Probability and Stochastic Processes I - Lecture 16

Michael Evans
University of Toronto

http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

III. 4 Expectations for Random Vectors

Definition III.4.1 For random vector $\mathbf{X} \in R^{k}$, the mean vector of \mathbf{X} is

$$
\begin{aligned}
\mu_{\mathbf{x}} & =E(\mathbf{X})=\left(\begin{array}{lll}
E\left(X_{1}\right), & \left.E\left(X_{2}\right), \quad \ldots, E\left(X_{k}\right)\right)^{\prime} \\
& =\left(\begin{array}{lll}
\mu_{1}, \quad \mu_{2}, & \ldots, & \mu_{k}
\end{array}\right)^{\prime}
\end{array}\right.
\end{aligned}
$$

provided each $E\left(X_{i}\right)=\mu_{i}$ exists. If each $E\left(X_{i}\right)$ is finite (so $E(\mathbf{X}) \in R^{k}$) then the variance matrix of \mathbf{X} is given by
$\Sigma_{\mathbf{X}}=\operatorname{Var}(\mathbf{X})$

$$
=\left(\begin{array}{ccc}
E\left(\left(X_{1}-\mu_{1}\right)^{2}\right) & \cdots & E\left(\left(X_{1}-\mu_{1}\right)\left(X_{k}-\mu_{k}\right)\right) \\
E\left(\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right)\right) & \cdots & E\left(\left(X_{2}-\mu_{2}\right)\left(X_{k}-\mu_{k}\right)\right) \\
\vdots & \vdots & \vdots \\
E\left(\left(X_{k}-\mu_{k}\right)\left(X_{1}-\mu_{1}\right)\right) & \cdots & E\left(\left(X_{k}-\mu_{k}\right)^{2}\right)
\end{array}\right)
$$

provided each $E\left(\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right)$ for $i \neq j$ exists.

notes

1. If $E\left|X_{i}\right|<\infty$ for $i=1, k$ then $\mu_{\mathbf{x}} \in R^{k}$.
2. The covariance between r.v.'s X_{i} and X_{j} is defined by

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=E\left(\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right)
$$

and so $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\operatorname{Cov}\left(X_{j}, X_{i}\right)$ (Cov is symmetric) and
$\operatorname{Cov}\left(X_{i}, X_{i}\right)=\operatorname{Var}\left(X_{i}\right)$ and so

$$
\Sigma_{\mathbf{x}}=\left(\operatorname{Cov}\left(X_{i}, X_{j}\right)\right)
$$

where we have written the matrix in terms of its (i, j)-th element.
3. If $\operatorname{Cov}\left(X_{i}, X_{j}\right)$ is finite for every i and j, then $\Sigma_{\mathbf{X}} \in R^{k \times k}$ and it is symmetric.
4. If $X=\left(X_{i j}\right) \in R^{k \times I}$ is a matrix of r.v.'s, then the expected value of this random matrix is defined to be $E(X)=\left(E\left(X_{i j}\right)\right)$ when each $E\left(X_{i j}\right)$ exists and $E(X) \in R^{k \times I}$ when each $E\left(X_{i j}\right)$ is finite.
5.

$$
\begin{aligned}
\Sigma_{\mathbf{x}} & =\operatorname{Var}(\mathbf{X}) \\
& =E\left(\begin{array}{ccc}
\left(X_{1}-\mu_{1}\right)^{2} & \cdots & \left(X_{1}-\mu_{2}\right)\left(X_{k}-\mu_{k}\right) \\
\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right) & \cdots & \left(X_{2}-\mu_{2}\right)\left(X_{k}-\mu_{k}\right) \\
\vdots & \vdots & \vdots \\
\left(X_{k}-\mu_{k}\right)\left(X_{1}-\mu_{1}\right) & \cdots & \left(X_{k}-\mu_{k}\right)^{2}
\end{array}\right) \\
& =E\left(\left(\mathbf{X}-\mu_{\mathbf{x}}\right)\left(\mathbf{X}-\mu_{\mathbf{x}}\right)^{\prime}\right)
\end{aligned}
$$

