Probability and Stochastic Processes I - Lecture 15

Michael Evans
University of Toronto

http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

III. 2 Convergence With Probability 1

Definition III.2.1 The sequence of r.v.'s $\left\{X_{n}\right\}$ converges with probability 1 to r.v. X if

$$
P\left(\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}\right)=1
$$

and write $X_{n} \xrightarrow{w p 1} X . \square$

note

$$
\begin{aligned}
& \left\{\omega: \quad \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\} \\
& =\quad \cap_{m=1}^{\infty} \lim \inf _{n}\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|<1 / m\right\} \\
& =\quad \cap_{m=1}^{\infty} \cup_{n=1}^{\infty} \cap_{i=n}^{\infty}\left\{\omega:\left|X_{i}(\omega)-X(\omega)\right|<1 / m\right\} \in \mathcal{A}
\end{aligned}
$$

Example III.2.1

$(\Omega, \mathcal{A}, P)=\left(R^{1}, \mathcal{B}^{1}, P\right)$ where P is the uniform distribution on $[0,1]$ so

$$
P(B)=\int_{B \cap[0,1]} d x
$$

and let $X_{n}(\omega)=\frac{n}{n+1} \omega^{2}$ and $X(\omega)=\omega^{2}$

- then $\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}=R^{1}$ and $P\left(R^{1}\right)=\int_{[0.1]} d x=1$ so $X_{n} \xrightarrow{w p 1} X$
- let

$$
X_{*}(\omega)= \begin{cases}\omega^{2} & \text { if } \omega \neq 1 / 2 \\ 1 & \text { if } \omega=1 / 2\end{cases}
$$

then $\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X_{*}(\omega)\right\}=R^{1} \backslash\{1 / 2\}$ and

$$
P\left(R^{1} \backslash\{1 / 2\}\right)=\int_{[0,1 / 2)} d x+\int_{(1 / 2,1]} d x=1 / 2+1 / 2=1
$$

and so $X_{n} \xrightarrow{\text { wp } 1} X_{*}$ too

- we could change X at every rational $q \in \mathbb{Q}$ to obtain $X_{* *}$ and since $P(\mathbb{Q})=0$ we still have $X_{n} \xrightarrow{w p 1} X_{* *}$
- a measure v defined on (Ω, \mathcal{A}) is a function $v: \mathcal{A} \rightarrow[0, \infty]$ that satisfies $v(\phi)=0$ and $v\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} v\left(A_{i}\right)$ whenever $A_{1}, A_{2}, \ldots \in \mathcal{A}$ are mutually disjoint

Example III.2.2

- a probability measure v defined on (Ω, \mathcal{A}) is a measure
- counting measure defined by $v(A)=\#(A)$ is a measure
- if $(\Omega, \mathcal{A})=\left(R^{k}, \mathcal{B}^{k}\right)$ and $v(A)=\operatorname{Vol}(A)$ is a measure \square
- now suppose $h:(\Omega, \mathcal{A}) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)\left(h: \Omega \rightarrow R^{1}\right.$ and $h^{-1} B \in \mathcal{A}$ for every $B \in \mathcal{B}^{1}$)
- then just as we did for r.v. X and P we can define a kind of average of h with respect to v (simple functions h, nonnegative functions h, general functions $h=h_{+}-h_{-}$) which, when it exists, is denoted

$$
\int_{\Omega} h(\omega) v(d \omega)
$$

called the integral of h with respect to v

- so, for example, the expectation of r.v. X can also be written as the integral of X with respect to $v=P$, namely,

$$
E(X)=\int_{\Omega} X(\omega) P(d \omega)
$$

- with $v=$ counting measure on (Ω, \mathcal{A}) (fact)

$$
\int_{\Omega} h(\omega) v(d \omega)=\sum_{\omega \in \Omega} h(\omega)
$$

and with $v=$ volume measure on $\left(R^{k}, \mathcal{B}^{k}\right)$ (fact)

$$
\int_{\Omega} h(\omega) v(d \omega)=\int_{R^{k}} h(\mathbf{x}) d \mathbf{x}
$$

- if $\left\{h_{n}\right\}$ is a sequence of such functions, then we say the sequence converges almost surely v to h if

$$
v\left(\left\{\omega: \lim _{n \rightarrow \infty} h_{n}(\omega) \neq h(\omega)\right\}\right)=0
$$

and write $h_{n} \xrightarrow{\text { a.s. } v} h$

- so convergence almost surely P to h is convergence with probability 1
- we need the following results

