Probability and Stochastic Processes I Lecture 1

Michael Evans
University of Toronto

https://utstat.utoronto.ca/mikevans/stac62/staC622023.html

2023

I. 1 What is probability?

- let Ω be a set, called the sample space, and $\omega \in \Omega$, (ω is an element of Ω) called the outcome or response, is not known
- let $A \subseteq \Omega(A$ is a subset of $\Omega)$ called an event and it is desired to assess whether or not $\omega \in A$
- how?
- let 2^{Ω} be the power set of $\Omega=$ the set which consists of all subsets of Ω
- so an element of 2^{Ω} is a subset of Ω
- somehow we come up with a function $P: 2^{\Omega} \rightarrow[0.1]$ s.t. (such that)
$P(A)$ measures our belief that $\omega \in A$ is true
- $P(A)=0$ means it is known categorically that $\omega \in A$ is false and the closer $P(A)$ is to 0 the stronger is our belief that $\omega \in A$ is false
- $P(A)=1$ means it is known categorically that $\omega \in A$ is true and the closer $P(A)$ is to 1 the stronger is our belief that $\omega \in A$ is true
- $P(A)=1 / 2$ means there is no belief one way or the other as to the truth that $\omega \in A$, sometimes referred to as ignorance

Example I.1.1-rolling a labelled symmetrical cube

- suppose we have a symmetric cube such that two sides are labelled 1, three sides are labelled 2 and one side is labelled 3
- the cube is rolled and the label ω on the face up is concealed and our concern is whether or not ω is odd
- so $\Omega=\{1,2,3\}$ and $A=\{1,3\}$
- here $2^{\Omega}=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}, \Omega\}$ and $A \in 2^{\Omega}$
- ϕ is the set with no elements (the null set) and $\phi \subseteq \Omega$ always
- note - the cardinality (number of elements) of 2^{Ω} is $\#\left(2^{\Omega}\right)=8=2^{3}=2^{\#(\Omega)}$ and the formula

$$
\#\left(2^{\Omega}\right)=2^{\#(\Omega)}
$$

holds generally

- since the cube is symmetrical it seems reasonable to say that each face has the same weight in our belief about which face will be up
- as such it then seems reasonable that we assign

$$
\begin{aligned}
& P(\{1\})=2 / 6,=1 / 3 \\
& P(\{2\})=3 / 6=1 / 2 \\
& P(\{3\})=1 / 6
\end{aligned}
$$

- what about $P(A)=P(\{1,3\})$?
- a reasonable assignment is clearly

$$
\begin{aligned}
& P(\{1,3\})=P(\{1\})+P(\{3\})=1 / 3+1 / 6=1 / 2 \\
& P(\{1,2\})=P(\{1\})+P(\{2\})=1 / 3+1 / 2=5 / 6 \\
& P(\{2,3\})=P(\{2\})+P(\{3\})=1 / 2+1 / 6=2 / 3
\end{aligned}
$$

and together with

$$
\begin{aligned}
P(\phi) & =0 \\
P(\Omega) & =1
\end{aligned}
$$

this completes the definition of $P: 2^{\Omega} \rightarrow[0,1]$

- $P(\{1,3\})=1 / 2$ indicates we are ignorant as to whether or not the face up is odd
- (end of example, proof or definition)
- the assignment of probability in the example was based on symmetry and counting and this works quite often to give a reasonable assignment
- in general suppose that Ω is a finite set and the context in question possesses a symmetry that leads to the assignment $P(\{\omega\})=1 / \#(\Omega)$ for each element $\omega \in \Omega$
- then for $A \subseteq \Omega$ symmetry also suggests that $P(A)=\#(A) / \#(\Omega)$
- this counting definition implies that for $A, B \in 2^{\Omega}$ such that $A \cap B=\phi$
(i) (additive) $P(A \cup B)=\frac{\#(A \cup B)}{\#(\Omega)}=\frac{\#(A)+\#(B)}{\#(\Omega)}$

$$
=\frac{\#(A)}{\#(\Omega)}+\frac{\#(B)}{\#(\Omega)}=P(A)+P(B)
$$

(ii) (normed) $P(\Omega)=\frac{\#(\Omega)}{\#(\Omega)}=1$

- any $P: 2^{\Omega} \rightarrow[0,1]$ satisfying (i) and (ii) is called a probability measure on Ω and when Ω is finite with $P(\{\omega\})=1 / \#(\Omega)$ for each element $\omega \in \Omega$, then P is called the uniform probability measure on Ω
- note - the P defined in Example I.1.1 is not the uniform probability measure on $\Omega=\{1,2,3\}$ although it is derived from a uniform probability measure on the six faces of a symmetrical cube
- so one probability measure can be derived from another
- in this course it does not matter where the probability measure P comes from only that it is a function defined on a set of events into $[0,1]$ that is additive and normed and we study the mathematical properties of such functions
- we want to give a definition of P for much more complicated sets Ω than just finite ones and for this to work we need to restrict the domain of P

Assume throughout these exercises that P is a probability measure defined on a finite Ω.