6. Exercise III.4.1 When X is a r.v. prove that $E\left(X^{2}\right)<\infty$ implies that $E(X)$ is finite. When X and Y are r.v.'s and $E\left(X^{2}\right)<\infty, E\left(Y^{2}\right)<\infty$ prove that $E(X Y)$ is finite. Use these results to prove that if $E\left(X_{i}^{2}\right)<\infty$ for all $i=1, \ldots, k$, then $\Sigma_{\mathbf{x}} \in R^{k \times k}$.
7. Exercise III.4.2 When r.v.'s X and Y satisfy $E\left(X^{2}\right)<\infty, E\left(Y^{2}\right)<\infty$ prove that $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$. Extend this result to random vectors \mathbf{X} to show that $\Sigma_{\mathbf{X}}=\operatorname{Var}(\mathbf{X})=E\left(\mathbf{X X}^{\prime}\right)-\mu_{\mathbf{X}} \mu_{\mathbf{X}}^{\prime}$.

Proposition III.4.1 Suppose $\mathbf{X} \in R^{k}$ is a random vector and $\mathbf{Y}=\mathbf{a}+C \mathbf{X}$ where $\mathbf{a} \in R^{\prime}, C \in R^{1 \times k}$ are constant.
(i) If $\mu_{\mathbf{x}} \in R^{k}$, then $\mu_{\mathbf{Y}}=\mathbf{a}+C \mu_{\mathbf{X}} \in R^{\prime}$.
(ii) If $\Sigma_{\mathbf{X}} \in R^{k \times k}$, then $\Sigma_{\mathbf{Y}}=C \Sigma_{\mathbf{X}} C^{\prime} \in R^{\prime \times 1}$.

Proof: (i) $\mu_{\mathbf{Y}}=E(\mathbf{Y})=E(\mathbf{a}+C \mathbf{X})=\mathbf{a}+\mathbf{C} E(\mathbf{X})$ since $E\left(a_{i}+\sum_{j=1}^{k} c_{i j} X_{j}\right)=a_{i}+\sum_{j=1}^{k} c_{i j} E\left(X_{j}\right)$ by the linearity of E (using the fact here that $\left.E\left(X_{j}\right) \in R^{1}\right)$ which establishes the result.
(ii)

$$
\begin{aligned}
\Sigma_{\mathbf{Y}} & =\operatorname{Var}(\mathbf{Y})=E\left(\left(\mathbf{Y}-\mu_{\mathbf{Y}}\right)\left(\mathbf{Y}-\mu_{\mathbf{Y}}\right)^{\prime}\right) \\
& =E\left(\left(\mathbf{a}+C \mathbf{X}-\left(\mathbf{a}+\mathbf{C} \mu_{\mathbf{x}}\right)\right)\left(\mathbf{a}+C \mathbf{X}-\left(\mathbf{a}+\mathbf{C} \mu_{\mathbf{x}}\right)\right)^{\prime}\right) \\
& =E\left(C\left(\mathbf{X}-\mu_{\mathbf{x}}\right)\left(\mathbf{X}-\mu_{\mathbf{x}}\right)^{\prime} C^{\prime}\right) \\
& =C E\left(\left(\mathbf{X}-\mu_{\mathbf{x}}\right)\left(\mathbf{X}-\mu_{\mathbf{x}}\right)^{\prime} C^{\prime}\right) \text { using linearity of } E \\
& =C E\left(\left(\mathbf{X}-\mu_{\mathbf{x}}\right)\left(\mathbf{X}-\mu_{\mathbf{x}}\right)^{\prime}\right) C^{\prime} \text { using linearity of } E \\
& =C \Sigma_{\mathbf{x}} C^{\prime} .
\end{aligned}
$$

