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1 Introduction
- a famous problem where various approaches run into difficulties

- initially presented in Fieller (1954) Some problems in interval estimation.
JRSSB, 16, 2, 175—185 and to a certain extent is still unsolved

- the model:  = (1     )
∼ ( 20) ind. of  = (1     )

∼
( 20) so means are unknown but the variance is known

- subsequently we’ll weaken the assumptions so that the variances are unknown

and possibly unequal

- the problem: want to make inference about  = Ψ( ) = 

- after observing the data ( ) we want to provide an estimate ( ) of Ψ
and an assessment of the accuracy of the estimate

- also want to assess whether there is evidence in favor of or against 0 :
Ψ( ) = 0 for some specified value 0 together with an assessment of the
strength of the evidence

- for both problems we also need to specify  the difference that matters

- what are some practical examples of such a problem?

- inferences only depend on the mss (̄ ̄) where ̄ ∼ ( 20) ind. of ̄ ∼
( 20)

- since the mss is a complete sufficient statistics checking for prior-data conflict

also only depends on the mss as ancillaries are independent of the mss (Basu’s

theorem)

- model checking depends on aspects of the data beyond the mss (like residuals)

- we’ll carry along an example where we know the correct answers to demonstrate

the methodology

Example
- we set  =  = 10  = 20  = 10 20 = 1 so  = 2010 = 2

- the following data was generated

 = (1902 2000 2113 1960 211 2018 2123 1898 2048 2015)

 = (1009 1106 1010 1082 1145 1055 1145 1078 1114 955)
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- so ̄ = 20188 ̄ = 10699

- for the hypothesis assessment problem consider 0 : Ψ( ) = 2

- take  = 02 could use smaller values too although this will tend to increase
necessary Monte Carlo sample sizes to get smooth density estimates

- it is to be remembered that  is to be specified as part of the application as it
represents the accuracy an investigator wants when determining the true value

of  and this affects how much data they need to collect (so  is not arbitrary
and is not determined by numerical considerations)

2 Eliciting and computing the prior of 
- want an elicitation algorithm for  and  that takes into account that some-
thing is known about  as we generally would have some information on this
quantity as otherwise we wouldn’t be making inference about it

- it is okay to allow 0 as a possible (probable) value for  but not for both  and
 as that would suggest the possibility that  is not defined (if it isn’t defined
why are we making inferenece about it?)

- take conjugate priors  ∼ (0 
2
10) ind. of  ∼ (0 

2
20)

- we need to specify (0 
2
10 0 

2
20)

- one approach: specify (12) s.t. the true value of  ∈ (12) with virtual
certainty, say prior prob.  = 099

- then put 0 = (1 +2)2 and solve

Φ((2 − 0)10)−Φ((1 − 0)10) = 

for 10

- with (12) = (10 25) then 0 =? 10 =?

- suppose it is known that  ∈ (1 2) with virtual certainty and we specify a
value 0 ∈ (1 2) (the hypothesized value makes sense when the inference is
hypothesis assesment) and then take 0 = 00 so with (1 2) = (1 3) 0 =?

- then with virtual certainty  ∈ (1221) so 20 satisfies

Φ((21 − 0)20)−Φ((12 − 0)20) = 

giving 20 =?

- so now we can generate samples (1      )
∼ (0 

2
10) and (1     )

∼
(0 

2
20) and so obtain a sample (1      )

∼ Ψ where  =  from
the prior for Ψ

- generally the Monte Carlo sample size  will be something like 104 105 etc.

- typically based on this sample we would determine the interval (min max) =
(min. sample value, max. sample value) and divide (min max) up into
d(max − min)e subintervals of length 

(min − 2 min + 2]     (max − 2 max + 2]
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and take the midpoints of these subintervals as gridpoints (find the subinterval

which contains 0)

- problem - the prior distribution of Ψ can be extremely long-tailed so a

suggestion is to calculate the ecdf ̂Ψ of Ψ and take

(min max) = (̂
−1
Ψ (00005) ̂−1Ψ (09995))

and then subdivide (so truncating by ignoring 0001 of the probability in the
tails)

- the truncation can be avoided by first transforming from  to mod = ()
where  is a long-tailed cdf (like Cauchy or even sub-Cauchy), transform the

above grid to

((min − 2) (min + 2)]     ((max − 2) (max + 2)]

and add the tail intervals [0 (min − 2)] and ((max + 2) 1] with corre-
sponding gridpoints(min−2)2 and ((max+2)+1)2 respectively and
do all the following calculations based on the mod sample mod1     mod
where mod = () and at the end transform back (recall relative belief infer-
ences are invariant to such transformations) but this step is not required with

the current data example

- then record the proportion of Monte Carlo sample values of  in each subin-
terval, divide these proportions by  (or length of corresponding interval when
using mod) to get the density histogram estimate of the prior density of  and
plot these values against the midpoints to see what the prior density of  looks
like

- note - you will use exactly the same subintervals when estimating the posterior

density of 

- Figure 1 is based on a simluation of  = 105 and the elicited values previously
discussed

