Probability and Stochastic Processes I - Lecture 16

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

1 / 13

Michael Evans University of Toronto http://Probability and Stochastic Processes I - Lectu

III.4 Expectations for Random Vectors

Definition III.4.1 For random vector $\mathbf{X} \in R^k$, the *mean vector* of \mathbf{X} is

$$\mu_{\mathbf{X}} = E(\mathbf{X}) = (E(X_1), E(X_2), \dots, E(X_k))$$

= $(\mu_1, \mu_2, \dots, \mu_k)'$

provided each $E(X_i) = \mu_i$ exists. If each $E(X_i)$ is finite (so $E(\mathbf{X}) \in R^k$) then the *variance matrix* of **X** is given by

$$\Sigma_{\mathbf{X}} = Var(\mathbf{X})$$

$$= \begin{pmatrix} E((X_1 - \mu_1)^2) & \cdots & E((X_1 - \mu_1)(X_k - \mu_k)) \\ E((X_2 - \mu_2)(X_1 - \mu_1)) & \cdots & E((X_2 - \mu_2)(X_k - \mu_k)) \\ \vdots & \vdots & \vdots \\ E((X_k - \mu_k)(X_1 - \mu_1)) & \cdots & E(((X_k - \mu_k)^2) \end{pmatrix}$$

provided each $E\left((X_i - \mu_i)(X_j - \mu_j)\right)$ for $i \neq j$ exists.

notes

- 1. If $E|X_i| < \infty$ for i = 1, , k then $\mu_{\mathbf{X}} \in R^k$.
- 2. The covariance between r.v.'s X_i and X_j is defined by

$$Cov(X_i, X_j) = E\left((X_i - \mu_i)(X_j - \mu_j)\right)$$

and so $Cov(X_i, X_j) = Cov(X_j, X_i)$ (Cov is symmetric) and $Cov(X_i, X_i) = Var(X_i)$ and so

$$\Sigma_{\mathbf{X}} = (Cov(X_i, X_j))$$

where we have written the matrix in terms of its (i, j)-th element.

- 3. If $Cov(X_i, X_j)$ is finite for every *i* and *j*, then $\Sigma_{\mathbf{X}} \in \mathbb{R}^{k \times k}$ and it is symmetric.
- 4. If $X = (X_{ij}) \in \mathbb{R}^{k \times l}$ is a matrix of r.v.'s, then the expected value of this random matrix is defined to be $E(X) = (E(X_{ij}))$ when each $E(X_{ij})$ exists and $E(X) \in \mathbb{R}^{k \times l}$ when each $E(X_{ij})$ is finite.

$$\begin{split} \Sigma_{\mathbf{X}} &= Var(\mathbf{X}) \\ &= E \begin{pmatrix} (X_1 - \mu_1)^2 & \cdots & (X_1 - \mu_2)(X_k - \mu_k) \\ (X_2 - \mu_2)(X_1 - \mu_1) & \cdots & (X_2 - \mu_2)(X_k - \mu_k) \\ \vdots & \vdots & \vdots \\ (X_k - \mu_k)(X_1 - \mu_1) & \cdots & (X_k - \mu_k)^2 \end{pmatrix} \\ &= E \left((\mathbf{X} - \mu_{\mathbf{X}})(\mathbf{X} - \mu_{\mathbf{X}})' \right) \end{split}$$

6. **Exercise III.4.1** When X is a r.v. prove that $E(X^2) < \infty$ implies that E(X) is finite. When X and Y are r.v.'s and $E(X^2) < \infty$, $E(Y^2) < \infty$ prove that E(XY) is finite. Use these results to prove that if $E(X_i^2) < \infty$ for all i = 1, ..., k, then $\Sigma_{\mathbf{X}} \in \mathbb{R}^{k \times k}$.

