Probability and Stochastic Processes I Lecture 1

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC622023.html

2023

Michael Evans University of Toronto https://Probability and Stochastic Processes I Lectur

023 1 / 15

- let Ω be a set, called the *sample space*, and $\omega \in \Omega$, (ω is an element of Ω) called the *outcome* or *response*, is not known

- let $A \subseteq \Omega$ (A is a *subset* of Ω) called an *event* and it is desired to assess whether or not $\omega \in A$

- how?
- let 2^Ω be the *power set* of $\Omega=$ the set which consists of all subsets of Ω
- so an element of 2^Ω is a subset of Ω
- somehow we come up with a function $P: 2^{\Omega} \rightarrow [0.1]$ s.t. (such that) P(A) measures our **belief** that $\omega \in A$ is true

- P(A) = 0 means it is known categorically that $\omega \in A$ is false and the closer P(A) is to 0 the stronger is our belief that $\omega \in A$ is false

- P(A) = 1 means it is known categorically that $\omega \in A$ is true and the closer P(A) is to 1 the stronger is our belief that $\omega \in A$ is true

- P(A) = 1/2 means there is no belief one way or the other as to the truth that $\omega \in A$, sometimes referred to as ignorance

Example I.1.1 - rolling a labelled symmetrical cube

- suppose we have a symmetric cube such that two sides are labelled 1, three sides are labelled 2 and one side is labelled 3

- the cube is rolled and the label ω on the face up is concealed and our concern is whether or not ω is odd

- so
$$\Omega = \{1,2,3\}$$
 and $A = \{1,3\}$

- here $2^{\Omega} = \{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \Omega\}$ and $A \in 2^{\Omega}$

- ϕ is the set with no elements (the *null set*) and $\phi \subseteq \Omega$ always

- ◆ 臣 ▶ - ◆ 臣 ▶ -

- note - the cardinality (number of elements) of 2^Ω is $\#(2^\Omega)=8=2^3=2^{\#(\Omega)}$ and the formula

$$\#(2^{\Omega}) = 2^{\#(\Omega)}$$

holds generally

- since the cube is symmetrical it seems reasonable to say that each face has the same weight in our belief about which face will be up

- as such it then seems reasonable that we assign

$$P(\{1\}) = 2/6, = 1/3$$

$$P(\{2\}) = 3/6 = 1/2$$

$$P(\{3\}) = 1/6$$

- what about $P(A) = P(\{1, 3\})$?
- a reasonable assignment is clearly

$$P(\{1,3\}) = P(\{1\}) + P(\{3\}) = 1/3 + 1/6 = 1/2$$

$$P(\{1,2\}) = P(\{1\}) + P(\{2\}) = 1/3 + 1/2 = 5/6$$

$$P(\{2,3\}) = P(\{2\}) + P(\{3\}) = 1/2 + 1/6 = 2/3$$

and together with

$$P(\phi) = 0$$

 $P(\Omega) = 1$

this completes the definition of $P: 2^\Omega
ightarrow [0,1]$

- $P(\{1,3\}) = 1/2$ indicates we are ignorant as to whether or not the face up is odd

■ (end of example, proof or definition)

- the assignment of probability in the example was based on symmetry and counting and this works quite often to give a reasonable assignment

- in general suppose that Ω is a finite set and the context in question possesses a symmetry that leads to the assignment $P(\{\omega\}) = 1/\#(\Omega)$ for each element $\omega \in \Omega$

- then for $A\subseteq \Omega$ symmetry also suggests that ${\it P}(A)=\#(A)/\#(\Omega)$

- this counting definition implies that for A, $B\in 2^\Omega$ such that $A\cap B=\phi$

i) (additive)
$$P(A \cup B) = \frac{\#(A \cup B)}{\#(\Omega)} = \frac{\#(A) + \#(B)}{\#(\Omega)}$$

$$= \frac{\#(A)}{\#(\Omega)} + \frac{\#(B)}{\#(\Omega)} = P(A) + P(B)$$
(ii) (normed) $P(\Omega) = \frac{\#(\Omega)}{\#(\Omega)} = 1$

- any $P: 2^{\Omega} \rightarrow [0, 1]$ satisfying (i) and (ii) is called a *probability measure* on Ω and when Ω is finite with $P(\{\omega\}) = 1/\#(\Omega)$ for each element $\omega \in \Omega$, then P is called the *uniform probability measure* on Ω

- **note** - the *P* defined in Example I.1.1 is not the uniform probability measure on $\Omega = \{1, 2, 3\}$ although it is derived from a uniform probability measure on the six faces of a symmetrical cube

- so one probability measure can be derived from another

- in this course it does not matter where the probability measure P comes from only that it is a function defined on a set of events into [0, 1] that is additive and normed and we study the mathematical properties of such functions

- we want to give a definition of P for much more complicated sets Ω than just finite ones and for this to work we need to restrict the domain of P

Assume throughout these exercises that P is a probability measure defined on a finite Ω .

