Probability and Stochastic Processes I - Lecture 15

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

Michael Evans University of Toronto http://Probability and Stochastic Processes I - Lectu

Definition III.2.1 The sequence of r.v.'s $\{X_n\}$ converges with probability 1 to r.v. X if

$$P(\{\omega: \lim_{n\to\infty} X_n(\omega) = X(\omega)\}) = 1$$

and write $X_n \stackrel{wp1}{\rightarrow} X$.

note

$$\begin{aligned} \{\omega: & \lim_{n \to \infty} X_n(\omega) = X(\omega) \} \\ &= & \bigcap_{m=1}^{\infty} \liminf_{n} \{\omega: |X_n(\omega) - X(\omega)| < 1/m \} \\ &= & \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} \{\omega: |X_i(\omega) - X(\omega)| < 1/m \} \in \mathcal{A} \end{aligned}$$

Example III.2.1

 $(\Omega, \mathcal{A}, P) = (R^1, \mathcal{B}^1, P)$ where P is the uniform distribution on [0, 1] so $P(B) = \int_{B \cap [0,1]} dx$ and let $X_n(\omega) = \frac{n}{n+1}\omega^2$ and $X(\omega) = \omega^2$ - then $\{\omega: \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = R^1$ and $P(R^1) = \int_{[0,1]} dx = 1$ so $X_n \stackrel{wp1}{\rightarrow} X$ - let $X_*(\omega) = \begin{cases} \omega^2 & \text{if } \omega \neq 1/2 \\ 1 & \text{if } \omega = 1/2 \end{cases}$ then $\{\omega : \lim_{n \to \infty} X_n(\omega) = X_*(\omega)\} = R^1 \setminus \{1/2\}$ and

 $P(R^1 \setminus \{1/2\}) = \int_{[0,1/2)} dx + \int_{(1/2,1]} dx = 1/2 + 1/2 = 1$

and so $X_n \stackrel{wp1}{\rightarrow} X_*$ too

- we could change X at every rational $q \in \mathbb{Q}$ to obtain X_{**} and since $P(\mathbb{Q}) = 0$ we still have $X_n \stackrel{wp1}{\longrightarrow} X_{**} \blacksquare$

Michael Evans University of Toronto http://vProbability and Stochastic Processes I - Lectu

3 3/16

- a measure ν defined on (Ω, \mathcal{A}) is a function $\nu : \mathcal{A} \to [0, \infty]$ that satisfies $\nu(\phi) = 0$ and $\nu(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \nu(A_i)$ whenever $A_1, A_2, \ldots \in \mathcal{A}$ are mutually disjoint

Example III.2.2

- a probability measure u defined on (Ω, \mathcal{A}) is a measure

- counting measure defined by $\nu({\it A})=\#({\it A})$ is a measure

- if
$$(\Omega,\mathcal{A})=(\mathcal{R}^k,\mathcal{B}^k)$$
 and $u(\mathcal{A})=\mathit{Vol}(\mathcal{A})$ is a measure $lacksquare$

- now suppose $h: (\Omega, \mathcal{A}) \to (R^1, \mathcal{B}^1)$ $(h: \Omega \to R^1$ and $h^{-1}B \in \mathcal{A}$ for every $B \in \mathcal{B}^1)$

- then just as we did for r.v. X and P we can define a kind of average of h with respect to ν (simple functions h, nonnegative functions h, general functions $h = h_+ - h_-$) which, when it exists, is denoted

$$\int_{\Omega} h(\omega) \, \nu(d\omega)$$

called the integral of h with respect to v

- so, for example, the expectation of r.v. X can also be written as the integral of X with respect to $\nu = P$, namely,

$$E(X) = \int_{\Omega} X(\omega) P(d\omega)$$

- with $u = {\sf counting}$ measure on (Ω, \mathcal{A}) (fact)

$$\int_{\Omega} h(\omega) \, \nu(d\omega) = \sum_{\omega \in \Omega} h(\omega)$$

and with $\nu =$ volume measure on (R^k, \mathcal{B}^k) (fact)

$$\int_{\Omega} h(\omega) \, \nu(d\omega) = \int_{\mathcal{R}^k} h(\mathbf{x}) \, d\mathbf{x}$$