Proposition III.4.2 (i) If X is a r.v. and $\operatorname{Var}(X)=0$, then

$$
P\left(X=\mu_{X}\right)=1
$$

so X has a probability distribution degenerate at a constant.
(ii) If $\mathbf{X} \in R^{k}$ is a random vector $\Sigma_{\mathbf{X}} \in R^{k \times k}$ and $\mathbf{c} \in R^{k}$ is constant then $\mathbf{c}^{\prime} \Sigma_{\mathbf{X}} \mathbf{c} \geq 0$. So any variance matrix is positive semidefinite (p.s.d.).
(iii) If $\mathbf{c}^{\prime} \Sigma_{\mathbf{X}} \mathbf{c}=0$ for some $\mathbf{c} \neq \mathbf{0}$, then the probability distribution of \mathbf{X} is concentrated on the affine plane $\mu_{\mathbf{x}}+L^{\perp}\{\mathbf{c}\}$.
Proof: (i) $\operatorname{Var}(X)=E\left(\left(X-\mu_{X}\right)^{2}\right)=0$ iff
$1=P\left(\left(X-\mu_{X}\right)^{2}=0\right)=P\left(X-\mu_{X}=0\right)=P\left(X=\mu_{X}\right)$.
(ii) Consider r.v. $Y=\mathbf{c}^{\prime} \mathbf{X}$. Then, by Prop. III.4.1(ii), $\operatorname{Var}(Y)=\mathbf{c}^{\prime} \Sigma_{\mathbf{X}} \mathbf{c} \geq 0$ since a variance is always nonnegative.
(iii) Suppose $\mathbf{c}^{\prime} \Sigma_{\mathbf{x}} \mathbf{c}=0$ and consider $Y=\mathbf{c}^{\prime} \mathbf{X}$. Then by (i) and (ii)

$$
\begin{aligned}
1 & =P\left(Y=\mu_{Y}\right)=P\left(\mathbf{c}^{\prime} \mathbf{X}=\mathbf{c}^{\prime} \boldsymbol{\mu}_{\mathbf{X}}\right)=P\left(\mathbf{c}^{\prime}\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)=0\right) \\
& =P\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}} \in L^{\perp}\{\mathbf{c}\}\right)=P_{\mathbf{X}}\left(\boldsymbol{\mu}_{\mathbf{X}}+\mathbf{L}^{\perp}\{\mathbf{c}\}\right) .
\end{aligned}
$$

note

- since $\Sigma_{\mathbf{X}} \in R^{k \times k}$ is p.s.d. then the spectral decomposition gives $\Sigma_{\mathbf{X}}=Q \Lambda Q^{\prime}$ where $Q=\left(\begin{array}{lll}\mathbf{q}_{1} & \cdots & \mathbf{q}_{k}\end{array}\right) \in R^{k \times k}$ is orthogonal and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k} \geq 0$
- if $\mathbf{c} \in R^{k}$ then $\mathbf{c}=Q \mathbf{a}=\sum_{i=1}^{k} a_{i} \mathbf{q}_{i}$ and so $0 \leq \mathbf{c}^{\prime} \Sigma \mathbf{c}=\sum_{i=1}^{k} \lambda_{i} a_{i}^{2}$ and $\mathbf{c}^{\prime} \Sigma \mathbf{c}=0$ iff $a_{i}=0$ whenever $\lambda_{i}>0$
- therefore, if $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{I}>0$ and $\lambda_{/+1}=\cdots=\lambda_{k}=0$, then $\mathbf{c}^{\prime} \Sigma \mathbf{c}=0$ iff $\mathbf{c} \in L\left\{\mathbf{q}_{/+1}, \ldots, \mathbf{q}_{k}\right\}$
- this implies $P_{\mathbf{x}}\left(\mu_{\mathbf{x}}+L\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{/}\right\}\right)=1$
- so $\Sigma_{\mathbf{x}}$ is p.d. iff $\lambda_{k}>0$ which holds iff $\Sigma_{\mathbf{x}}$ is invertible

Exercise III.4.3 Prove that, if $X \in R^{k \times I}$ is a random matrix such that each $E\left(X_{i j}\right)$ is finite and $A \in R^{p \times q}, B \in R^{p \times k}, C \in R^{1 \times q}$ are fixed, then $E(A+B X C)=A+B E(X) C$.

