Probability and Stochastic Processes I - Lecture 13

Michael Evans
University of Toronto

http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

III Expectation

III. 1 Definition

- probability model (Ω, \mathcal{A}, P)
- recall the definition of the indicator function for $A \in \mathcal{A}$

$$
I_{A}(\omega)=\left\{\begin{array}{ll}
1 & \omega \in A \\
0 & \omega \notin A
\end{array} \sim \operatorname{Bernoulli}(P(A))\right.
$$

- some properties of indicator functions

$$
\begin{aligned}
I_{A^{c}}(\omega) & =1-I_{A}(\omega), I_{\cap=1}^{n} A_{i}=\prod_{i=1}^{n} I_{A_{i}} \\
I_{{ }_{i=1}^{n}}^{n} A_{i} & =1-\prod_{i=1}^{n} I_{A_{i}^{c}}=1-\prod_{i=1}^{n}\left(1-I_{A_{i}}\right) \\
& =\sum_{i=1}^{n} I_{A_{i}}-\sum_{i<j} I_{A_{i}} I_{A_{j}}+\cdots+(-1)^{n+1} \prod_{i=1}^{n} I_{A_{i}} \text { (induction) } \\
& =\sum_{i=1}^{n} I_{A_{i}}-\sum_{i<j} I_{A_{i} \cap A_{j}}+\cdots+(-1)^{n+1} I_{\cap i=1}^{n} A_{i}
\end{aligned}
$$

Definition III.1.1 If $A_{1}, \ldots, A_{l} \in \mathcal{A}$ and $a_{1}, \ldots, a_{l} \in R^{1}$, a function

 $X: \Omega \rightarrow R^{1}$ given by $X(\omega)=\sum_{i=1}^{l} a_{i} I_{A_{i}}(\omega)$ is called a simple function.note - a simple function takes only finitely many values and it is a random variable (a sum of r.v.'s is a r.v.) and any r.v. that takes only finitely many values is a simple function (Exercise III.1.1)

- let $c_{1}, \ldots, c_{m} \in R^{1}$ be the distinct values taken by simple function X and $C_{i}=X^{-1}\left\{c_{i}\right\} \in \mathcal{A}$ so $C_{i} \cap C_{j}=\phi$ when $i \neq j, \cup_{i=1}^{n} C_{i}=\Omega$ and

$$
X(\omega)=\sum_{i=1}^{m} c_{i} I_{C_{i}}(\omega)
$$

is in canonical form with a discrete distribution

$$
p_{X}(x)=P_{X}(\{x\})=P\left(X^{-1}\{x\}\right)= \begin{cases}0 & x \notin\left\{c_{1}, \ldots, c_{m}\right\} \\ P\left(C_{i}\right) & x=c_{i}\end{cases}
$$

- when $\omega_{1}, \ldots, \omega_{n}$ are i.i.d. (independently and identically distributed) P, then

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} X\left(\omega_{i}\right) \\
= & \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{l} a_{j} I_{A_{j}}\left(\omega_{i}\right)=\sum_{j=1}^{l} a_{j}\left(\frac{1}{n} \sum_{i=1}^{n} I_{A_{j}}\left(\omega_{i}\right)\right) \rightarrow \sum_{j=1}^{l} a_{j} P\left(A_{j}\right) \\
= & \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} c_{j} I_{C_{j}}\left(\omega_{i}\right)=\sum_{j=1}^{m} c_{j}\left(\frac{1}{n} \sum_{i=1}^{n} I_{C_{j}}\left(\omega_{i}\right)\right) \rightarrow \sum_{j=1}^{m} c_{j} P\left(C_{j}\right)
\end{aligned}
$$

as $n \rightarrow \infty$ so

$$
\sum_{j=1}^{l} a_{j} P\left(A_{j}\right)=\sum_{j=1}^{m} c_{j} P\left(C_{j}\right)
$$

- this leads to the following definition

Definition III.1.2 For a simple function $X=\sum_{i=1}^{l} a_{i} I_{A_{i}}$ the expectation of X is defined by

$$
E(X)=\sum_{i=1}^{1} a_{i} P\left(A_{i}\right)
$$

- if X_{1}, X_{2} are simple functions, then so is $a_{0}+a_{1} X_{1}+a_{2} X_{2}$ for any constants a_{0}, a_{1}, a_{2} and also $X_{1} X_{2}$ is a simple function

Proposition III.1.1 If X_{1}, X_{2} are simple functions, then
(i) $E\left(a_{0}+a_{1} X_{1}+a_{2} X_{2}\right)=a_{0}+a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)$,
(ii) if $X_{1} \leq X_{2}$, then $E\left(X_{1}\right) \leq E\left(X_{2}\right)$,
(iii) if $P\left(\left\{\omega: X_{1}(\omega) \neq X_{2}(\omega)\right\}\right)=0$, then $E\left(X_{1}\right)=E\left(X_{2}\right)$.

