
Probability and Stochastic Processes I
Lecture 1

Michael Evans
University of Toronto

https://utstat.utoronto.ca/mikevans/stac62/staC622023.html

2023

Michael Evans University of Toronto https://utstat.utoronto.ca/mikevans/stac62/staC622023.html ()Probability and Stochastic Processes I Lecture 1 2023 1 / 15



I.1 What is probability?

- let Ω be a set, called the sample space, and ω ∈ Ω, (ω is an element of
Ω) called the outcome or response, is not known

- let A ⊆ Ω (A is a subset of Ω) called an event and it is desired to assess
whether or not ω ∈ A
- how?

- let 2Ω be the power set of Ω = the set which consists of all subsets of Ω

- so an element of 2Ω is a subset of Ω

- somehow we come up with a function P : 2Ω → [0.1] s.t. (such that)
P(A) measures our belief that ω ∈ A is true
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- P(A) = 0 means it is known categorically that ω ∈ A is false and the
closer P(A) is to 0 the stronger is our belief that ω ∈ A is false
- P(A) = 1 means it is known categorically that ω ∈ A is true and the
closer P(A) is to 1 the stronger is our belief that ω ∈ A is true
- P(A) = 1/2 means there is no belief one way or the other as to the
truth that ω ∈ A, sometimes referred to as ignorance
Example I.1.1 - rolling a labelled symmetrical cube

- suppose we have a symmetric cube such that two sides are labelled 1,
three sides are labelled 2 and one side is labelled 3

- the cube is rolled and the label ω on the face up is concealed and our
concern is whether or not ω is odd

- so Ω = {1, 2, 3} and A = {1, 3}
- here 2Ω = {φ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3},Ω} and A ∈ 2Ω

- φ is the set with no elements (the null set) and φ ⊆ Ω always
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- note - the cardinality (number of elements) of 2Ω is
#(2Ω) = 8 = 23 = 2#(Ω) and the formula

#(2Ω) = 2#(Ω)

holds generally

- since the cube is symmetrical it seems reasonable to say that each face
has the same weight in our belief about which face will be up

- as such it then seems reasonable that we assign

P({1}) = 2/6,= 1/3
P({2}) = 3/6 = 1/2
P({3}) = 1/6
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- what about P(A) = P({1, 3})?
- a reasonable assignment is clearly

P({1, 3}) = P({1}) + P({3}) = 1/3+ 1/6 = 1/2
P({1, 2}) = P({1}) + P({2}) = 1/3+ 1/2 = 5/6
P({2, 3}) = P({2}) + P({3}) = 1/2+ 1/6 = 2/3

and together with

P(φ) = 0

P(Ω) = 1

this completes the definition of P : 2Ω → [0, 1]
- P({1, 3}) = 1/2 indicates we are ignorant as to whether or not the face
up is odd
� (end of example, proof or definition)
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- the assignment of probability in the example was based on symmetry and
counting and this works quite often to give a reasonable assignment

- in general suppose that Ω is a finite set and the context in question
possesses a symmetry that leads to the assignment P({ω}) = 1/#(Ω)
for each element ω ∈ Ω

- then for A ⊆ Ω symmetry also suggests that P(A) = #(A)/#(Ω)

- this counting definition implies that for A,B ∈ 2Ω such that A∩ B = φ

(i) (additive) P(A∪ B) =
#(A∪ B)
#(Ω)

=
#(A) +#(B)

#(Ω)

=
#(A)
#(Ω)

+
#(B)
#(Ω)

= P(A) + P(B)

(ii) (normed) P(Ω) =
#(Ω)
#(Ω)

= 1
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- any P : 2Ω → [0, 1] satisfying (i) and (ii) is called a probability measure
on Ω and when Ω is finite with P({ω}) = 1/#(Ω) for each element
ω ∈ Ω, then P is called the uniform probability measure on Ω

- note - the P defined in Example I.1.1 is not the uniform probability
measure on Ω = {1, 2, 3} although it is derived from a uniform probability
measure on the six faces of a symmetrical cube

- so one probability measure can be derived from another

- in this course it does not matter where the probability measure P comes
from only that it is a function defined on a set of events into [0, 1] that is
additive and normed and we study the mathematical properties of such
functions

- we want to give a definition of P for much more complicated sets Ω than
just finite ones and for this to work we need to restrict the domain of P
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Assume throughout these exercises that P is a probability measure defined
on a finite Ω.