7. Exercise III.4.2 When r.v.'s X and Y satisfy $E(X^2) < \infty$, $E(Y^2) < \infty$ prove that Cov(X, Y) = E(XY) - E(X)E(Y). Extend this result to random vectors X to show that $\Sigma_{\mathbf{X}} = Var(\mathbf{X}) = E(\mathbf{XX}') - \mu_{\mathbf{X}}\mu'_{\mathbf{X}}$.

Proposition III.4.1 Suppose $\mathbf{X} \in R^k$ is a random vector and $\mathbf{Y} = \mathbf{a} + C\mathbf{X}$ where $\mathbf{a} \in R^l$, $C \in R^{l \times k}$ are constant.

(i) If
$$\mu_{\mathbf{X}} \in \mathbb{R}^{k}$$
, then $\mu_{\mathbf{Y}} = \mathbf{a} + C\mu_{\mathbf{X}} \in \mathbb{R}^{l}$.
(ii) If $\Sigma_{\mathbf{X}} \in \mathbb{R}^{k \times k}$, then $\Sigma_{\mathbf{Y}} = C\Sigma_{\mathbf{X}}C' \in \mathbb{R}^{l \times l}$.
Proof: (i) $\mu_{\mathbf{Y}} = E(\mathbf{Y}) = E(\mathbf{a} + C\mathbf{X}) = \mathbf{a} + \mathbf{C}E(\mathbf{X})$ since
 $E(a_{i} + \sum_{j=1}^{k} c_{ij}X_{j}) = a_{i} + \sum_{j=1}^{k} c_{ij}E(X_{j})$ by the linearity of E (using the fact here that $E(X_{j}) \in \mathbb{R}^{1}$) which establishes the result.
(ii)

$$\begin{split} \Sigma_{\mathbf{Y}} &= Var(\mathbf{Y}) = E((\mathbf{Y} - \boldsymbol{\mu}_{\mathbf{Y}})(\mathbf{Y} - \boldsymbol{\mu}_{\mathbf{Y}})') \\ &= E((\mathbf{a} + C\mathbf{X} - (\mathbf{a} + \mathbf{C}\boldsymbol{\mu}_{\mathbf{X}}))(\mathbf{a} + C\mathbf{X} - (\mathbf{a} + \mathbf{C}\boldsymbol{\mu}_{\mathbf{X}}))') \\ &= E(C(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})'C') \\ &= CE((\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})'C') \text{ using linearity of } E \\ &= CE((\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})'C' \text{ using linearity of } E \\ &= C\Sigma_{\mathbf{X}}C'. \blacksquare \end{split}$$

Proposition III.4.2 (i) If X is a r.v. and Var(X) = 0, then

$$P(X = \mu_X) = 1$$

so X has a probability distribution degenerate at a constant.

(ii) If $\mathbf{X} \in \mathbb{R}^k$ is a random vector $\Sigma_{\mathbf{X}} \in \mathbb{R}^{k \times k}$ and $\mathbf{c} \in \mathbb{R}^k$ is constant then $\mathbf{c}' \Sigma_{\mathbf{X}} \mathbf{c} \geq 0$. So any variance matrix is *positive semidefinite* (p.s.d.).

(iii) If $\mathbf{c}' \Sigma_{\mathbf{X}} \mathbf{c} = 0$ for some $\mathbf{c} \neq \mathbf{0}$, then the probability distribution of \mathbf{X} is concentrated on the affine plane $\mu_{\mathbf{X}} + L^{\perp} \{ \mathbf{c} \}$.

Proof: (i)
$$Var(X) = E((X - \mu_X)^2) = 0$$
 iff
 $1 = P((X - \mu_X)^2 = 0) = P(X - \mu_X = 0) = P(X = \mu_X)$.
(ii) Consider r.v. $Y = \mathbf{c'X}$. Then, by Prop. III.4.1(ii),
 $Var(Y) = \mathbf{c'}\Sigma_{\mathbf{X}}\mathbf{c} \ge 0$ since a variance is always nonnegative.
(iii) Suppose $\mathbf{c'}\Sigma_{\mathbf{X}}\mathbf{c} = 0$ and consider $Y = \mathbf{c'X}$. Then by (i) and (ii)
 $1 = P(Y = \mu_Y) = P(\mathbf{c'X} = \mathbf{c'}\mu_{\mathbf{X}}) = P(\mathbf{c'}(\mathbf{X} - \mu_{\mathbf{X}}) = 0)$
 $= P(\mathbf{X} - \mu_{\mathbf{X}} \in L^{\perp}\{\mathbf{c}\}) = P_{\mathbf{X}}(\mu_{\mathbf{X}} + \mathbf{L}^{\perp}\{\mathbf{c}\})$.