Michael Evans University of Toronto http://probability and Stochastic Processes I - Lectu

- if $\{h_n\}$ is a sequence of such functions, then we say the sequence converges almost surely ν to h if

$$\nu(\{\omega: \lim_{n\to\infty}h_n(\omega)\neq h(\omega)\})=0$$

and write $h_n \stackrel{a.s. \nu}{\rightarrow} h$

- so convergence almost surely P to h is convergence with probability 1
- we need the following results

Proposition III.2.1 Suppose $h_n \stackrel{a.s. \nu}{\rightarrow} h$.

(i) (Monotone Convergence MCT) If $0 \le h_1 \le h_2 \le \cdots$, then $\int_{\Omega} h_n(\omega) \nu(d\omega) \uparrow \int_{\Omega} h(\omega) \nu(d\omega)$.

(ii) (Dominated Convergence DCT) If there exists $g : (\Omega, \mathcal{A}) \to (\mathbb{R}^1, \mathcal{B}^1)$ such that $\int_{\Omega} |g(\omega)| \nu(d\omega) < \infty$ and $|h_n| \le |g|$ for very *n*, then $\int_{\Omega} h_n(\omega) \nu(d\omega) \to \int_{\Omega} h(\omega) \nu(d\omega).$

Proof: Accept.

Corollary III.2.1 Suppose $X_n \stackrel{wp1}{\rightarrow} X$.

(i) If $0 \leq X_1 \leq X_2 \leq \cdots$, then $E(X_n) \uparrow E(X)$.

(ii) If there exists r.v. Y such that $E(|Y|) < \infty$ and $|X_n| \le |Y|$ for very n, then $E(X_n) \to E(X)$.

Example III.2.1 (continued)

- then
$$X_n(\omega) = \frac{n}{n+1}\omega^2 \uparrow X(\omega) = \omega^2$$
 and so by MCT $E(X_n) \uparrow E(X)$ and $E(X_n) \uparrow E(X_*) \blacksquare$

Example III.2.2

- suppose X is s.t. E(X) is finite and let $X_n = XI_{\{|X| \le n\}}$
- then $X_n \stackrel{wp1}{\to} X$ and $|X_n| \leq |X|$ so by DCT $E(X_n) \to E(X) \blacksquare$

Lemma III.3.1 If X is a r.v. with respect to (Ω, \mathcal{A}, P) and $h: (R^1, \mathcal{B}^1) \to (R^1, \mathcal{B}^1)$, then Y = h(X) is a r.v. with respect to (Ω, \mathcal{A}, P) .

Proof: Let $B \in \mathcal{B}^1$. Then

$$Y^{-1}B = \{\omega : Y(\omega) = h(X(\omega)) \in B\}$$

= $\{\omega : X(\omega) \in h^{-1}B\} = X^{-1}h^{-1}B \in \mathcal{A}$

since $h^{-1}B \in \mathcal{B}^1$ and X is a r.v.

- when h is a r.v. with respect to $(R^1, \mathcal{B}^1, \mathcal{P}_X)$ does $E(Y) = E_{\mathcal{P}_X}(h)$?

Proposition III.3.2 If X is a r.v. with respect to (Ω, \mathcal{A}, P) and $h: (R^1, \mathcal{B}^1) \to (R^1, \mathcal{B}^1)$, then $E(Y) = E_{P_X}(h)$ when it exists.

Proof: Suppose $h = \sum_{i=1}^{k} b_i I_{B_i}$ is a simple function. Then

$$Y(\omega) = h(X(\omega)) = \sum_{i=1}^{k} b_i I_{B_i}(X(\omega)) = \sum_{i=1}^{k} b_i I_{X^{-1}B_i}(\omega)$$

is a simple function on Ω and so

$$E(Y) = \sum_{i=1}^{k} b_i P(X^{-1}B_i) = \sum_{i=1}^{k} b_i P_X(B_i) = E_{P_X}(h).$$

If $h \ge 0$ so $Y = h(X) \ge 0$, then there exist nonnegative simple $W_n \uparrow h$ which implies $W_n(X) \uparrow h(X) = Y$. So using definition of expectation for nonnegative r.v.'s,

$$E_{P_X}(h) = \lim_{n \to \infty} E_{P_X}(W_n) = \lim_{n \to \infty} E(W_n(X)) = E(Y).$$

In general write $h = h_+ - h_-$ so $h(X) = h_+(X) - h_-(X)$ and apply the above result to both parts.