Exercise I.1.1 Give an argument that shows how P in Example I.1.1 is
derived from a uniform probability measure.

Exercise I.1.2 Use induction to prove that if A1, . . . ,An ∈ 2Ω are
mutually disjoint, then P(∪ni=1Ai ) = ∑n

i=1 P(Ai ).

Exercise I.1.3 Prove that for A ∈ 2Ω, then P(Ac ) = 1− P(A).
Exercise I.1.4 For A,B ∈ 2Ω prove that
P(A∪ B) = P(A) + P(B)− P(A∩ B).
Exercise I.1.5 Suppose that a roulette wheel is divided into 4 equal
sectors labelled as 1,2,3 and 4 respectively. The wheel is spun and the
sector where the wheel comes stops under the pointer is recorded. Identify
ω,Ω, 2Ω and a relevant P. What is the relevant P if the sector formerly
labeled 4 is now labeled 3?
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I.2 Sigma Algebras

- consider sample spaces like

Ω = R1 = {ω : −∞ < ω < ∞}
Ω = [0, 1] = {ω : 0 ≤ ω ≤ 1}
Ω = Rk = R1 ×R1 × · · · ×R1

= {(ω1, . . . ,ωk ) : ωi ∈ R1, i = 1, . . . , k}
Ω = [0, 1]k = [0, 1]× [0, 1]× · · · × [0, 1]

= {(ω1, . . . ,ωk ) : ωi ∈ [0, 1], i = 1, . . . , k}

which are all infinite sets, namely, #(Ω) = ∞

- to get "nice" probability measures on such sets we often have to restrict
the domain of P to some subset of 2Ω
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Example I.2.1 Uniform probability on [0, 1]

- would like such a P to satisfy P([a, b]) = b− a for any [a, b] ⊆ [0, 1]
- also would like P to be countably additive: if A1,A2, . . . are mutually
disjoint subsets of [0, 1], then P(∪∞

i=1Ai ) = ∑∞
i=1 P(Ai )

- fact:there is no such P defined for every element of 2[0,1] �
- one general solution to this problem is to require only that the domain of
P be a subset A ⊆ 2Ω

- we want A closed under countable Boolean operations (intersection,
union and complementation) so, for example if

if A1,A2, . . . ∈ A then ∪∞
i=1 Ai = {ω : ω ∈ Ai for some i} ∈ A

if A1,A2, . . . ∈ A then ∩∞
i=1 Ai = {ω : ω ∈ Ai for all i} ∈ A

if A ∈ A then Ac = {ω : ω /∈ A} ∈ A
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Proposition I.2.1. (i) (∪∞
i=1Ai )

c = ∩∞
i=1A

c
i and (ii) (∩∞

i=1Ai )
c = ∪∞

i=1A
c
i

Proof: (i) Let ω ∈ (∪∞
i=1Ai )

c . Then ω /∈ ∪∞
i=1Ai and ω /∈ Ai for all i and

so ω ∈ Aci for all i , which implies ω ∈ ∩∞
i=1A

c
i . Therefore

(∪∞
i=1Ai )

c ⊆ ∩∞
i=1A

c
i .

Now let ω ∈ ∩∞
i=1A

c
i . Then ω ∈ Aci for all i , which implies ω /∈ Ai for all

i , which implies ω /∈ ∪∞
i=1Ai , which implies ω ∈ (∪∞

i=1Ai )
c . Therefore

∩∞
i=1A

c
i ⊆ (∪∞

i=1Ai )
c and conclude that (i) holds. �

Exercise I.2.1 Prove Proposition I.2.1(ii).