Example III.4.1 X $\sim N_{k}(\boldsymbol{\mu}, \Sigma)$

- consider first $\mathbf{Z} \sim N_{k}(\mathbf{0}, I)$ which has density

$$
(2 \pi)^{-k / 2} \exp \left(-\mathbf{z}^{\prime} \mathbf{z} / 2\right)=\prod_{i=1}^{k}(2 \pi)^{-1 / 2} \exp \left(-z_{i}^{2} / 2\right)
$$

and so $Z_{1}, \ldots, Z_{k} \stackrel{\text { i.i.d. }}{\sim} N(0,1)$ which implies $E\left(Z_{i}\right)=0, \operatorname{Var}\left(Z_{i}\right)=1$

- also, when $i \neq j$

$$
\begin{aligned}
& \operatorname{Cov}\left(Z_{i}, Z_{j}\right)=E\left(Z_{i} Z_{j}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{z_{i} z_{j}}{2 \pi} \exp \left(-\left(z_{i}^{2}+z_{j}^{2}\right) / 2\right) d z_{i} d z_{j} \\
= & \int_{-\infty}^{\infty} z_{i}(2 \pi)^{-1 / 2} \exp \left(-z_{i}^{2} / 2\right) d z_{i} \int_{-\infty}^{\infty} z_{j}(2 \pi)^{-1 / 2} \exp \left(-z_{j}^{2} / 2\right) d z_{j} \\
= & E\left(Z_{i}\right) E\left(Z_{j}\right)=0
\end{aligned}
$$

- so $E(\mathbf{Z})=\mathbf{0}, \operatorname{Var}(\mathbf{Z})=1$
- if $\Sigma=\Sigma^{1 / 2} \Sigma^{1 / 2}, \mathbf{Z} \sim N_{k}(\mathbf{0}, I)$ then $\mathbf{X}=\boldsymbol{\mu}+\Sigma^{1 / 2} \mathbf{Z} \sim N_{k}(\boldsymbol{\mu}, \Sigma)$ and
$E(\mathbf{X})=\mu+\Sigma^{1 / 2} E(\mathbf{Z})=\mu, \quad \operatorname{Var}(\mathbf{X})=\Sigma^{1 / 2} \operatorname{Var}(\mathbf{Z}) \Sigma^{1 / 2}=\Sigma^{1 / 2} \Sigma^{1 / 2}=\Sigma$

Exercise III.4.4 Suppose $\mathbf{X} \sim N_{k}(\boldsymbol{\mu}, \Sigma)$. Determine $E\left(\mathbf{X}^{\prime} \mathbf{X}\right)$.
Exercise III.4.5 Suppose $\mathbf{X} \sim \operatorname{multinomial}\left(n, p_{1}, \ldots, p_{k}\right)$. Determine $\mu_{\mathbf{X}}$ and $\Sigma_{\mathbf{x}}$.

Exercise III.4.6 The correlation between r.v.'s X and Y is defined by

$$
\rho_{X Y}=\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Sd}(X) \operatorname{Sd}(Y)}
$$

where $\operatorname{Sd}(X)=\sqrt{\operatorname{Var}(X)}$ is the standard deviation of X.
(i) What has to hold for $\rho_{X Y}$ to exist and provide sufficient conditions.
(ii) Prove that for constants a, b, c, d then

$$
\operatorname{Corr}(a+b X, c+d Y)=\operatorname{Corr}(X, Y)
$$

provided $b>0, d>0$. What happens when $b=0$? What happens when $b<0, d>0$ and when $b<0, d<0$?
(iii) Suppose $Y \stackrel{w p 1}{=} a+b X$. What is $\operatorname{Corr}(X, Y)$?
(iv) Suppose $X \sim U(0,1)$ and $Y=X^{2}$. Determine $\operatorname{Corr}(X, Y)$.
(v) Suppose $X \sim U(-1,1)$ and $Y=X^{2}$. Determine $\operatorname{Corr}(X, Y)$. Are X and Y independent?