Proposition III.3.3 Suppose X is a r.v. with respect to (Ω, \mathcal{A}, P) , $h: (R^1, \mathcal{B}^1) \to (R^1, \mathcal{B}^1)$ and $E_{P_X}(h)$ exists.

(i) If P_x is discrete with prob. fn p_X , then $E_{P_X}(h) = \sum_{x \in R^1} h(x) p_X(x)$. (ii) If P_x is a.c. with density fn f_X , then $E_{P_X}(h) = \int_{-\infty}^{\infty} h(x) f_X(x) dx$. Proof: Suppose $h(x) = \sum_{i=1}^{k} b_i I_{B_i}(x)$ is a simple function in canonical form. Then

$$\begin{split} E_{P_X}(h) &= \sum_{i=1}^k b_i P_X(B_i) = \begin{cases} \sum_{i=1}^k b_i \sum_{x \in B_i} p_X(x), & \text{if } X \text{ discrete} \\ \sum_{i=1}^k b_i \int_{B_i} f_X(x) \, dx, & \text{if } X \text{ a.c.} \end{cases} \\ &= \begin{cases} \sum_{x \in R^1} h(x) p_X(x), & \text{if } X \text{ discrete} \\ \int_{-\infty}^{\infty} h(x) f_X(x) \, dx, & \text{if } X \text{ a.c.} \end{cases} \\ &= \begin{cases} \int_{-\infty}^{\infty} h(x) p_X(x) \, \nu(dx), & \nu = \text{ counting measure} \\ \int_{-\infty}^{\infty} h(x) f_X(x) \, \nu(dx), & \nu = \text{ volume measure} \end{cases} \end{split}$$

which proves the result for simple h.

If $h \ge 0$ and nonnegative simple $h_n \uparrow h$ then (i) $h_n p_X \uparrow h p_X$ (ii) $h_n f_X \uparrow h f_X$ and the result follows by MCT. The result follows for general h via the decomposition $h = h_+ - h_-$.

Example III.2.3 $X \sim N(\mu, \sigma^2)$

- then with h(x) = x

$$E(X) = \int_0^\infty x \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right) dx - \int_{-\infty}^0 (-x) \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right) dx$$

and making the change of variable $t = T(x) = (x - \mu)/\sigma$ in both integrals (with $J_T(x) = \sigma$ and $T^{-1}(t) = \mu + \sigma t$) and putting

$$\varphi(t) = (2\pi)^{-1/2} \exp(-t^2/2)$$

$$E(X) = \int_0^\infty (\mu + \sigma t)\varphi(t) dt + \int_{-\infty}^0 (\mu + \sigma t)\varphi(t) dt$$

= $\mu \int_{-\infty}^\infty \varphi(t) dt + \sigma \left(\int_0^\infty t\varphi(t) dt + \int_{-\infty}^0 t\varphi(t) dt \right) = \mu$

since $\int_{-\infty}^{0} t\varphi(t) dt = -\int_{0}^{\infty} t\varphi(t) dt$ on putting w = -t

- also, with t as before, $h(x)=(x-\mu)^2$

$$E\left((X-\mu)^2\right) = \int_{-\infty}^{\infty} (x-\mu)^2 \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right) dx$$
$$= \sigma^2 \int_{-\infty}^{\infty} t^2 \varphi(t) dt$$

- using integration by parts with $u=t,\,dv=tarphi(t),$ then $du=dt,\,v=-arphi(t)$

$$\int_{-\infty}^{\infty} t^2 \varphi(t) dt = -t\varphi(t)|_{t=-\infty}^{t=\infty} + \int_{-\infty}^{\infty} \varphi(t) dt = 0 + 1 = 1$$
$$E\left((X - \mu)^2\right) = \sigma^2 \blacksquare$$

Michael Evans University of Toronto http://probability and Stochastic Processes I - Lectu

- SO

Definition III.3.1 The *k*-th moment of a r.v. X is given by $\mu_k = E(X^k)$ when this exists. When the first moment exists, the *k*-th central moment of a r.v. X is given by $\bar{\mu}_k = E((X - \mu_1)^k)$ when it exists. The mean of X is given by $\mu_X = E(X)$ and the variance of X is given by $\sigma_X^2 = Var(X) = E((X - \mu_X)^2)$ when μ_X exists.