Proof: (i) Exercise III.1.2
(ii) Since $X_{2}-X_{1}$ is a nonnegative simple function so distinct values taken are nonnegative which implies, using (i),

$$
0 \leq E\left(X_{2}-X_{1}\right)=E\left(X_{2}\right)-E\left(X_{1}\right)
$$

(iii) Suppose $X_{1}=\sum_{i=1}^{l} a_{i} I_{A_{i}}, X_{2}=\sum_{i=1}^{m} b_{i} I_{B_{i}}$ are in canonical form. Note that if $P\left(A_{j}\right)=0$, then

$$
E\left(X_{1}\right)=\sum_{i=1}^{l} a_{i} P\left(A_{i}\right)=\sum_{i \neq j} a_{i} P\left(A_{i}\right)
$$

and similarly for X_{2}. So assume that $P\left(A_{i}\right)>0, P\left(B_{j}\right)>0$ for all i, j. Then for each a_{i} there exists b_{j} (and conversely) such that $a_{i}=b_{j}$ and A_{i} and B_{j} satisfy $P\left(A_{i} \cap B_{j}^{c}\right)=P\left(A_{i}^{c} \cap B_{j}\right)=0$ which implies $P\left(A_{i}\right)=P\left(B_{j}\right)$. This gives the result.

- now we want to extend the definition of expectation to as many r.v.'s as possible
- suppose X is a nonnegative r.v. and for $i \in\{1, \ldots, n\}, j \in\left\{1, \ldots, 2^{n}\right\}$ let

$$
\begin{aligned}
A_{i, j, n} & =\left\{\omega:(i-1)+(j-1) / 2^{n} \leq X(\omega)<(i-1)+j / 2^{n}\right\} \in \mathcal{A} \\
X_{n} & =\sum_{i=1}^{n} \sum_{j=1}^{2^{n}}\left((i-1)+(j-1) / 2^{n}\right) I_{A_{i, j, n}}
\end{aligned}
$$

and then X_{n} is a nonnegative simple function satisfying $X_{n}(\omega) \leq X(\omega)$

- suppose $n \leq n^{\prime}$,

$$
\text { if } X(\omega) \geq n \text {, then } 0=X_{n}(\omega) \leq X_{n^{\prime}}(\omega)
$$

if $\omega \in A_{i, j, n}$, then $\omega \in A_{i, j^{\prime}, n^{\prime}}$ for some j^{\prime} and $X_{n}(\omega) \leq X_{n^{\prime}}(\omega)$

- furthermore $\lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)$ for all $\omega \in \Omega$
- by Prop. III.1.1(ii) $E\left(X_{n}\right)$ is increasing and so $\lim _{n \rightarrow \infty} E\left(X_{n}\right)$ exists (could be ∞) and it makes sense then to define

$$
E(X)=\lim _{n \rightarrow \infty} E\left(X_{n}\right)
$$

provided this limit is the same for any increasing sequence of simple functions X_{n} satisfying $\lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)$ for all $\omega \in \Omega$ and (fact) this is true

- suppose X is a r.v. and define

$$
\begin{aligned}
& X_{+}(\omega)=\max \{0, X(\omega)\} \text { the positive part of } X \\
& X_{-}(\omega)=\max \{0,-X(\omega)\} \text { the negative part of } X
\end{aligned}
$$

so $X=X_{+}-X_{-}$and for any Borel set $B \subset R^{1}$

$$
X_{+}^{-1} B=\left\{\begin{array}{ll}
X^{-1}(B \cap(0, \infty)) & \text { if } 0 \notin B \\
X^{-1}(-\infty, 0] \cup X^{-1}(B \cap(0, \infty)) & \text { if } 0 \in B
\end{array} \in \mathcal{A}\right.
$$

so X_{+}is a nonnegative r.v. and similarly X_{-}is a nonnegative r.v.

Definition III.1.3 For a r.v. X define the expectation of X by

$$
E(X)=E\left(X_{+}\right)-E\left(X_{-}\right)
$$

provided at least one of $E\left(X_{+}\right), E\left(X_{-}\right)$is finite, otherwise $E(X)$ is not defined.

