(x))π(θ j x) νΘ(dθ) is the posterior risk
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- if r(d) � r(d 0) for all decision functions d 0, then d is called a Bayes rule
- if d(x) minimizes r(d 0 j x) for each x , then clearly d is a Bayes rule
- again the loss function Loss cannot generally be checked against the
data as to its suitability

- a basic scienti�c principle

All ingredients to a statistical analysis need to be checked
against the data as to their suitability.

- so when an analysis contains ingredients that can�t be checked against
the data it is not considered as appropriate for an objective analysis
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