Proposition III.2.1 Suppose $h_{n} \xrightarrow{\text { a.s. } v} h$.
(i) (Monotone Convergence MCT) If $0 \leq h_{1} \leq h_{2} \leq \cdots$, then $\int_{\Omega} h_{n}(\omega) v(d \omega) \uparrow \int_{\Omega} h(\omega) v(d \omega)$.
(ii) (Dominated Convergence DCT) If there exists $g:(\Omega, \mathcal{A}) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$ such that $\int_{\Omega}|g(\omega)| v(d \omega)<\infty$ and $\left|h_{n}\right| \leq|g|$ for very n, then $\int_{\Omega} h_{n}(\omega) v(d \omega) \rightarrow \int_{\Omega} h(\omega) v(d \omega)$.
Proof: Accept.

Corollary III.2.1 Suppose $X_{n} \xrightarrow{\text { wp } 1} X$.
(i) If $0 \leq X_{1} \leq X_{2} \leq \cdots$, then $E\left(X_{n}\right) \uparrow E(X)$.
(ii) If there exists r.v. Y such that $E(|Y|)<\infty$ and $\left|X_{n}\right| \leq|Y|$ for very n, then $E\left(X_{n}\right) \rightarrow E(X)$.

Example III.2.1 (continued)

- then $X_{n}(\omega)=\frac{n}{n+1} \omega^{2} \uparrow X(\omega)=\omega^{2}$ and so by MCT $E\left(X_{n}\right) \uparrow E(X)$ and $E\left(X_{n}\right) \uparrow E\left(X_{*}\right) \square$

Example III.2.2

- suppose X is s.t. $E(X)$ is finite and let $X_{n}=X I_{\{|X| \leq n\}}$
- then $X_{n} \xrightarrow{\text { wp } 1} X$ and $\left|X_{n}\right| \leq|X|$ so by DCT $E\left(X_{n}\right) \rightarrow E(X) \square$

III. 3 Computing Expectations

Lemma III.3.1 If X is a r.v. with respect to (Ω, \mathcal{A}, P) and $h:\left(R^{1}, \mathcal{B}^{1}\right) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$, then $Y=h(X)$ is a r.v. with respect to (Ω, \mathcal{A}, P).

Proof: Let $B \in \mathcal{B}^{1}$. Then

$$
\begin{aligned}
Y^{-1} B & =\{\omega: Y(\omega)=h(X(\omega)) \in B\} \\
& =\left\{\omega: X(\omega) \in h^{-1} B\right\}=X^{-1} h^{-1} B \in \mathcal{A}
\end{aligned}
$$

since $h^{-1} B \in \mathcal{B}^{1}$ and X is a r.v.

- when h is a r.v. with respect to $\left(R^{1}, \mathcal{B}^{1}, P_{X}\right)$ does $E(Y)=E_{P_{X}}(h)$?

Proposition III.3.2 If X is a r.v. with respect to (Ω, \mathcal{A}, P) and $h:\left(R^{1}, \mathcal{B}^{1}\right) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$, then $E(Y)=E_{P_{X}}(h)$ when it exists.
Proof: Suppose $h=\sum_{i=1}^{k} b_{i} I_{B_{i}}$ is a simple function. Then

$$
Y(\omega)=h(X(\omega))=\sum_{i=1}^{k} b_{i} I_{B_{i}}(X(\omega))=\sum_{i=1}^{k} b_{i} I_{X^{-1} B_{i}}(\omega)
$$

is a simple function on Ω and so

$$
E(Y)=\sum_{i=1}^{k} b_{i} P\left(X^{-1} B_{i}\right)=\sum_{i=1}^{k} b_{i} P_{X}\left(B_{i}\right)=E_{P_{X}}(h)
$$

If $h \geq 0$ so $Y=h(X) \geq 0$, then there exist nonnegative simple $W_{n} \uparrow h$ which implies $W_{n}(X) \uparrow h(X)=Y$. So using definition of expectation for nonnegative r.v.'s,

$$
E_{P_{X}}(h)=\lim _{n \rightarrow \infty} E_{P_{X}}\left(W_{n}\right)=\lim _{n \rightarrow \infty} E\left(W_{n}(X)\right)=E(Y)
$$

In general write $h=h_{+}-h_{-}$so $h(X)=h_{+}(X)-h_{-}(X)$ and apply the above result to both parts.