Exercise 1.1.1 Give an argument that shows how P in Example 1.1.1 is derived from a uniform probability measure.

Exercise I.1.2 Use induction to prove that if $A_1, \ldots, A_n \in 2^{\Omega}$ are mutually disjoint, then $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$.

Exercise I.1.3 Prove that for $A \in 2^{\Omega}$, then $P(A^c) = 1 - P(A)$.

Exercise I.1.4 For
$$A, B \in 2^{\Omega}$$
 prove that $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Exercise 1.1.5 Suppose that a roulette wheel is divided into 4 equal sectors labelled as 1,2,3 and 4 respectively. The wheel is spun and the sector where the wheel comes stops under the pointer is recorded. Identify ω , Ω , 2^{Ω} and a relevant *P*. What is the relevant *P* if the sector formerly labeled 4 is now labeled 3?

(日本) (日本) (日本)

I.2 Sigma Algebras

- consider sample spaces like

$$\Omega = \mathbb{R}^{1} = \{\omega : -\infty < \omega < \infty\}$$

$$\Omega = [0,1] = \{\omega : 0 \le \omega \le 1\}$$

$$\Omega = \mathbb{R}^{k} = \mathbb{R}^{1} \times \mathbb{R}^{1} \times \dots \times \mathbb{R}^{1}$$

$$= \{(\omega_{1}, \dots, \omega_{k}) : \omega_{i} \in \mathbb{R}^{1}, i = 1, \dots, k\}$$

$$\Omega = [0,1]^{k} = [0,1] \times [0,1] \times \dots \times [0,1]$$

$$= \{(\omega_{1}, \dots, \omega_{k}) : \omega_{i} \in [0,1], i = 1, \dots, k\}$$

which are all infinite sets, namely, $\#(\Omega) = \infty$

- to get "nice" probability measures on such sets we often have to restrict the domain of P to some subset of 2^Ω

023 9/15

Example I.2.1 Uniform probability on [0, 1]

- would like such a P to satisfy P([a, b]) = b - a for any $[a, b] \subseteq [0, 1]$

- also would like P to be *countably additive:* if A_1, A_2, \ldots are mutually disjoint subsets of [0, 1], then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

- fact:there is no such P defined for every element of $2^{[0,1]}$

- one general solution to this problem is to require only that the domain of P be a subset $\mathcal{A}\subseteq 2^\Omega$

- we want ${\cal A}$ closed under countable Boolean operations (intersection, union and complementation) so, for example if

if $A_1, A_2, \ldots \in \mathcal{A}$ then $\bigcup_{i=1}^{\infty} A_i = \{\omega : \omega \in A_i \text{ for some } i\} \in \mathcal{A}$ if $A_1, A_2, \ldots \in \mathcal{A}$ then $\bigcap_{i=1}^{\infty} A_i = \{\omega : \omega \in A_i \text{ for all } i\} \in \mathcal{A}$ if $A \in \mathcal{A}$ then $A^c = \{\omega : \omega \notin A\} \in \mathcal{A}$ **Proposition I.2.1.** (i) $(\bigcup_{i=1}^{\infty}A_i)^c = \bigcap_{i=1}^{\infty}A_i^c$ and (ii) $(\bigcap_{i=1}^{\infty}A_i)^c = \bigcup_{i=1}^{\infty}A_i^c$ Proof: (i) Let $\omega \in (\bigcup_{i=1}^{\infty}A_i)^c$. Then $\omega \notin \bigcup_{i=1}^{\infty}A_i$ and $\omega \notin A_i$ for all *i* and so $\omega \in A_i^c$ for all *i*, which implies $\omega \in \bigcap_{i=1}^{\infty}A_i^c$. Therefore $(\bigcup_{i=1}^{\infty}A_i)^c \subseteq \bigcap_{i=1}^{\infty}A_i^c$. Now let $\omega \in \bigcap_{i=1}^{\infty}A_i^c$. Then $\omega \in A_i^c$ for all *i*, which implies $\omega \notin A_i$ for all *i*, which implies $\omega \notin \bigcup_{i=1}^{\infty}A_i$, which implies $\omega \in (\bigcup_{i=1}^{\infty}A_i)^c$. Therefore $\bigcap_{i=1}^{\infty}A_i^c \subseteq (\bigcup_{i=1}^{\infty}A_i)^c$ and conclude that (i) holds.

Exercise I.2.1 Prove Proposition I.2.1(ii).

Definition The set $\mathcal{A} \subseteq 2^{\Omega}$ is a σ -algebra (σ -field) on the set Ω if

(i)
$$\phi \in \mathcal{A}$$
,
(ii) if $A_1, A_2, \ldots \in \mathcal{A}$ then $\cup_{i=1}^{\infty} A_i \in \mathcal{A}$,
(iii) if $A \in \mathcal{A}$ then $A^c \in \mathcal{A}$.