III. 5 Expectations and Independence

- if we have two collections of r.v.'s $\left\{X_{s}: s \in S\right\},\left\{Y_{t}: t \in T\right\}$ then these collections are statistically independent if for any finite subsets $\left\{s_{1}, \ldots, s_{m}\right\} \subset S,\left\{t_{1}, \ldots, t_{n}\right\} \subset T$, the joint cdf satisfies

$$
\begin{aligned}
& F_{\left(X_{s_{1}}, \ldots, x_{s_{m}}, Y_{t_{1}}, \ldots, Y_{t_{n}}\right)}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) \\
= & F_{\left(X_{s_{1}}, \ldots, x_{s_{m}}\right)}\left(x_{1}, \ldots, x_{m}\right) F_{\left(Y_{t_{1}}, \ldots, Y_{t_{n}}\right)}\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

for all $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} \in R^{1}$

- recall that the Extension Thm then implies

$$
P_{\left(X_{s_{1}}, \ldots, X_{s_{m}}, Y_{t_{1}}, \ldots, Y_{t_{n}}\right)}\left(B_{1} \times B_{2}\right)=P_{\left(X_{s_{1}}, \ldots, X_{s_{m}}\right)}\left(B_{1}\right) P_{\left(Y_{t_{1}}, \ldots, Y_{t_{n}}\right)}\left(B_{2}\right)
$$

for any $B_{1} \in \mathcal{B}^{m}, B_{2} \in \mathcal{B}^{n}$

Proposition III.5.1 If $\mathbf{X} \in R^{k}$ and $\mathbf{Y} \in R^{\prime}$ are statistically independent independent random vectors and

$$
h_{1}:\left(R^{k}, \mathcal{B}^{k}\right) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right), h_{2}:\left(R^{\prime}, \mathcal{B}^{\prime}\right) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)
$$

then $h_{1}(\mathbf{X})$ and $h_{2}(\mathbf{Y})$ are statistically independent and when $E\left(h_{1}^{2}(\mathbf{X})\right)<\infty, E\left(h_{2}^{2}(\mathbf{Y})\right)<\infty$ then

$$
E\left(h_{1}(\mathbf{X}) h_{2}(\mathbf{Y})\right)=E\left(h_{1}(\mathbf{X})\right) E\left(h_{2}(\mathbf{Y})\right) .
$$

Proof: We have

$$
\begin{aligned}
& F_{\left(h_{1}(\mathbf{X}), h_{2}(\mathbf{Y})\right)}(x, y)=P\left(h_{1}(\mathbf{X}) \leq x, h_{2}(\mathbf{Y}) \leq y\right) \\
= & P\left(\mathbf{X} \in h_{1}^{-1}(-\infty, x], \mathbf{Y} \in h_{2}^{-1}(-\infty, y]\right) \\
= & P_{(\mathbf{X}, \mathbf{Y})}\left(h_{1}^{-1}(-\infty, x] \times h_{2}^{-1}(-\infty, y]\right) \\
= & P_{\mathbf{X}}\left(h_{1}^{-1}(-\infty, x]\right) P_{\mathbf{Y}}\left(h_{2}^{-1}(-\infty, y]\right)=F_{h_{1}(\mathbf{X})}(x) F_{h_{2}(\mathbf{Y})}(y)
\end{aligned}
$$

for every x and y so $h_{1}(\mathbf{X})$ and $h_{2}(\mathbf{Y})$ are statistically independent.
Suppose $h_{1}=\sum_{i} a_{i} I_{A_{i}}, h_{2}=\sum_{j} b_{j} l_{b_{j}}$ are simple functions. Then

