Probability and Stochastic Processes I - Lecture 14

Michael Evans
University of Toronto

http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

- we want to prove that E is linear and note $E(a)=a$ for any constant a since a constant is a simple function

Lemma III.1.2 If Y, Z are nonnegative r.v.'s and (i) $a, b \geq 0$, then $E(a Y+b Z)=a E(Y)+b E(Z)$ and (ii) if $Y \leq Z$, then $0 \leq E(Y) \leq E(Z)$.
Proof: Choose nonnegative simple $Y_{n} \uparrow Y, Z_{n} \uparrow Z$. (i) Then $a Y_{n}+b Z_{n}$ is nonnegative simple satisfying $a Y_{n}+b Z_{n} \uparrow a Y+b Z$ and so

$$
\begin{aligned}
E(a Y+b Z) & =\lim _{n} E\left(a Y_{n}+b Z_{n}\right)=a \lim _{n} E\left(Y_{n}\right)+b \lim _{n} E\left(Z_{n}\right) \\
& =a E(Y)+b E(Z) .
\end{aligned}
$$

(ii) We have $0 \leq Y_{n} \leq \max \left\{Y_{n}, Z_{n}\right\}$ and $\max \left\{Y_{n}, Z_{n}\right\}$ is simple satisfying $Z_{n} \leq \max \left\{Y_{n}, Z_{n}\right\} \uparrow Z$. Therefore by Prop. III.1.1(ii)
$0 \leq E\left(Y_{n}\right) \leq E\left(\max \left\{Y_{n}, Z_{n}\right\}\right)$ and the result follows since $E\left(Y_{n}\right) \rightarrow E(Y), E\left(\max \left\{Y_{n}, Z_{n}\right\}\right) \rightarrow E(Z)$.

Lemma III.1.3 If Y, Z are nonnegative r.v.'s with $E(Y), E(Z)$ finite, then $E(Y-Z)=E(Y)-E(Z)$.
Proof: Put $X=Y-Z=X_{+}-X_{-}$so $Y+X_{-}=Z+X_{+}$is nonnegative and $E\left(Y+X_{-}\right)=E\left(Z+X_{+}\right)$. Then by Lemma III.1.2(i)

$$
\begin{aligned}
E\left(Y+X_{-}\right) & =E(Y)+E\left(X_{-}\right) \\
E\left(Z+X_{+}\right) & =E(Z)+E\left(X_{+}\right)
\end{aligned}
$$

Also, if $X_{+}(\omega)>0$, then $X_{+}(\omega)=Y(\omega)-Z(\omega) \leq Y(\omega)+Z(\omega)$ and so $X_{+}(\omega) \leq Y(\omega)+Z(\omega)$ for every ω. Using Lemma III.1.2(ii) this implies $0 \leq E\left(X_{+}\right) \leq E(Y)+E(Z)<\infty$ and similarly $E(X-)<\infty$. Therefore, $E(X)$ is finite and

$$
\begin{aligned}
E(Y-Z) & =E(X)=E\left(X_{+}\right)-E\left(X_{-}\right) \\
& =E\left(Z+X_{+}\right)-E(Z)-E\left(Y+X_{-}\right)+E(Y) \\
& =E(Y)-E(Z)
\end{aligned}
$$

Proposition III.1.4 If Y, Z are r.v.'s and $E(Y), E(Z)$ are finite, then $E(a Y+b Z)=a E(Y)+b E(Z)$.
Proof: We have

$$
\begin{aligned}
a Y+b Z & =a\left(Y_{+}-Y_{-}\right)+b\left(Z_{+}-Z_{-}\right) \\
& = \begin{cases}\left(a Y_{+}+b Z_{+}\right)-\left(a Y_{-}+b Z_{-}\right) & \text {if } a, b \geq 0 \\
\left(-a Y_{-}-b Z_{-}\right)-\left(-a Y_{+}-b Z_{+}\right) & \text {if } a<0, b<0 \\
\left(a Y_{+}-b Z_{-}\right)-\left(a Y_{-}-b Z_{+}\right) & \text {if } a \geq 0, b<0 \\
\left(-a Y_{-}+b Z_{+}\right)-\left(-a Y_{+-}+b Z_{-}\right) & \text {if } a<0, b \geq 0\end{cases}
\end{aligned}
$$

which is always in the form of the difference of two nonnegative r.v.'s as in Lemma III.1.3. Applying Lemmas III.1.3 and III.1.2 gives the result.

