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III.4 Expectations for Random Vectors

Definition III.4.1 For random vector X ∈ Rk , the mean vector of X is

µX = E (X) =
(
E (X1), E (X2), . . . , E (Xk )

)′
=

(
µ1, µ2, . . . , µk

)′
provided each E (Xi ) = µi exists. If each E (Xi ) is finite (so E (X) ∈ Rk )
then the variance matrix of X is given by

ΣX = Var(X)

=


E
(
(X1 − µ1)

2
)

· · · E ((X1 − µ1)(Xk − µk ))
E ((X2 − µ2)(X1 − µ1)) · · · E ((X2 − µ2)(Xk − µk ))

...
...

...
E ((Xk − µk )(X1 − µ1)) · · · E

(
(Xk − µk )

2
)


provided each E

(
(Xi − µi )(Xj − µj )

)
for i 6= j exists. �
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notes

1. If E |Xi | < ∞ for i = 1, , k then µX ∈ Rk .
2. The covariance between r.v.’s Xi and Xj is defined by

Cov(Xi ,Xj ) = E
(
(Xi − µi )(Xj − µj )

)
and so Cov(Xi ,Xj ) = Cov(Xj ,Xi ) (Cov is symmetric) and
Cov(Xi ,Xi ) = Var(Xi ) and so

ΣX = (Cov(Xi ,Xj ))

where we have written the matrix in terms of its (i , j)-th element.

3. If Cov(Xi ,Xj ) is finite for every i and j , then ΣX ∈ Rk×k and it is
symmetric.

4. If X = (Xij ) ∈ Rk×l is a matrix of r.v.’s, then the expected value of
this random matrix is defined to be E (X ) = (E (Xij )) when each E (Xij )
exists and E (X ) ∈ Rk×l when each E (Xij ) is finite.
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5.

ΣX = Var(X)

= E


(X1 − µ1)

2 · · · (X1 − µ2)(Xk − µk )
(X2 − µ2)(X1 − µ1) · · · (X2 − µ2)(Xk − µk )

...
...

...
(Xk − µk )(X1 − µ1) · · · (Xk − µk )

2


= E

(
(X− µX)(X− µX)

′
)

6. Exercise III.4.1 When X is a r.v. prove that E (X 2) < ∞ implies that
E (X ) is finite. When X and Y are r.v.’s and E (X 2) < ∞,E (Y 2) < ∞
prove that E (XY ) is finite. Use these results to prove that if E (X 2i ) < ∞
for all i = 1, . . . , k, then ΣX ∈ Rk×k .
7. Exercise III.4.2 When r.v.’s X and Y satisfy E (X 2) < ∞,E (Y 2) < ∞
prove that Cov(X ,Y ) = E (XY )− E (X )E (Y ). Extend this result to
random vectors X to show that ΣX = Var(X) = E (XX′)− µXµ′X.
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Proposition III.4.1 Suppose X ∈ Rk is a random vector and Y = a+ CX
where a ∈R l ,C∈R l×k are constant.
(i) If µX ∈ Rk , then µY = a+ CµX ∈ R l .
(ii) If ΣX ∈ Rk×k , then ΣY = CΣXC ′ ∈ R l×l .
Proof: (i) µY = E (Y) = E (a+ CX) = a+CE (X) since
E (ai +∑k

j=1 cijXj ) = ai +∑k
j=1 cijE (Xj ) by the linearity of E (using the

fact here that E (Xj ) ∈ R1) which establishes the result.
(ii)

ΣY = Var(Y) = E ((Y− µY)(Y− µY)
′)

= E ((a+ CX− (a+CµX))(a+ CX− (a+CµX))
′)

= E (C (X− µX)(X− µX)
′C ′)

= CE ((X− µX)(X− µX)
′C ′) using linearity of E

= CE ((X− µX)(X− µX)
′)C ′ using linearity of E

= CΣXC ′. �
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Proposition III.4.2 (i) If X is a r.v. and Var(X ) = 0, then

P(X = µX ) = 1

so X has a probability distribution degenerate at a constant.