Proposition III.3.3 Suppose X is a r.v. with respect to (Ω, \mathcal{A}, P), $h:\left(R^{1}, \mathcal{B}^{1}\right) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$ and $E_{P_{X}}(h)$ exists.
(i) If P_{x} is discrete with prob. fn p_{X}, then $E_{P_{X}}(h)=\sum_{x \in R^{1}} h(x) p_{X}(x)$.
(ii) If P_{x} is a.c. with density $\mathrm{fn} f_{X}$, then $E_{P_{X}}(h)=\int_{-\infty}^{\infty} h(x) f_{X}(x) d x$.

Proof: Suppose $h(x)=\sum_{i=1}^{k} b_{i} I_{B_{i}}(x)$ is a simple function in canonical form. Then

$$
\begin{aligned}
E_{P_{X}}(h) & =\sum_{i=1}^{k} b_{i} P_{X}\left(B_{i}\right)= \begin{cases}\sum_{i=1}^{k} b_{i} \sum_{x \in B_{i}} p_{X}(x), & \text { if } X \text { discrete } \\
\sum_{i=1}^{k} b_{i} \int_{B_{i}} f_{X}(x) d x, & \text { if } X \text { a.c. }\end{cases} \\
& = \begin{cases}\sum_{x \in R^{1}} h(x) p_{X}(x), & \text { if } X \text { discrete } \\
\int_{-\infty}^{\infty} h(x) f_{X}(x) d x, & \text { if } X \text { a.c. }\end{cases} \\
& = \begin{cases}\int_{-\infty}^{\infty} h(x) p_{X}(x) v(d x), & v=\text { counting measure } \\
\int_{-\infty}^{\infty} h(x) f_{X}(x) v(d x), & v=\text { volume measure }\end{cases}
\end{aligned}
$$

which proves the result for simple h.

If $h \geq 0$ and nonnegative simple $h_{n} \uparrow h$ then (i) $h_{n} p_{X} \uparrow h p_{X}$ (ii) $h_{n} f_{X} \uparrow h f_{X}$ and the result follows by MCT. The result follows for general h via the decomposition $h=h_{+}-h_{-}$.

Example III.2.3 $X \sim N\left(\mu, \sigma^{2}\right)$

- then with $h(x)=x$

$$
\begin{aligned}
E(X)= & \int_{0}^{\infty} x \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right) d x- \\
& \int_{-\infty}^{0}(-x) \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right) d x
\end{aligned}
$$

and making the change of variable $t=T(x)=(x-\mu) / \sigma$ in both integrals (with $J_{T}(x)=\sigma$ and $T^{-1}(t)=\mu+\sigma t$) and putting

$$
\varphi(t)=(2 \pi)^{-1 / 2} \exp \left(-t^{2} / 2\right)
$$

$$
\begin{aligned}
E(X) & =\int_{0}^{\infty}(\mu+\sigma t) \varphi(t) d t+\int_{-\infty}^{0}(\mu+\sigma t) \varphi(t) d t \\
& =\mu \int_{-\infty}^{\infty} \varphi(t) d t+\sigma\left(\int_{0}^{\infty} t \varphi(t) d t+\int_{-\infty}^{0} t \varphi(t) d t\right)=\mu
\end{aligned}
$$

since $\int_{-\infty}^{0} t \varphi(t) d t=-\int_{0}^{\infty} t \varphi(t) d t$ on putting $w=-t$

- also, with t as before, $h(x)=(x-\mu)^{2}$

$$
\begin{aligned}
E\left((X-\mu)^{2}\right) & =\int_{-\infty}^{\infty}(x-\mu)^{2} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right) d x \\
& =\sigma^{2} \int_{-\infty}^{\infty} t^{2} \varphi(t) d t
\end{aligned}
$$

- using integration by parts with $u=t, d v=t \varphi(t)$, then

$$
d u=d t, v=-\varphi(t)
$$

$$
\int_{-\infty}^{\infty} t^{2} \varphi(t) d t=-\left.t \varphi(t)\right|_{t=-\infty} ^{t=\infty}+\int_{-\infty}^{\infty} \varphi(t) d t=0+1=1
$$