Exercise I.1.1 Give an argument that shows how P in Example I.1.1 is derived from a uniform probability measure.

Exercise I.1.2 Use induction to prove that if $A_{1}, \ldots, A_{n} \in 2^{\Omega}$ are mutually disjoint, then $P\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)$.
Exercise I.1.3 Prove that for $A \in 2^{\Omega}$, then $P\left(A^{c}\right)=1-P(A)$.
Exercise I.1.4 For $A, B \in 2^{\Omega}$ prove that
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
Exercise I.1.5 Suppose that a roulette wheel is divided into 4 equal sectors labelled as $1,2,3$ and 4 respectively. The wheel is spun and the sector where the wheel comes stops under the pointer is recorded. Identify $\omega, \Omega, 2^{\Omega}$ and a relevant P. What is the relevant P if the sector formerly labeled 4 is now labeled 3?

I. 2 Sigma Algebras

- consider sample spaces like

$$
\begin{aligned}
\Omega & =\mathbb{R}^{1}=\{\omega:-\infty<\omega<\infty\} \\
\Omega & =[0,1]=\{\omega: 0 \leq \omega \leq 1\} \\
\Omega & =\mathbb{R}^{k}=\mathbb{R}^{1} \times \mathbb{R}^{1} \times \cdots \times \mathbb{R}^{1} \\
& =\left\{\left(\omega_{1}, \ldots, \omega_{k}\right): \omega_{i} \in R^{1}, i=1, \ldots, k\right\} \\
\Omega & =[0,1]^{k}=[0,1] \times[0,1] \times \cdots \times[0,1] \\
& =\left\{\left(\omega_{1}, \ldots, \omega_{k}\right): \omega_{i} \in[0,1], i=1, \ldots, k\right\}
\end{aligned}
$$

which are all infinite sets, namely, $\#(\Omega)=\infty$

- to get "nice" probability measures on such sets we often have to restrict the domain of P to some subset of 2^{Ω}

Example I.2.1 Uniform probability on $[0,1]$

- would like such a P to satisfy $P([a, b])=b-a$ for any $[a, b] \subseteq[0,1]$
- also would like P to be countably additive: if A_{1}, A_{2}, \ldots are mutually disjoint subsets of $[0,1]$, then $P\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$
- fact:there is no such P defined for every element of $2^{[0,1]}$
- one general solution to this problem is to require only that the domain of P be a subset $\mathcal{A} \subseteq 2^{\Omega}$
- we want \mathcal{A} closed under countable Boolean operations (intersection, union and complementation) so, for example if
if $A_{1}, A_{2}, \ldots \in \mathcal{A}$ then $\cup_{i=1}^{\infty} A_{i}=\left\{\omega: \omega \in A_{i}\right.$ for some $\left.i\right\} \in \mathcal{A}$
if $A_{1}, A_{2}, \ldots \in \mathcal{A}$ then $\cap_{i=1}^{\infty} A_{i}=\left\{\omega: \omega \in A_{i}\right.$ for all $\left.i\right\} \in \mathcal{A}$
if $A \in \mathcal{A}$ then $A^{c}=\{\omega: \omega \notin A\} \in \mathcal{A}$

Proposition I.2.1. (i) $\left(\cup_{i=1}^{\infty} A_{i}\right)^{c}=\cap_{i=1}^{\infty} A_{i}^{c}$ and (ii) $\left(\cap_{i=1}^{\infty} A_{i}\right)^{c}=\cup_{i=1}^{\infty} A_{i}^{c}$ Proof: (i) Let $\omega \in\left(\cup_{i=1}^{\infty} A_{i}\right)^{c}$. Then $\omega \notin \cup_{i=1}^{\infty} A_{i}$ and $\omega \notin A_{i}$ for all i and so $\omega \in A_{i}^{c}$ for all i, which implies $\omega \in \cap_{i=1}^{\infty} A_{i}^{c}$. Therefore $\left(\cup_{i=1}^{\infty} A_{i}\right)^{c} \subseteq \cap_{i=1}^{\infty} A_{i}^{c}$.
Now let $\omega \in \cap_{i=1}^{\infty} A_{i}^{c}$. Then $\omega \in A_{i}^{c}$ for all i, which implies $\omega \notin A_{i}$ for all i, which implies $\omega \notin \cup_{i=1}^{\infty} A_{i}$, which implies $\omega \in\left(\cup_{i=1}^{\infty} A_{i}\right)^{c}$. Therefore $\cap_{i=1}^{\infty} A_{i}^{c} \subseteq\left(\cup_{i=1}^{\infty} A_{i}\right)^{c}$ and conclude that (i) holds.
Exercise I.2.1 Prove Proposition I.2.1(ii).
Definition The set $\mathcal{A} \subseteq 2^{\Omega}$ is a σ-algebra (σ-field) on the set Ω if
(i) $\phi \in \mathcal{A}$,
(ii) if $A_{1}, A_{2}, \ldots \in \mathcal{A}$ then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{A}$,
(iii) if $A \in \mathcal{A}$ then $A^{c} \in \mathcal{A}$.