3 Inference about 
- the posterior density of  is computed in exactly the same way (use the same
 and grid) by generating from the posterior distributions of  and  whose
posteriors are normal (please specify these)

- Figure 2 is based on a simluation of  = 105 and both the prior and poste-
rior densities are on the same plot and note that the posterior is much more

concentrated

- dividing the posterior by the prior gives the relative belief ratio Ψ(· | )
which is plotted in Figure 3

- note - sometimes when you do this calculation you will get NaN’s (not a
number) when the both the prior and posterior contents of subintervals are 0

but these are ignorable and can be dealt with by just setting the  for such

a subinterval equal to 0 (recall that if a prior probability is effectively 0 then a
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Figure 1: The prior density of 
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Figure 2: Plots of the prior (- - -) and the posterior ( __) densities of 
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Figure 3: Plot of the relative belief ratio of 

posterior will effectively be 0 unless you have prior-data conflict and then you

need to modify the prior)

- the next step is to compute the relative belief estimate () =? and the
plausible region Ψ( ) =? and note that the estimate is pretty accurate for
a relatively small amount of data

- also we want to assess the hypothesis 0 : Ψ() = 2

- for this we need Ψ(2 | ) and for this you need to find the subinterval in
the discretization that contains 2 and record the relative belief ratio for that

subinterval and here we obtain Ψ(2 | ) =? which gives evidence ? for 0

- also it is necessary to calibrate this evidence by computing the strength

Π(Ψ( | ) ≤ Ψ(2 | ) | ) =?
which is given by the sum of the posterior contents of the subintervals for which

the inequality is satisfied

Note
- inferences about  are reasonable (actually pretty accurate) for this data, but
for the Cox problems A and B problems may ensue

- this is because for the data stated in Fraser, Reid and Lin (2018) (note treat

this data as 1 = ̄ 2 = ̄ and 20 = 1) it is possible that  = 0 in A (so

 = ∞ is possible) and  =  = 0 in B (so  is undefined is possible) both of
which cause problems

- we will come back to these issues but for the project just get the inferences

working (fill in the question marks) and especially do the bias calcaluations
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- to see what the implications of the anomalous situations just described (does

it really make sense to make inferences about  when it can be infinite or

undefined? are there relevant applications?) for relative belief it might be

helpful to work out closed form exapressions for the prior and posterior densities

of 

4 Bias
- to compute the biases for hypothesis assessment we need to compute

(Ψ(0 | ̄ ̄) ≤ 1 |) (1)

for various values of  where (̄ ̄) is generated its from the conditional prior

given 

- to compute the biases for estimation we need to be able to compute (1) for

values of 0 ∼ Ψ and then average

- so it is necessary to

1. be able to generate (̄ ̄) from its conditional prior given (· |)
2. be able to compute Ψ( | ̄ ̄) as efficiently as possible

- we consider each of these problems in turn

1. Generating (̄ ̄) from (· |)
- make the change of variable ( )→ ( ) then joint prior density of (  ̄ ̄)
is proportional to

|| exp
½
−1
2

∙
(̄− )2 +(̄ − )2

20
+
( − 0)

2

210
+
( − 0)

2

220

¸¾
- so to generate (̄ ̄) from (· |) generate sequentially as follows

̄ | (  ̄) ∼ ( 20)

̄ | ( ) ∼ ( 20)

 | ∼ (· |)

where

( |) ∝ || exp
½
−1
2

∙
( − 0)

2

210
+
( − 0)

2

220

¸¾
∝ || exp

(
−1
2

( − 0())
2

220()

)

220() =

µ
2

210
+

1

220

¶−1
and 0() = 220()

µ
0
210

 +
0
220

¶
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and so the only difficulty is to generate from (· |)
Note the expression for 0() changed from previous version

- note that (· |) is close to a normal density but for the factor ||
- transforming  →  = ( − ()) 20() we need to be able to generate 
from a density

() ∝ |+ |() ∝ | − 0|()
where  = ()  = 20() and 0 = − and note   0
- now using () = −()Z 0

−∞
−( − 0)()  = 0Φ(0) + (0)Z ∞

0

( − 0)()  = −0(1−Φ(0)) + (0)

() = (0)(−∞0]()1() + (1− (0)(0∞)()0()

1() =
(0 − )()

0Φ(0) + (0)
when  ≤ 0

0() =
( − 0)()

−0(1−Φ(0)) + (0)
when   0

(0) =
0Φ(0) + (0)

−0 + 2(0Φ(0) + (0))

so generate  from 1 with prob. (0) and otherwise generate from 0

- generate from 1 via inversion where for  ≤ 0

1() =

Z 

−∞
1()  =

0Φ() + ()

0Φ(0) + (0)

so gen.  ∼ (0 1) and solve 1() =  for  by bisection

- to start the bisection set  = 0 and iteratively evaluate 1(−|0|) for
 = 0 1    until 1(−|0|) ≤  and set  = −|0| as this guarantees
1() ≤  ≤ 1() = 1 so bisection will work

- to generate from 0 proceed similarly where for   0

0() =

Z 

0

0()  =
0(Φ()−Φ(0)) + ((0)− ())