- so $E\left((X-\mu)^{2}\right)=\sigma^{2}$

Definition III.3.1 The k-th moment of a r.v. X is given by $\mu_{k}=E\left(X^{k}\right)$ when this exists. When the first moment exists, the k-th central moment of a r.v. X is given by $\bar{\mu}_{k}=E\left(\left(X-\mu_{1}\right)^{k}\right)$ when it exists. The mean of X is given by $\mu_{X}=E(X)$ and the variance of X is given by $\sigma_{X}^{2}=\operatorname{Var}(X)=E\left(\left(X-\mu_{X}\right)^{2}\right)$ when μ_{X} exists.
Proposition III.3.4 If μ_{k} is finite then μ_{l} is finite for $I=1,2, \ldots, k$.
Proof: Note μ_{k} is finite iff $E\left(|X|^{k}\right)$ is finite and putting $h(x)=|x|^{\prime}$

$$
\begin{aligned}
& 0 \leq E\left(|X|^{\prime}\right)=E_{P_{X}}(h)=\int_{-\infty}^{\infty}|x|^{\prime} P_{X}(d x) \\
= & \int_{-\infty}^{-1}|x|^{\prime} P_{X}(d x)+\int_{-1}^{1}|x|^{\prime} P_{X}(d x)+\int_{1}^{\infty}|x|^{\prime} P_{X}(d x) \\
\leq & \int_{-\infty}^{-1}|x|^{k} P_{X}(d x)+\int_{-1}^{1} 1 P_{X}(d x)+\int_{1}^{\infty}|x|^{k} P_{X}(d x) \\
\leq & \int_{-\infty}^{\infty}|x|^{k} P_{X}(d x)+P_{X}([-1,1])<\infty .
\end{aligned}
$$

Exercise III.3.1 When $X \sim N\left(\mu, \sigma^{2}\right)$ compute $E\left(X^{3}\right)$ and $E\left(X^{4}\right)$.
Exercise III.3.2 When $X \sim$ Standard Cauchy, namely, X has density $f_{X}(x)=1 / \pi\left(1+x^{2}\right)$ for $-\infty<x<\infty$, show that μ_{1} doesn't exist.

Exercise III.3.3 E\&R 3.1.17.
Exercise III.3.4 E\&R 3.1.22, E\&R 3.3.18 and E\&R 3.3.19.
Exercise III.3.5 E\&R 3.2.16 and E\&R 3.3.20.
Exercise III.3.6 E\&R 3.2.22 and E\&R 3.3.24.

Example III.2.4 Monte Carlo Approximations

- suppose $Y=h(X)$ for some $h:\left(R^{1}, \mathcal{B}^{1}\right) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$ and we want to compute $E(Y)$
- often this can be very difficult unless P_{Y} is easy to work with
- but if we can generate $X_{1}, X_{2}, \ldots \stackrel{i . i . d .}{\sim} P_{X}$ then $Y_{1}, Y_{2}, \ldots \stackrel{i . i . d .}{\sim} P_{Y}$
- then a very natural estimator of $E(Y)$ is

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)
$$

and we will show (later) that this converges to $E(Y)$ as $n \rightarrow \infty$

- how accurate is this estimate for some specific n ?
- the Central Limit Theorem (later) says, for large n,

$$
\frac{\bar{Y}-E(Y)}{\sqrt{\operatorname{Var}(Y) / n}} \approx N(0,1)
$$

provided $\operatorname{Var}(Y)<\infty$

- $\operatorname{Var}(Y)=E\left((Y-E(Y))^{2}\right)=E\left(Y^{2}\right)-(E(Y))^{2}$ can be estimated (later) by

$$
s^{2}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}-\bar{Y}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

and indeed (later)

$$
\frac{\bar{Y}-E(Y)}{\sqrt{s^{2} / n}} \approx N(0,1)
$$

- if $Z \sim N(0,1)$ then $P(-3<Z<3)=0.9973002 \approx 1$
- combining these statements we can say that the true value of $E(Y)$ lies in the interval

$$
[\bar{Y}-3 s / \sqrt{n}, \bar{Y}+3 s / \sqrt{n}]
$$

with "virtual certainty" and the length of the interval assesses the accuracy of the estimate
note when $Y=I_{A}$ then $\bar{Y}=$ the relative frequency of A in $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{i}^{2}=Y_{i}$ so $s^{2}=\bar{Y}(1-\bar{Y})$ and this is the same estimation procedure as previously discussed for estimating $P_{X}(A)$