note

- since $\Sigma_{\mathbf{X}} \in \mathbb{R}^{k \times k}$ is p.s.d. then the spectral decomposition gives $\Sigma_{\mathbf{X}} = Q \Lambda Q'$ where $Q = (\mathbf{q}_1 \cdots \mathbf{q}_k) \in \mathbb{R}^{k \times k}$ is orthogonal and $\Lambda = diag(\lambda_1, \dots, \lambda_k)$ with $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k \ge 0$

- if $\mathbf{c} \in \mathbb{R}^k$ then $\mathbf{c} = Q\mathbf{a} = \sum_{i=1}^k a_i \mathbf{q}_i$ and so $0 \leq \mathbf{c}' \Sigma \mathbf{c} = \sum_{i=1}^k \lambda_i a_i^2$ and $\mathbf{c}' \Sigma \mathbf{c} = 0$ iff $a_i = 0$ whenever $\lambda_i > 0$

- therefore, if $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_l > 0$ and $\lambda_{l+1} = \cdots = \lambda_k = 0$, then $\mathbf{c}' \Sigma \mathbf{c} = 0$ iff $\mathbf{c} \in L\{\mathbf{q}_{l+1}, \dots, \mathbf{q}_k\}$
- this implies $P_{\mathbf{X}}(\mu_{\mathbf{X}}+L\{\mathbf{q}_1,\ldots,\mathbf{q}_l\})=1$

- so $\Sigma_{\mathbf{X}}$ is p.d. iff $\lambda_k > 0$ which holds iff $\Sigma_{\mathbf{X}}$ is invertible

Exercise III.4.3 Prove that, if $X \in R^{k \times l}$ is a random matrix such that each $E(X_{ij})$ is finite and $A \in R^{p \times q}$, $B \in R^{p \times k}$, $C \in R^{l \times q}$ are fixed, then E(A + BXC) = A + BE(X)C.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example III.4.1 X ~ $N_k(\mu, \Sigma)$

- consider first $\mathbf{Z} \sim N_k(\mathbf{0}, I)$ which has density

$$(2\pi)^{-k/2} \exp(-\mathbf{z}'\mathbf{z}/2) = \prod_{i=1}^{k} (2\pi)^{-1/2} \exp(-z_i^2/2)$$

and so $Z_1, \ldots, Z_k \stackrel{i.i.d.}{\sim} N(0, 1)$ which implies $E(Z_i) = 0$, $Var(Z_i) = 1$ - also, when $i \neq j$

$$Cov(Z_i, Z_j) = E(Z_i Z_j) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{z_i z_j}{2\pi} \exp(-(z_i^2 + z_j^2)/2) \, dz_i \, dz_j$$

= $\int_{-\infty}^{\infty} z_i (2\pi)^{-1/2} \exp(-z_i^2/2) \, dz_i \int_{-\infty}^{\infty} z_j (2\pi)^{-1/2} \exp(-z_j^2/2) \, dz_j$
= $E(Z_i) E(Z_j) = 0$
- so $E(\mathbf{Z}) = \mathbf{0}, Var(\mathbf{Z}) = I$

- if $\Sigma = \Sigma^{1/2} \Sigma^{1/2}$, $\mathbf{Z} \sim N_k(\mathbf{0}, I)$ then $\mathbf{X} = \mu + \Sigma^{1/2} \mathbf{Z} \sim N_k(\mu, \Sigma)$ and

$$E(\mathbf{X}) = \mu + \Sigma^{1/2} E(\mathbf{Z}) = \mu$$
, $Var(\mathbf{X}) = \Sigma^{1/2} Var(\mathbf{Z}) \Sigma^{1/2} = \Sigma^{1/2} \Sigma^{1/2} = \Sigma^{1/2} \Sigma^{1/2}$

Exercise III.4.4 Suppose $\mathbf{X} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Determine $E(\mathbf{X}'\mathbf{X})$.