−0(1−Φ(0)) + (0)

and now start bisection with  = 0 and iteratively evaluate 0(|0|) until
 ≤ 0(|0|) and then set  = |0|
- for given  put  = ()+ 20() to get the appropriately generated value of

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Figure 4: Density histogram of a sample of 105 from the conditional prior of 
given 0 = 2

- note - (an interesting consequence) that it must be true that 0  −(1 −
Φ()) + () for every  and this implies the well-known Mills ratio inequality

1− Φ()
()


1


when  ≥ 0 and Φ()

()

1

|| when  ≤ 0

which gives useful bounds on tail probabilities for the normal distribution when

|| is large
Example
- suppose 0 = 2 so, using the elicited values of (0 

2
10 0 

2
20)

220(2) =

µ
4

210
+

1

220

¶
=?

0(2) = 220()

µ
20
210

+
0
220

¶
=?

- Figure 4 is density histogram of a sample of 105 from (· |0)
2. Computing Ψ( | ̄ ̄)
- for bias against 0 namely (Ψ(0 | ̄ ̄) ≤ 1 |0) we need to calculate
Ψ(0 | ̄ ̄) for each generated value (̄ ̄) from(· |) and compare it with
1

- for computing Ψ(0 | ̄ ̄) there are two ways to proceed in this problem,
either numerically or exactly

- the exact method is much more computationally efficient but often the nu-

merical approach is necessary and it is worth recalling that a high degree of

accuracy is not required fro the numerical answers when computing biases
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Numerical approach
- for this you should have the prior content of the subinterval in the discretization

that contains 0 from the inference computations and denote this subinterval

by ( )

- for the posterior contents of this interval you need to compute this in another

loop for each generated value of (̄ ̄) and then compute Ψ(0 | ̄ ̄) as was
done in the inference computations

- do this repeatedly and record the proportion of times Ψ(0 | ̄ ̄) ≤ 1 as
the estimate of (Ψ(0 | ̄ ̄) ≤ 1 |0)
- for the bias in favor this computation is done for (Ψ(0 | ̄ ̄)  1 |)
and (Ψ(0 | ̄ ̄)  1 |) with the maximum of these values being the

bias in favor

- for the bias against for estimation generate a sample 01     0∗ ∼ Ψ and
compute and average the values (Ψ(0 | ̄ ̄) ≤ 1 |0)
- for the bias in favor for estimation generate a sample 01     0∗ ∼ Ψ and
compute and average the values (Ψ(0 | ̄ ̄)  1 |0)
Closed form approach
- an exact formula can be determined for Ψ( | ̄ ̄) which can be used in
the bias calculations to make the computatiions more efficient

- so when  ∼ (0 
2
10) ind. of  ∼ (0 

2
20) then some calculation (posted

on the website) determines the prior density of  =  as

Ψ() =

r
2



1

1020

µ
2

210
+

1

220

¶−1
×

exp

(
−1
2

µ
2

210
+

1

220

¶−1 ∙
(0 − 0)

2

210
2
20

¸)
×⎧⎪⎪⎨⎪⎪⎩



µ³
2

210
+ 1

220

´−12 ³
0
210

+ 0
220

´¶
+³

2

210
+ 1

220

´−12 ³
0
210

+ 0
220

´µ
Φ

µ³
2

210
+ 1

220

´−12 ³
0
210

+ 0
220

´¶
− 1

2

¶
⎫⎪⎪⎬⎪⎪⎭

- note that when 0 = 0 = 0 then Ψ is a (rescaled) Cauchy density

- it is a formidable looking formula but there is actually a fair bit of symmetry

so it is not hard to write an R function for it as the following shows

Ψ() =

r
2



220()

1020
exp

½
−1
2

220()(0 − 0)
2

210
2
20

¾
×½



µ
0()

20()

¶
+

0()

20()

µ
Φ

µ
0()

20()

¶
− 1
2

¶¾
(2)

where

220() =

µ
2

210
+

1

220

¶−1
and 0() = 220()

µ
0
210

 +
0
220

¶

9



0 2 4 6 8 10 12 14

0
1

2
3

4
5

6

psi

de
ns

ity

Figure 5: Plots of the exact prior (- - -) and the exact posterior ( __) densities

of 

-note - there was a typo in the last term inside the curly brackets in the first

version I put up and this expression is more numerically stable even with the

correction, also the previous formula for 0() was wrong

- the expression inside {} of (2) implies the inequality

() +  (Φ()− 12)  0 for all 

but this can also be deduced from the Mills ratio inequality

- for the posterior we have  | ̄ ∼ ( 
2
1) ind. of  | ̄ ∼ ( 

2
2) and so

the posterior density of  will take exactly the same form as the prior but with

(0 
2
10 0 

2
20) replaced by ( 

2
1  

2
2)

- Figure 5 is a plot of the exact prior and posterior of  which is verysimilar

to Figure 2 but much smoother as the latter was based on a discretization into

subintervals of length 02 and about 75 plotted points while the former is based
on 1000 plotted points

- Figure 6 is plot of the exact relative belief ratio of 
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Figure 6: Plot of the exact relative belief ratio.
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