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II.6 Stochastic Processes

Definition II.6.1 The set {(t,Xt ) : t ∈ T}, where Xt is a random
variable defined with respect to probability model (Ω,A,P) for each
t ∈ T , is called a stochastic process (sometimes a random process). The
set T is called the index set of the process.

Example II.6.1 - a single random variable X1 with T = {1} is equivalent
to the stochastic process {(1,X1)}
- a random vector X = (X1, . . . ,Xk )′ is equivalent to the stochastic
process {(t,Xt ) : t ∈ T} where T = {1, . . . , k} �
note - T can be a very general set like the nodes of a graph and can be
an infinite set
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Example II.6.2 Tossing a coin until the first head is observed.

- suppose a coin is tossed in "independent" tosses until the first head is
observed and the number of that toss is recorded

- what is Ω?

- denote a head by 1 and a tail by 0

- it is most convenient to put

Ω = {(ω1,ω2, . . .) : ωi ∈ {0, 1}} = X∞
i=1{0, 1}

= the set of all sequences of 0,s and 1’s

- then define Y : Ω→ R by Y (ω) = i when ωi = 1 and ωj = 0 when
j < i

- is Y well defined as a r.v.?

- let p = probability of a head on a single toss

- if p = 0 then Y is not defined
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- if p > 0, then Y is defined since

P(”an infinite sequence of tails”) = lim
n→∞

P(”first n are tails”)

= lim
n→∞

(1− p)n = 0

- then putting Ai = {ω : ω1 = 0, . . . ,ωi−1 = 0,ωi = 1} and using
independence

pY (i) = PY ({i}) = P(Ai )
= (1− p)i−1pP({ω : ωi+1 ∈ {0, 1},ωi+2 ∈ {0, 1}, . . .})
= (1− p)i−1p

and Y ∼ geometric(p)
Exercise II.6.1 Prove that pY defines a probability distribution.

- the point is that we need an infinite dimensional Ω

- if we define Xi (ω) = ωi , then {(t,Xt ) : t ∈N} is a stochastic process,
called a Bernoulli(p) process �
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note - the main reason we need to consider stochastic processes is that in
many applications the dependence on the index is important

Example II.6.3

- suppose X = (X1, . . . ,Xk )′ gives various measurements of an individual’s
face (for facial recognition purposes)

- then the order in which the measurements is listed doesn’t matter as
long as we are consistent so there is no real dependence on the index

- but now suppose X contains the measurements from a physical
endurance test taken on an individual one month apart where i refers to
month i and then the order definitely matters and we would take this into
account when analyzing data

- in many contexts t ∈ T ⊂ R1 refers to time as for example taking
T = {0, 1, 2, . . .} = N0 and Xt is the closing price of a stock on trading
day t

- sometimes T = Z and negative times index the past
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- now some stocks trade by nanoseconds so it makes sense in such a case
to take, as an approximation, T = [0,∞) or T = R1 which is continuous
time as opposed to discrete time

- stochastic processes where t is time are often referred to as time series

- sometimes t is multidimensional as t = (t1, t2) = (longitude, latitude) of
a point on earth and X(t1,t2) measures some characteristic of that location
such as its mean temperature over a particular year and such processes are
referred to as spatial processes

- in fact to study global warming we want t = (t1, t2, t3) = (longitude,
latitude, time) for a large grid covering the earth and for years extending
into the past and future �
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- think of a realized value of a stochastic process as a function
X·(ω) : T → R1, called the sample function, with value Xt (ω) at index t

- so a stochastic processes is in effect a probability measure on functions
from T into R1

- a stochastic process is a generalization of random variable where we start
with (Ω,A,P) and get PX as follows
- X : Ω→ RT = set of functions with domain T mapping into R1

= {g : g : T → R1}
- BT = smallest σ-algebra on RT containing all sets of the form

{g : g(t1) ∈ (a1, b1], . . . , g(tn) ∈ (an, bn ]}

for any {t1, . . . , tn} ⊂ T and intervals (a1, b1], . . . , (an, bn ]

- then require X−1B ∈ A for any B ∈ BT which implies

PX (B) = P(X
−1B)
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Example II.6.4

- suppose T = [0,∞), ω ∼ N(0, 1) and define Xt (ω) = ωt so X gives a
ray from the origin with N(0, 1) distributed slope

- suppose T = [0, 1], ω ∼ Uniform(0, 10) and define Xt (ω) = cos(ωt) so
X gives a cosinusoid with random frequency

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html ()Probability and Stochastic Processes I - Lecture 10 2023 8 / 10



- the definition of a stochastic process immediately implies that the finite
dimensional distributions are consistent in the sense that the distribution
of (Xs1 , . . . ,Xsm ) can be obtained from that of (Xt1 , . . . ,Xtn ) by
marginalizing whenever {s1, . . . , sm} ⊂ {t1, . . . , tn}
- as a general way of defining stochastic processes we have the following

Proposition II.6.1 (Kolmogorov’s Consistency Theorem)
Suppose T ⊂ R and a probability model (Rn,Bn,P(t1,...,tn)) is given for
each {t1, . . . , tn} ⊂ T . If the probability models are consistent, then there
exists probability model (Ω,A,P) and random variables Xt such that
{(t,Xt ) : t ∈ T} is a stochastic process with P(Xt1 ,...,Xtn ) = P(t1,...,tn).
Example II.6.5 Bernoulli( p) process

- let T = {1, 2, . . .} and P(t1,...,tn) be the discrete probability measure
concentrated on {0, 1}n given by the probability function

p(t1,...,tn)(x1, . . . , xn) =
{

∏n
i=1 p

xi (1− p)1−xi if (x1, . . . , xn) ∈ {0, 1}n
0 otherwise

- these distributions are clearly consistent and so KCT indicates that this
provides a valid definition of a s.p. {(t,Xt ) : t ∈ T} �
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Definition II.6.2 A s.p.{(t,Xt ) : t ∈ T} is a Gaussian process whenever

(Xt1 , . . . ,Xtn ) ∼ Nn(µ(t1, . . . , tn),Σ(t1, . . . , tn))

where µ(t1, . . . , tn) ∈ Rn,Σ(t1, . . . , tn) ∈ Rn×n p.d. for every
{t1, . . . , tn} ⊂ T .�
- does a Gaussian process exist?

Example II.6.6 Gaussian white noise process

- specify σ2 : T → (0,∞) and for {t1, . . . , tn} ⊂ T

µ(t1, . . . , tn) = (0, . . . , 0)′

Σ(t1, . . . , tn) = diag(σ2(t1), . . . , σ2(tn))

- then putting (Xt1 , . . . ,Xtn ) ∼ Nn(0,diag(σ2(t1), . . . , σ2(tn))) defines a
valid s.p. (Exercise II.6.2) �
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