(ii) If X ∈ Rk is a random vector ΣX ∈ Rk×k and c ∈ Rk is constant then
c′ΣXc ≥ 0. So any variance matrix is positive semidefinite (p.s.d.).
(iii) If c′ΣXc = 0 for some c 6= 0, then the probability distribution of X is
concentrated on the affi ne plane µX + L

⊥{c}.
Proof: (i) Var(X ) = E ((X − µX )

2) = 0 iff
1 = P((X − µX )

2 = 0) = P(X − µX = 0) = P(X = µX ).

(ii) Consider r.v. Y = c′X. Then, by Prop. III.4.1(ii),
Var(Y ) = c′ΣXc ≥ 0 since a variance is always nonnegative.
(iii) Suppose c′ΣXc = 0 and consider Y = c′X. Then by (i) and (ii)

1 = P(Y = µY ) = P(c
′X = c′µX) = P(c

′(X− µX) = 0)

= P(X− µX ∈ L⊥{c}) = PX(µX + L⊥{c}). �
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note
- since ΣX ∈ Rk×k is p.s.d. then the spectral decomposition gives
ΣX = QΛQ ′ where Q = ( q1 · · · qk ) ∈ Rk×k is orthogonal and
Λ = diag(λ1, . . . ,λk ) with λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0
- if c ∈ Rk then c = Qa =∑k

i=1 aiqi and so 0 ≤ c′Σc =∑k
i=1 λia2i and

c′Σc = 0 iff ai = 0 whenever λi > 0

- therefore, if λ1 ≥ λ2 ≥ · · · ≥ λl > 0 and λl+1 = · · · = λk = 0, then
c′Σc = 0 iff c ∈L{ql+1, . . . ,qk}
- this implies PX(µX + L{q1, . . . ,ql}) = 1
- so ΣX is p.d. iff λk > 0 which holds iff ΣX is invertible

Exercise III.4.3 Prove that, if X ∈ Rk×l is a random matrix such that
each E (Xij ) is finite and A ∈ Rp×q ,B ∈ Rp×k ,C ∈ R l×q are fixed, then
E (A+ BXC ) = A+ BE (X )C .
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Example III.4.1 X ∼ Nk (µ,Σ)
- consider first Z ∼ Nk (0, I ) which has density

(2π)−k/2 exp(−z′z/2) =
k
∏
i=1
(2π)−1/2 exp(−z2i /2)

and so Z1, . . . ,Zk
i .i .d .∼ N(0, 1) which implies E (Zi ) = 0,Var(Zi ) = 1

- also, when i 6= j

Cov(Zi ,Zj ) = E (ZiZj ) =
∫ ∞

−∞

∫ ∞

−∞

zizj
2π

exp(−(z2i + z2j )/2) dzi dzj

=
∫ ∞

−∞
zi (2π)−1/2 exp(−z2i /2) dzi

∫ ∞

−∞
zj (2π)−1/2 exp(−z2j /2) dzj

= E (Zi )E (Zj ) = 0

- so E (Z) = 0,Var(Z) = I

- if Σ = Σ1/2Σ1/2,Z ∼ Nk (0, I ) then X = µ+ Σ1/2Z ∼ Nk (µ,Σ) and

E (X) = µ+Σ1/2E (Z) = µ, Var(X) = Σ1/2Var(Z)Σ1/2 = Σ1/2Σ1/2 = Σ
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Exercise III.4.4 Suppose X ∼ Nk (µ,Σ). Determine E (X′X).
Exercise III.4.5 Suppose X ∼ multinomial(n, p1, . . . , pk ). Determine µX
and ΣX.

Exercise III.4.6 The correlation between r.v.’s X and Y is defined by

ρXY = Corr(X ,Y ) =
Cov(X ,Y )
Sd(X )Sd(Y )

where Sd(X ) =
√
Var(X ) is the standard deviation of X .

(i) What has to hold for ρXY to exist and provide suffi cient conditions.
(ii) Prove that for constants a, b, c, d then

Corr(a+ bX , c + dY ) = Corr(X ,Y )

provided b > 0, d > 0. What happens when b = 0? What happens when
b < 0, d > 0 and when b < 0, d < 0?
(iii) Suppose Y

wp1
= a+ bX . What is Corr(X ,Y )?

(iv) Suppose X ∼ U(0, 1) and Y = X 2. Determine Corr(X ,Y ).
(v) Suppose X ∼ U(−1, 1) and Y = X 2. Determine Corr(X ,Y ). Are X
and Y independent?