Exercise I.2.2 Prove: if $A_{1}, A_{2}, \ldots \in \mathcal{A}$ where \mathcal{A} is a σ-algebra then $\cap_{i=1}^{\infty} A_{i} \in \mathcal{A}$. Also prove that $\Omega \in \mathcal{A}$.
Exercise I.2.3 Prove: if $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{A}$ where \mathcal{A} is a σ-algebra then $\cup_{i=1}^{n} A_{i} \in \mathcal{A}$ and $\cap_{i=1}^{n} A_{i} \in \mathcal{A}$.

Example 1.2.2

- clearly for any set Ω then 2^{Ω} is a σ-algebra on Ω called the finest σ-algebra on Ω
- also $\{\phi, \Omega\}$ is a σ-algebra on Ω called the coarsest σ-algebra on Ω
- also if \mathcal{A} is a σ-algebra on Ω, then $\{\phi, \Omega\} \subseteq \mathcal{A} \subseteq 2^{\Omega}$

Example 1.2.3

- suppose $\Omega=\{1,2,3,4\}$
- then $\mathcal{A}=\{\phi,\{1,2\},\{3,4\}, \Omega\}$ is a σ-algebra on Ω
- but $\mathcal{A}=\{\phi,\{1,2\},\{1,3,4\}, \Omega\}$ is not a σ-algebra on Ω since
$\{1,3,4\}^{c}=\{2\} \notin \mathcal{A}$ and this violates condition (iii)

I. 3 Probability Measures and Probability Models

- we can now give the formal definition of a probability measure P

Definition. A probability measure P defined on a set Ω with σ-algebra \mathcal{A} is a function $P: \mathcal{A} \rightarrow[0,1]$ that satisfies
(i) (normed) $P(\Omega)=1$,
(ii) (countably additive) if A_{1}, A_{2}, \ldots are mutually disjoint elements of \mathcal{A}, then $P\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$.

The triple (Ω, \mathcal{A}, P) is called a probability model.
Proposition I.3.1. If (Ω, \mathcal{A}, P) is a probability model, then $P(\phi)=0$.
Proof: Let $A_{i}=\phi$ for $i=1,2, \ldots$ so $\phi=\cup_{i=1}^{\infty} A_{i}$ and the A_{i} are mutually disjoint. Suppose now that $P(\phi)>0$ and we will obtain a contradiction.
By countable additivity of P we have
$P(\phi)=\sum_{i=1}^{\infty} P(\phi)=\infty \cdot P(\phi)=\infty$. This contradicts $P(\phi) \in[0,1]$ and so we must have $P(\phi)=0$. \square

Example 1.3.1 Uniform probability on a finite set Ω.

- $\left(\Omega, 2^{\Omega}, P\right)$ where $P(A)=\#(A) / \#(\Omega)$ is additive
- now 2^{Ω} is a σ-algebra on Ω
- the only way for there to be infinitely many mutually disjoint $A_{i} \in 2^{\Omega}$ is for all but finitely many of the A_{i} to be equal to ϕ (2^{Ω} is a finite set)
- so since $\cup_{i=1}^{\infty} A_{i}=\cup_{\left\{i: A_{i} \neq \phi\right\}} A_{i}$ is a finite union, P is finitely additive and $P(\phi)=0$, then

$$
P\left(\cup_{i=1}^{\infty} A_{i}\right)=P\left(\cup_{\left\{i: A_{i} \neq \phi\right\}} A_{i}\right)=\sum_{\left\{i: A_{i} \neq \phi\right\}} P\left(A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

so P is countably additive and $P(\Omega)=\#(\Omega) / \#(\Omega)=1$

- therefore P is a probability measure

Exercise I.3.1 For probability model (Ω, \mathcal{A}, P) and $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{A}$ mutually disjoint, prove that $P\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)$.
Exercise I.3.2 For probability model (Ω, \mathcal{A}, P) and $A, B \in \mathcal{A}$ s.t. $A \subseteq B$ prove that $P(A) \leq P(B)$.
Exercise I.3.3 For probability model (Ω, \mathcal{A}, P) and $A \in \mathcal{A}$ prove that $P\left(A^{c}\right)=1-P(A)$.
Exercise I.3.4 Let $\Omega=\{1,2,3,4\}$ with $\mathcal{A}=\{\phi,\{1,2\},\{3,4\}, \Omega\}$ and P defined by $P(\phi)=0, P(\{1,2\})=1 / 3, P(\{3,4\})=2 / 3$ and $P(\Omega)=1$. Is (Ω, \mathcal{A}, P) a probability model? Why or why not?