Exercise I.2.2 Prove: if $A_1, A_2, \ldots \in \mathcal{A}$ where \mathcal{A} is a σ -algebra then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$. Also prove that $\Omega \in \mathcal{A}$.

Exercise I.2.3 Prove: if $A_1, A_2, \ldots, A_n \in \mathcal{A}$ where \mathcal{A} is a σ -algebra then $\bigcup_{i=1}^n A_i \in \mathcal{A}$ and $\bigcap_{i=1}^n A_i \in \mathcal{A}$.

Example 1.2.2

- clearly for any set Ω then 2^Ω is a $\sigma\text{-algebra}$ on Ω called the finest $\sigma\text{-algebra}$ on Ω

- also $\{\phi, \Omega\}$ is a σ -algebra on Ω called the *coarsest* σ -algebra on Ω

- also if \mathcal{A} is a σ -algebra on Ω , then $\{\phi, \Omega\} \subseteq \mathcal{A} \subseteq 2^{\Omega} \blacksquare$

Example 1.2.3

- suppose $\Omega = \{1,2,3,4\}$
- then $\mathcal{A}=\{\phi,\{1,2\},\{3,4\},\Omega\}$ is a σ -algebra on Ω

- but $\mathcal{A} = \{\phi, \{1, 2\}, \{1, 3, 4\}, \Omega\}$ is not a σ -algebra on Ω since $\{1, 3, 4\}^c = \{2\} \notin \mathcal{A}$ and this violates condition (iii)

A B F A B F

- we can now give the formal definition of a probability measure P

Definition. A probability measure P defined on a set Ω with σ -algebra \mathcal{A} is a function $P : \mathcal{A} \to [0, 1]$ that satisfies

(i) (normed) $P(\Omega) = 1$, (ii) (countably additive) if A_1, A_2, \ldots are mutually disjoint elements of \mathcal{A} , then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

The triple (Ω, \mathcal{A}, P) is called a probability model.

Proposition I.3.1. If (Ω, \mathcal{A}, P) is a probability model, then $P(\phi) = 0$. Proof: Let $A_i = \phi$ for i = 1, 2, ... so $\phi = \bigcup_{i=1}^{\infty} A_i$ and the A_i are mutually disjoint. Suppose now that $P(\phi) > 0$ and we will obtain a contradiction. By countable additivity of P we have $P(\phi) = \sum_{i=1}^{\infty} P(\phi) = \infty \cdot P(\phi) = \infty$. This contradicts $P(\phi) \in [0, 1]$ and so we must have $P(\phi) = 0$.

▲圖▶ ▲園▶ ▲園▶

Example 1.3.1 Uniform probability on a finite set Ω .

- $(\Omega, 2^{\Omega}, P)$ where $P(A) = \#(A)/\#(\Omega)$ is additive
- now 2^{Ω} is a σ -algebra on Ω

- the only way for there to be infinitely many mutually disjoint $A_i \in 2^{\Omega}$ is for all but finitely many of the A_i to be equal to ϕ (2^{Ω} is a finite set)

- so since $\bigcup_{i=1}^{\infty} A_i = \bigcup_{\{i:A_i \neq \phi\}} A_i$ is a finite union, *P* is finitely additive and $P(\phi) = 0$, then

$$P(\bigcup_{i=1}^{\infty}A_i) = P(\bigcup_{\{i:A_i \neq \phi\}}A_i) = \sum_{\{i:A_i \neq \phi\}}P(A_i) = \sum_{i=1}^{\infty}P(A_i)$$

so P is countably additive and $P(\Omega) = \#(\Omega)/\#(\Omega) = 1$

- therefore P is a probability measure

Exercise I.3.1 For probability model (Ω, \mathcal{A}, P) and $A_1, A_2, \ldots, A_n \in \mathcal{A}$ mutually disjoint, prove that $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$.

Exercise I.3.2 For probability model (Ω, \mathcal{A}, P) and $A, B \in \mathcal{A}$ s.t. $A \subseteq B$ prove that $P(A) \leq P(B)$.

Exercise I.3.3 For probability model (Ω, \mathcal{A}, P) and $A \in \mathcal{A}$ prove that $P(\mathcal{A}^c) = 1 - P(\mathcal{A})$.

Exercise I.3.4 Let $\Omega = \{1, 2, 3, 4\}$ with $\mathcal{A} = \{\phi, \{1, 2\}, \{3, 4\}, \Omega\}$ and P defined by $P(\phi) = 0, P(\{1, 2\}) = 1/3, P(\{3, 4\}) = 2/3$ and $P(\Omega) = 1$. Is (Ω, \mathcal{A}, P) a probability model? Why or why not?