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html ()Probability and Stochastic Processes I - Lecture 16 2023 9 / 13



III.5 Expectations and Independence

- if we have two collections of r.v.’s {Xs : s ∈ S}, {Yt : t ∈ T} then these
collections are statistically independent if for any finite subsets
{s1, . . . , sm} ⊂ S , {t1, . . . , tn} ⊂ T , the joint cdf satisfies

F(Xs1 ,...,Xsm ,Yt1 ,...,Ytn )(x1, . . . , xm , y1, . . . , yn)

= F(Xs1 ,...,Xsm )(x1, . . . , xm)F(Yt1 ,...,Ytn )(y1, . . . , yn)

for all x1, . . . , xm , y1, . . . , yn ∈ R1

- recall that the Extension Thm then implies

P(Xs1 ,...,Xsm ,Yt1 ,...,Ytn )(B1 × B2) = P(Xs1 ,...,Xsm )(B1)P(Yt1 ,...,Ytn )(B2)

for any B1 ∈ Bm ,B2 ∈ Bn
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Proposition III.5.1 If X ∈ Rk and Y ∈ R l are statistically independent
independent random vectors and

h1 : (Rk ,Bk )→ (R1,B1), h2 : (R l ,Bl )→ (R1,B1)
then h1(X) and h2(Y) are statistically independent and when
E (h21(X)) < ∞, E (h22(Y)) < ∞ then

E (h1(X)h2(Y)) = E (h1(X))E (h2(Y)).

Proof: We have

F(h1(X),h2(Y))(x , y) = P(h1(X) ≤ x , h2(Y) ≤ y)
= P(X ∈ h−11 (−∞, x ],Y ∈ h−12 (−∞, y ])
= P(X,Y)(h

−1
1 (−∞, x ]× h−12 (−∞, y ])

= PX(h
−1
1 (−∞, x ])PY(h−12 (−∞, y ]) = Fh1(X)(x)Fh2(Y)(y)

for every x and y so h1(X) and h2(Y) are statistically independent.

Suppose h1 = ∑i ai IAi , h2 = ∑j bj Ibj are simple functions. Then

h1(x)h2(y) = ∑
i ,j
aibj IAi (x)IBj (y) = ∑

i ,j
aibj IAi×Bj (x, y)
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is also simple and

E (h1(X)h2(Y)) = ∑
i ,j
aibjP(X,Y)(Ai × Bj )

= ∑
i ,j
aibjPX(Ai )PY(Bj )

= ∑
i
aiPX(Ai )∑

j
bjPY(Bj )

= E (h1(X))E (h2(Y))

as required. The result then follows by proceeding to nonnegative h1, h2 by
limits and then to general h1 = h1+ − h1−, h2 = h2+ − h2−. �
Corollary III.5.2 Cov(h1(X), h2(Y)) = 0.

Proof: Exercise III.5.1
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Exercise III.5.2 For random vectors X ∈ Rk and Y ∈ R l define
Cov(X,Y) = E ((X− µX)(Y− µY)

′) provided all the relevant
expectations exist.
(i) Give conditions under which Cov(X,Y) ∈ Rk×l .
(ii) Assuming Cov(X,Y) ∈ Rk×l and
a ∈ Rp ,b ∈ Rq ,A ∈ Rp×k ,B ∈ Rq×l are constant then determine
Cov(a+ AX,b+ BY).
(iii) Assuming Cov(X,Y) ∈ Rk×l and X and Y are statistically
independent, then determine Cov(X,Y).

Exercise III.5.3 For random vector X ∈ Rk with ΣX ∈ Rk×k the
correlation matrix is defined by Corr(X) = RX = D−1X ΣXD−1X where

DX = diag(Sd(X1), . . . , Sd(X1)) = diag(
√

σ11, . . . ,
√

σkk ).

(i) Show that the (i , j)-th element of RX is Corr(Xi ,Xj ).
(ii) Suppose Y = DX where D = diag(d1, . . . , dk ) with di > 0 for
i = 1, . . . , k. Show Corr(Y) = Corr(X).
(iii) Suppose in (ii) that D is not diagonal with positive diagonal, is it true
that Corr(Y) = Corr(X)?
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