Exercise III.4.5 Suppose $X \sim \text{multinomial}(n, p_1, \dots, p_k)$. Determine μ_X and Σ_X .

Exercise III.4.6 The correlation between r.v.'s X and Y is defined by

$$\rho_{XY} = Corr(X, Y) = \frac{Cov(X, Y)}{Sd(X)Sd(Y)}$$

where $Sd(X) = \sqrt{Var(X)}$ is the standard deviation of X. (i) What has to hold for ρ_{XY} to exist and provide sufficient conditions. (ii) Prove that for constants *a*, *b*, *c*, *d* then

$$Corr(a + bX, c + dY) = Corr(X, Y)$$

provided b > 0, d > 0. What happens when b = 0? What happens when b < 0, d > 0 and when b < 0, d < 0?

(iii) Suppose
$$Y \stackrel{wp1}{=} a + bX$$
. What is $Corr(X, Y)$?

(iv) Suppose $X \sim U(0, 1)$ and $Y = X^2$. Determine Corr(X, Y).

(v) Suppose $X \sim U(-1, 1)$ and $Y = X^2$. Determine Corr(X, Y). Are X and Y independent?

- if we have two collections of r.v.'s $\{X_s : s \in S\}$, $\{Y_t : t \in T\}$ then these collections are statistically independent if for any finite subsets $\{s_1, \ldots, s_m\} \subset S$, $\{t_1, \ldots, t_n\} \subset T$, the joint cdf satisfies

$$F_{(X_{s_1},...,X_{s_m},Y_{t_1},...,Y_{t_n})}(x_1,\ldots,x_m,y_1,\ldots,y_n)$$

= $F_{(X_{s_1},...,X_{s_m})}(x_1,\ldots,x_m)F_{(Y_{t_1},...,Y_{t_n})}(y_1,\ldots,y_n)$

for all $x_1, \ldots, x_m, y_1, \ldots, y_n \in R^1$

- recall that the Extension Thm then implies

$$P_{(X_{s_1},...,X_{s_m},Y_{t_1},...,Y_{t_n})}(B_1 \times B_2) = P_{(X_{s_1},...,X_{s_m})}(B_1)P_{(Y_{t_1},...,Y_{t_n})}(B_2)$$

for any $B_1 \in \mathcal{B}^m$, $B_2 \in \mathcal{B}^n$

Proposition III.5.1 If $\mathbf{X} \in R^k$ and $\mathbf{Y} \in R^l$ are statistically independent independent random vectors and

$$h_1: (\mathbb{R}^k, \mathcal{B}^k) \to (\mathbb{R}^1, \mathcal{B}^1), h_2: (\mathbb{R}^l, \mathcal{B}^l) \to (\mathbb{R}^1, \mathcal{B}^1)$$

then $h_1(\mathbf{X})$ and $h_2(\mathbf{Y})$ are statistically independent and when $E(h_1^2(\mathbf{X})) < \infty$, $E(h_2^2(\mathbf{Y})) < \infty$ then

$$E(h_1(\mathbf{X})h_2(\mathbf{Y})) = E(h_1(\mathbf{X}))E(h_2(\mathbf{Y})).$$

Proof: We have

$$\begin{aligned} F_{(h_1(\mathbf{X}),h_2(\mathbf{Y}))}(x,y) &= P(h_1(\mathbf{X}) \le x, h_2(\mathbf{Y}) \le y) \\ &= P(\mathbf{X} \in h_1^{-1}(-\infty,x], \mathbf{Y} \in h_2^{-1}(-\infty,y]) \\ &= P_{(\mathbf{X},\mathbf{Y})}(h_1^{-1}(-\infty,x] \times h_2^{-1}(-\infty,y]) \\ &= P_{\mathbf{X}}(h_1^{-1}(-\infty,x])P_{\mathbf{Y}}(h_2^{-1}(-\infty,y]) = F_{h_1(\mathbf{X})}(x)F_{h_2(\mathbf{Y})}(y) \end{aligned}$$

