Probability and Stochastic Processes I - Lecture 14

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

Michael Evans University of Toronto http://Probability and Stochastic Processes I - Lectu

023 1/8

- we want to prove that E is linear and note E(a) = a for any constant a since a constant is a simple function

Lemma III.1.2 If Y, Z are nonnegative r.v.'s and (i) $a, b \ge 0$, then E(aY + bZ) = aE(Y) + bE(Z) and (ii) if $Y \le Z$, then $0 \le E(Y) \le E(Z)$.

Proof: Choose nonnegative simple $Y_n \uparrow Y$, $Z_n \uparrow Z$. (i) Then $aY_n + bZ_n$ is nonnegative simple satisfying $aY_n + bZ_n \uparrow aY + bZ$ and so

$$E(aY + bZ) = \lim_{n} E(aY_n + bZ_n) = a \lim_{n} E(Y_n) + b \lim_{n} E(Z_n)$$

= $aE(Y) + bE(Z).$

(ii) We have $0 \le Y_n \le \max\{Y_n, Z_n\}$ and $\max\{Y_n, Z_n\}$ is simple satisfying $Z_n \le \max\{Y_n, Z_n\} \uparrow Z$. Therefore by Prop. III.1.1(ii) $0 \le E(Y_n) \le E(\max\{Y_n, Z_n\})$ and the result follows since $E(Y_n) \to E(Y), E(\max\{Y_n, Z_n\}) \to E(Z)$.

(周) (ヨ) (ヨ)

Lemma III.1.3 If Y, Z are nonnegative r.v.'s with E(Y), E(Z) finite, then E(Y - Z) = E(Y) - E(Z). Proof: Put $X = Y - Z = X_+ - X_-$ so $Y + X_- = Z + X_+$ is nonnegative and $E(Y + X_-) = E(Z + X_+)$. Then by Lemma III.1.2(i)

$$E(Y + X_{-}) = E(Y) + E(X_{-}),$$

$$E(Z + X_{+}) = E(Z) + E(X_{+}).$$

Also, if $X_{+}(\omega) > 0$, then $X_{+}(\omega) = Y(\omega) - Z(\omega) \le Y(\omega) + Z(\omega)$ and so $X_{+}(\omega) \le Y(\omega) + Z(\omega)$ for every ω . Using Lemma III.1.2(ii) this implies $0 \le E(X_{+}) \le E(Y) + E(Z) < \infty$ and similarly $E(X_{-}) < \infty$. Therefore, E(X) is finite and

$$E(Y - Z) = E(X) = E(X_{+}) - E(X_{-})$$

= $E(Z + X_{+}) - E(Z) - E(Y + X_{-}) + E(Y)$
= $E(Y) - E(Z)$.

Proposition III.1.4 If Y, Z are r.v.'s and E(Y), E(Z) are finite, then E(aY + bZ) = aE(Y) + bE(Z). Proof: We have

$$\begin{array}{lll} aY+bZ &=& a(Y_+-Y_-)+b(Z_+-Z_-)\\ &=& \begin{cases} (aY_++bZ_+)-(aY_-+bZ_-) & \text{if } a,b\geq 0\\ (-aY_--bZ_-)-(-aY_+-bZ_+) & \text{if } a<0,b<0\\ (aY_+-bZ_-)-(aY_--bZ_+) & \text{if } a\geq 0,b<0\\ (-aY_-+bZ_+)-(-aY_{+-}+bZ_-) & \text{if } a<0,b\geq 0 \end{cases} \end{array}$$

which is always in the form of the difference of two nonnegative r.v.'s as in Lemma III.1.3. Applying Lemmas III.1.3 and III.1.2 gives the result. ■

Example III.1.1 St. Petersburg Paradox

- let $\Omega = (0, \infty)$, $\mathcal{A} = \mathcal{B}^1 \cap (0, \infty)$ and define $X : \Omega \to \mathbb{R}^1$ by $X(\omega) = 2^{\lceil \omega \rceil}$ and $X^{-1}\{2^i\} = (i - 1, i]$ and $X^{-1}\{x\} = \phi$ whenever x is not a positive integer power of 2, so X is a nonnegative r.v.