$$
h_{1}(\mathbf{x}) h_{2}(\mathbf{y})=\sum_{i, j} a_{i} b_{j} I_{A_{i}}(\mathbf{x}) I_{B_{j}}(\mathbf{y})=\sum_{i, j} a_{i} b_{j} I_{A_{i} \times B_{j}}(\mathbf{x}, \mathbf{y})
$$

is also simple and

$$
\begin{aligned}
E\left(h_{1}(\mathbf{X}) h_{2}(\mathbf{Y})\right) & =\sum_{i, j} a_{i} b_{j} P_{(\mathbf{X}, \mathbf{Y})}\left(A_{i} \times B_{j}\right) \\
& =\sum_{i, j} a_{i} b_{j} P_{\mathbf{X}}\left(A_{i}\right) P_{\mathbf{Y}}\left(B_{j}\right) \\
& =\sum_{i} a_{i} P_{\mathbf{x}}\left(A_{i}\right) \sum_{j} b_{j} P_{\mathbf{Y}}\left(B_{j}\right) \\
& =E\left(h_{1}(\mathbf{X})\right) E\left(h_{2}(\mathbf{Y})\right)
\end{aligned}
$$

as required. The result then follows by proceeding to nonnegative h_{1}, h_{2} by limits and then to general $h_{1}=h_{1+}-h_{1-}, h_{2}=h_{2+}-h_{2-}$.

Corollary III.5.2 $\operatorname{Cov}\left(h_{1}(\mathbf{X}), h_{2}(\mathbf{Y})\right)=0$.
Proof: Exercise III.5.1

Exercise III.5.2 For random vectors $\mathbf{X} \in R^{k}$ and $\mathbf{Y} \in R^{\prime}$ define $\operatorname{Cov}(\mathbf{X}, \mathbf{Y})=E\left(\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{\mathbf{Y}}\right)^{\prime}\right)$ provided all the relevant expectations exist.
(i) Give conditions under which $\operatorname{Cov}(\mathbf{X}, \mathbf{Y}) \in R^{k \times I}$.
(ii) Assuming $\operatorname{Cov}(\mathbf{X}, \mathbf{Y}) \in R^{k \times I}$ and
$\mathbf{a} \in R^{p}, \mathbf{b} \in R^{q}, A \in R^{p \times k}, B \in R^{q \times I}$ are constant then determine $\operatorname{Cov}(\mathbf{a}+A \mathbf{X}, \mathbf{b}+B \mathbf{Y})$.
(iii) Assuming $\operatorname{Cov}(\mathbf{X}, \mathbf{Y}) \in R^{k \times I}$ and \mathbf{X} and \mathbf{Y} are statistically independent, then determine $\operatorname{Cov}(\mathbf{X}, \mathbf{Y})$.
Exercise III.5.3 For random vector $\mathbf{X} \in R^{k}$ with $\Sigma_{\mathbf{X}} \in R^{k \times k}$ the correlation matrix is defined by $\operatorname{Corr}(\mathbf{X})=R_{\mathbf{X}}=D_{\mathbf{X}}^{-1} \Sigma_{\mathbf{X}} D_{\mathbf{X}}^{-1}$ where

$$
D_{\mathbf{x}}=\operatorname{diag}\left(S d\left(X_{1}\right), \ldots, S d\left(X_{1}\right)\right)=\operatorname{diag}\left(\sqrt{\sigma_{11}}, \ldots, \sqrt{\sigma_{k k}}\right)
$$

(i) Show that the (i, j)-th element of $R_{\mathbf{X}}$ is $\operatorname{Corr}\left(X_{i}, X_{j}\right)$.
(ii) Suppose $\mathbf{Y}=D \mathbf{X}$ where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{k}\right)$ with $d_{i}>0$ for $i=1, \ldots, k$. Show $\operatorname{Corr}(\mathbf{Y})=\operatorname{Corr}(\mathbf{X})$.
(iii) Suppose in (ii) that D is not diagonal with positive diagonal, is it true that $\operatorname{Corr}(\mathbf{Y})=\operatorname{Corr}(\mathbf{X})$?