Example III.1.1 St. Petersburg Paradox

- let $\Omega=(0, \infty), \mathcal{A}=\mathcal{B}^{1} \cap(0, \infty)$ and define $X: \Omega \rightarrow R^{1}$ by $X(\omega)=2^{\lceil\omega\rceil}$ and $X^{-1}\left\{2^{i}\right\}=(i-1, i]$ and $X^{-1}\{x\}=\phi$ whenever x is not a positive integer power of 2 , so X is a nonnegative r.v.
- suppose P is discrete with $P(\{i\})=(1 / 2)^{i}$ (geometric $(1 / 2)$)
- putting $X_{n}=X I_{[0, n]}$ we see that X_{n} is a nonnegative simple function, $X_{n} \uparrow X$, and

$$
E\left(X_{n}\right)=\sum_{i=1}^{n} 2^{i} \frac{1}{2^{i}}=n \rightarrow \infty=E(X)
$$

- fair price to pay for gamble if payoff is $\$ 2^{i}$ when first head occurs on the i-th toss of a fair coin is $\$ \infty$
- if we took $Y=Z=X$, then $E(Y-Z)=0$ but $E(Y)-E(Z)$ is not defined

Proposition III.1.5 (i) $E(|X|)=E\left(X_{+}\right)+E\left(X_{-}\right)$(note $E(|X|)<\infty$ implies $E(X)$ is finite)
(ii) If $X \leq Y$ with defined expectation, then $E(X) \leq E(Y)$.
(iii) If $P(X=0)=1$, then $E(X)=0$.
(iv) If X and Y are equal with probability 1 , namely,

$$
1=P(X=Y)=P(\{\omega: X(\omega)=Y(\omega)\})
$$

then $E(X)=E(Y)$ whenever $E(X)$ exists.
Proof: (i) This follows from Lemma III.1.2(i) since $|X|=X_{+}+X_{-}$.
(ii) If $E(Y)=\infty$ this is obviously true and similarly if $E(X)=-\infty$. So assume neither of these cases holds which implies $E\left(X_{-}\right)<\infty$ and $E\left(Y_{+}\right)<\infty$. Now

$$
X=X_{+}-X_{-} \leq Y=Y_{+}-Y_{-} \leq Y_{+}
$$

and so $X_{+} \leq Y_{+}+X_{-}$which implies $E\left(X_{+}\right)<\infty$ and similarly $E\left(Y_{-}\right)<\infty$ which implies both $E(X), E(Y)$ are finite. Now $0 \leq Y-X$ and applying Prop. III.1.4 we obtain $0 \leq E(Y-X)=E(Y)-E(X)$ which is the result.
(iii) Assume first that $X \geq 0$ and choose nonnegative simple $X_{n} \uparrow X$ Since $0 \leq X_{n} \leq X$ we have $P\left(X_{n}=0\right)=1$ and so by Prop. III.1.1(iii) $E\left(X_{n}\right)=0$ which implies $E(X)=0$ since $E\left(X_{n}\right) \rightarrow E(X)$. Now when $X=X_{+}-X_{-}$, then $\{\omega: X(\omega)=0\} \subset\left\{\omega: X_{+}(\omega)=0\right\}$ (since
$X_{+}(\omega)=X_{-}(\omega)$ only when both equal 0$)$ and so $P\left(X_{+}=0\right)=1$ which implies $E\left(X_{+}\right)=0$ and similarly $E\left(X_{-}\right)=0$ which implies $E(X)=0$.
(iv) Suppose $P(X=Y)=1$, put

$$
A=\{\omega: X(\omega)=Y(\omega)\}, B=\{\omega: X(\omega) \neq Y(\omega)\}
$$

so $P(B)=0$. This implies $P\left(X I_{B}=0\right) \geq P\left(B^{c}\right)=1$ and so by (iii) $E\left(X I_{B}\right)=0$. Also, $X=X I_{A}+X I_{B}$ and $Y=Y I_{A}+Y I_{B}=X I_{A}+Y I_{B}$.

If $E(X)$ is finite, we have $E\left(X I_{A}\right)=E\left(X-X I_{B}\right)=E(X)-E\left(X I_{B}\right)$ by Prop. III.1.4 and so $E(X)=E\left(X I_{A}\right)=E\left(Y I_{A}\right)$. By the same argument $E\left(Y I_{B}\right)=0$ and so by Prop. III.1.4

$$
E\left(Y I_{A}\right)=E\left(Y I_{A}\right)+E\left(Y I_{B}\right)=E\left(Y I_{A}+Y I_{B}\right)=E(Y)
$$

and conclude that $E(X)=E(Y)$.

If $E(X)=\infty$, then $E\left(X_{+}\right)=\infty$ (and $E\left(X_{-}\right)$is finite) which implies $E\left(X_{+} I_{A}\right)=\infty$ as $E\left(X_{+} I_{B}\right)=0$. Now $E\left(X_{+} I_{A}\right)=E\left(Y_{+} I_{A}\right)$ which implies $E\left(Y_{+}\right)=\infty$, otherwise $E\left(Y_{+}\right)<\infty$ would imply $E\left(Y_{+} I_{A}\right)=E\left(Y_{+}-Y_{+} I_{B}\right)=E\left(Y_{+}\right)-E\left(Y_{+} I_{B}\right)<\infty$. Since $E\left(X_{-}\right)$is finite this implies $E\left(X_{-}\right)=E\left(Y_{-}\right)$by the preceding argument and so $E(X)=E(Y)$. If $E(X)=-\infty$ apply the same argument to $-X$ and $-Y$.