- suppose P is discrete with $P(\{i\}) = (1/2)^i$ (geometric(1/2))

- putting $X_n = XI_{[0,n]}$ we see that X_n is a nonnegative simple function, $X_n \uparrow X$, and

$$E(X_n) = \sum_{i=1}^n 2^i \frac{1}{2^i} = n \to \infty = E(X)$$

- fair price to pay for gamble if payoff is \$2ⁱ when first head occurs on the *i*-th toss of a fair coin is $\$\infty$

- if we took
$$Y = Z = X$$
, then $E(Y - Z) = 0$ but $E(Y) - E(Z)$ is not defined \blacksquare

Proposition III.1.5 (i) $E(|X|) = E(X_+) + E(X_-)$ (note $E(|X|) < \infty$ implies E(X) is finite) (ii) If $X \le Y$ with defined expectation, then $E(X) \le E(Y)$. (iii) If P(X = 0) = 1, then E(X) = 0. (iv) If X and Y are equal with probability 1, namely,

$$1 = P(X = Y) = P(\{\omega : X(\omega) = Y(\omega)\}),$$

then E(X) = E(Y) whenever E(X) exists. Proof: (i) This follows from Lemma III.1.2(i) since $|X| = X_+ + X_-$. (ii) If $E(Y) = \infty$ this is obviously true and similarly if $E(X) = -\infty$. So assume neither of these cases holds which implies $E(X_-) < \infty$ and $E(Y_+) < \infty$. Now

$$X=X_+-X_-\leq Y=Y_+-Y_-\leq Y_+$$

and so $X_+ \leq Y_+ + X_-$ which implies $E(X_+) < \infty$ and similarly $E(Y_-) < \infty$ which implies both E(X), E(Y) are finite. Now $0 \leq Y - X$ and applying Prop. III.1.4 we obtain $0 \leq E(Y - X) = E(Y) - E(X)$ which is the result.

(iii) Assume first that $X \ge 0$ and choose nonnegative simple $X_n \uparrow X$ Since $0 \le X_n \le X$ we have $P(X_n = 0) = 1$ and so by Prop. III.1.1(iii) $E(X_n) = 0$ which implies E(X) = 0 since $E(X_n) \to E(X)$. Now when $X = X_+ - X_-$, then $\{\omega : X(\omega) = 0\} \subset \{\omega : X_+(\omega) = 0\}$ (since $X_+(\omega) = X_-(\omega)$ only when both equal 0) and so $P(X_+ = 0) = 1$ which implies $E(X_+) = 0$ and similarly $E(X_-) = 0$ which implies E(X) = 0.

(iv) Suppose P(X = Y) = 1, put

$$A = \{\omega : X(\omega) = Y(\omega)\}, B = \{\omega : X(\omega) \neq Y(\omega)\}$$

so P(B) = 0. This implies $P(XI_B = 0) \ge P(B^c) = 1$ and so by (iii) $E(XI_B) = 0$. Also, $X = XI_A + XI_B$ and $Y = YI_A + YI_B = XI_A + YI_B$. If E(X) is finite, we have $E(XI_A) = E(X - XI_B) = E(X) - E(XI_B)$ by Prop. III.1.4 and so $E(X) = E(XI_A) = E(YI_A)$. By the same argument $E(YI_B) = 0$ and so by Prop. III.1.4

$$E(YI_A) = E(YI_A) + E(YI_B) = E(YI_A + YI_B) = E(Y)$$

and conclude that E(X) = E(Y).

イロン イロン イヨン イヨン 三日

If $E(X) = \infty$, then $E(X_+) = \infty$ (and $E(X_-)$ is finite) which implies $E(X_+I_A) = \infty$ as $E(X_+I_B) = 0$. Now $E(X_+I_A) = E(Y_+I_A)$ which implies $E(Y_+) = \infty$, otherwise $E(Y_+) < \infty$ would imply $E(Y_+I_A) = E(Y_+ - Y_+I_B) = E(Y_+) - E(Y_+I_B) < \infty$. Since $E(X_-)$ is finite this implies $E(X_-) = E(Y_-)$ by the preceding argument and so E(X) = E(Y). If $E(X) = -\infty$ apply the same argument to -X and -Y.