Definition The set A ⊆ 2Ω is a σ-algebra (σ-field) on the set Ω if

(i) φ ∈ A,
(ii) if A1,A2, . . . ∈ A then ∪∞

i=1Ai ∈ A,
(iii) if A ∈ A then Ac ∈ A. �
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Exercise I.2.2 Prove: if A1,A2, . . . ∈ A where A is a σ-algebra then
∩∞
i=1Ai ∈ A. Also prove that Ω ∈ A.
Exercise I.2.3 Prove: if A1,A2, . . . ,An ∈ A where A is a σ-algebra then
∪ni=1Ai ∈ A and ∩ni=1Ai ∈ A.
Example 1.2.2
- clearly for any set Ω then 2Ω is a σ-algebra on Ω called the finest
σ-algebra on Ω

- also {φ,Ω} is a σ-algebra on Ω called the coarsest σ-algebra on Ω

- also if A is a σ-algebra on Ω, then {φ,Ω} ⊆ A ⊆ 2Ω �
Example 1.2.3
- suppose Ω = {1, 2, 3, 4}
- then A = {φ, {1, 2}, {3, 4},Ω} is a σ-algebra on Ω

- but A = {φ, {1, 2}, {1, 3, 4},Ω} is not a σ-algebra on Ω since
{1, 3, 4}c = {2} /∈ A and this violates condition (iii) �
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I.3 Probability Measures and Probability Models

- we can now give the formal definition of a probability measure P

Definition. A probability measure P defined on a set Ω with σ-algebra A
is a function P : A → [0, 1] that satisfies

(i) (normed) P(Ω) = 1,
(ii) (countably additive) if A1,A2, . . . are mutually disjoint
elements of A, then P(∪∞

i=1Ai ) = ∑∞
i=1 P(Ai ).

The triple (Ω,A,P) is called a probability model. �
Proposition I.3.1. If (Ω,A,P) is a probability model, then P(φ) = 0.
Proof: Let Ai = φ for i = 1, 2, . . . so φ = ∪∞

i=1Ai and the Ai are mutually
disjoint. Suppose now that P(φ) > 0 and we will obtain a contradiction.
By countable additivity of P we have
P(φ) = ∑∞

i=1 P(φ) = ∞ · P(φ) = ∞. This contradicts P(φ) ∈ [0, 1] and
so we must have P(φ) = 0. �
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Example 1.3.1 Uniform probability on a finite set Ω.

- (Ω, 2Ω,P) where P(A) = #(A)/#(Ω) is additive

- now 2Ω is a σ-algebra on Ω

- the only way for there to be infinitely many mutually disjoint Ai ∈ 2Ω is
for all but finitely many of the Ai to be equal to φ (2Ω is a finite set)

- so since ∪∞
i=1Ai = ∪{i :Ai 6=φ}Ai is a finite union, P is finitely additive and

P(φ) = 0, then

P(∪∞
i=1Ai ) = P(∪{i :Ai 6=φ}Ai ) = ∑

{i :Ai 6=φ}
P(Ai ) =

∞

∑
i=1
P(Ai )

so P is countably additive and P(Ω) = #(Ω)/#(Ω) = 1

- therefore P is a probability measure
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Exercise I.3.1 For probability model (Ω,A,P) and A1,A2, . . . ,An ∈ A
mutually disjoint, prove that P(∪ni=1Ai ) = ∑n

i=1 P(Ai ).

Exercise I.3.2 For probability model (Ω,A,P) and A,B ∈ A s.t. A ⊆ B
prove that P(A) ≤ P(B).
Exercise I.3.3 For probability model (Ω,A,P) and A ∈ A prove that
P(Ac ) = 1− P(A).
Exercise I.3.4 Let Ω = {1, 2, 3, 4} with A = {φ, {1, 2}, {3, 4},Ω} and P
defined by P(φ) =0,P({1, 2}) = 1/3,P({3, 4}) = 2/3 and P(Ω) = 1. Is
(Ω,A,P) a probability model? Why or why not?
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