Proposition III.3.4 If μ_k is finite then μ_l is finite for l = 1, 2, ..., k. Proof: Note μ_k is finite iff $E(|X|^k)$ is finite and putting $h(x) = |x|^l$

$$0 \leq E(|X|^{l}) = E_{P_{X}}(h) = \int_{-\infty}^{\infty} |x|^{l} P_{X}(dx)$$

= $\int_{-\infty}^{-1} |x|^{l} P_{X}(dx) + \int_{-1}^{1} |x|^{l} P_{X}(dx) + \int_{1}^{\infty} |x|^{l} P_{X}(dx)$
 $\leq \int_{-\infty}^{-1} |x|^{k} P_{X}(dx) + \int_{-1}^{1} 1 P_{X}(dx) + \int_{1}^{\infty} |x|^{k} P_{X}(dx)$
 $\leq \int_{-\infty}^{\infty} |x|^{k} P_{X}(dx) + P_{X}([-1,1]) < \infty.$

Exercise III.3.1 When $X \sim N(\mu, \sigma^2)$ compute $E(X^3)$ and $E(X^4)$. **Exercise III.3.2** When $X \sim$ Standard Cauchy, namely, X has density $f_X(x) = 1/\pi(1+x^2)$ for $-\infty < x < \infty$, show that μ_1 doesn't exist. **Exercise III.3.3** E&R 3.1.17. **Exercise III.3.4** E&R 3.1.22, E&R 3.3.18 and E&R 3.3.19. **Exercise III.3.5** E&R 3.2.16 and E&R 3.3.20. **Exercise III.3.6** E&R 3.2.22 and E&R 3.3.24.

Example III.2.4 Monte Carlo Approximations

- suppose Y=h(X) for some $h:(R^1,\mathcal{B}^1)\to (R^1,\mathcal{B}^1)$ and we want to compute E(Y)
- often this can be very difficult unless P_Y is easy to work with
- but if we can generate $X_1, X_2, \ldots \stackrel{i.i.d.}{\sim} P_X$ then $Y_1, Y_2, \ldots \stackrel{i.i.d.}{\sim} P_Y$
- then a very natural estimator of E(Y) is

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} h(X_i)$$

and we will show (later) that this converges to E(Y) as $n \to \infty$

- how accurate is this estimate for some specific *n*?
- the Central Limit Theorem (later) says, for large n,

$$\frac{\bar{Y} - E(Y)}{\sqrt{Var(Y)/n}} \approx N(0, 1)$$

provided $Var(Y) < \infty$

- $Var(Y) = E((Y-E(Y))^2) = E(Y^2) - (E(Y))^2$ can be estimated (later) by

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2} - \bar{Y}^{2} = \frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}$$

and indeed (later)

$$\frac{\bar{Y} - E(Y)}{\sqrt{s^2/n}} \approx N(0,1)$$

- if $Z \sim \textit{N}(0,1)$ then $\textit{P}(-3 < Z < 3) = 0.9973002 \approx 1$

- combining these statements we can say that the true value of E(Y) lies in the interval

$$[\bar{Y}-3s/\sqrt{n}, \bar{Y}+3s/\sqrt{n}]$$

with "virtual certainty" and the length of the interval assesses the accuracy of the estimate

note when $Y = I_A$ then \overline{Y} = the relative frequency of A in X_1, X_2, \ldots, X_n and $Y_i^2 = Y_i$ so $s^2 = \overline{Y}(1 - \overline{Y})$ and this is the same estimation procedure as previously discussed for estimating $P_X(A)$