for every x and y so $h_1(\mathbf{X})$ and $h_2(\mathbf{Y})$ are statistically independent. Suppose $h_1 = \sum_i a_i I_{A_i}$, $h_2 = \sum_j b_j I_{b_j}$ are simple functions. Then

$$h_1(\mathbf{x})h_2(\mathbf{y}) = \sum_{i,j} a_i b_j I_{\mathcal{A}_i}(\mathbf{x}) I_{\mathcal{B}_j}(\mathbf{y}) = \sum_{i,j} a_i b_j I_{\mathcal{A}_i imes \mathcal{B}_j}(\mathbf{x},\mathbf{y})$$

is also simple and

$$E(h_1(\mathbf{X})h_2(\mathbf{Y})) = \sum_{i,j} a_i b_j P_{(\mathbf{X},\mathbf{Y})}(A_i \times B_j)$$

$$= \sum_{i,j} a_i b_j P_{\mathbf{X}}(A_i) P_{\mathbf{Y}}(B_j)$$

$$= \sum_i a_i P_{\mathbf{X}}(A_i) \sum_j b_j P_{\mathbf{Y}}(B_j)$$

$$= E(h_1(\mathbf{X})) E(h_2(\mathbf{Y}))$$

as required. The result then follows by proceeding to nonnegative h_1 , h_2 by limits and then to general $h_1 = h_{1+} - h_{1-}$, $h_2 = h_{2+} - h_{2-}$.

Corollary III.5.2 $Cov(h_1(\mathbf{X}), h_2(\mathbf{Y})) = 0.$

Proof: Exercise III.5.1

Exercise III.5.2 For random vectors $\mathbf{X} \in \mathbb{R}^k$ and $\mathbf{Y} \in \mathbb{R}^l$ define $Cov(\mathbf{X}, \mathbf{Y}) = E((\mathbf{X} - \mu_{\mathbf{X}})(\mathbf{Y} - \mu_{\mathbf{Y}})')$ provided all the relevant expectations exist.

(i) Give conditions under which Cov(X, Y) ∈ R^{k×1}.
(ii) Assuming Cov(X, Y) ∈ R^{k×1} and
a ∈ R^p, b ∈ R^q, A ∈ R^{p×k}, B ∈ R^{q×1} are constant then determine Cov(a + AX, b + BY).

(iii) Assuming $Cov(\mathbf{X}, \mathbf{Y}) \in \mathbb{R}^{k \times l}$ and \mathbf{X} and \mathbf{Y} are statistically independent, then determine $Cov(\mathbf{X}, \mathbf{Y})$.

Exercise III.5.3 For random vector $\mathbf{X} \in R^k$ with $\Sigma_{\mathbf{X}} \in R^{k \times k}$ the *correlation matrix* is defined by $Corr(\mathbf{X}) = R_{\mathbf{X}} = D_{\mathbf{X}}^{-1} \Sigma_{\mathbf{X}} D_{\mathbf{X}}^{-1}$ where

$$D_{\mathbf{X}} = diag(Sd(X_1), \dots, Sd(X_1)) = diag(\sqrt{\sigma_{11}}, \dots, \sqrt{\sigma_{kk}}).$$

(i) Show that the (i, j)-th element of R_X is Corr(X_i, X_j).
(ii) Suppose Y = DX where D = diag(d₁,..., d_k) with d_i > 0 for i = 1,..., k. Show Corr(Y) = Corr(X).
(iii) Suppose in (ii) that D is not diagonal with positive diagonal, is it true that Corr(Y) = Corr(X)?