Probability and Stochastic Processes I - Lecture 18

Michael Evans
University of Toronto
https://utstat.utoronto.ca/mikevans/stac62/staC622023.html

2023

II. 7 Inequalities for Expectations

- there are several important inequalities we need to know: Markov's inequality, Cauchy-Schwartz inequality and Jensen's inequality

Markov's Inequality

Proposition III.7.1 (Markov's Inequality) If X is a nonnegative r.v. and $x>0$, then

$$
P(X \geq x) \leq \frac{E(X)}{x}
$$

with equality iff $P(X=x)=1-P(X=0)$.
Proof: We have

$$
P(X \geq x)=E\left(I_{\{X \geq x\}}\right) \leq E\left(\frac{X}{x} I_{\{X \geq x\}}\right)=\frac{E\left(X I_{\{X \geq x\}}\right)}{x} \leq \frac{E(X)}{x}
$$

If $P(X=x)=1-P(X=0)$, then P_{X} is concentrated on $\{0, x\}$ and so $E(X)=x P(X=x)=x P(X \geq x)$. Conversely, if $E(X)=x P(X \geq x)$ at $x>0$, then

$$
0=E(X)-E\left(x I_{\{X \geq x\}}\right)=E\left(X I_{\{X<x\}}\right)+E\left((X-x) I_{\{X \geq x\}}\right)
$$

and since $X I_{\{X<x\}}$ and $(X-x) I_{\{X \geq x\}}$ are both nonnegative r.v.'s this implies

$$
E\left(X I_{\{X<x\}}\right)=E\left((X-x) I_{\{X \geq x\}}\right)=0
$$

which implies $1=P\left(X I_{\{x<x\}}=0\right)=P\left((X-x) I_{\{x \geq x\}}=0\right)$ which implies $P(0<X<x)=0$ and $P(X>x)=0$ which implies $P(X=x)=1-P(X=0)$.

- note - Markov's inequality gives bounds on tail probabilities of X

Exercise III.7.1 If X is a r.v., then determine an upper bound for $P(\exp (t X) \geq k)$ when $k>0$.

Exercise III.7.2 If X is a r.v. and $k>0$, then prove $P(|X| \geq k) \leq E(|X|) / k$ and also $P(|X| \geq k) \leq E\left(X^{2}\right) / k^{2}$. If $X \sim$ exponential(1) which inequality is sharper. What is the exact value of $P(X \geq 2)$ when $X \sim$ exponential(1) and compare this with the bounds.

Corollary III.7.2 (Chebyshev's Inequality) If X has mean μ and variance σ^{2}, then for $k>0$

$$
P(|X-\mu| \geq k \sigma) \leq 1 / k^{2}
$$

with equality iff $P(X \in\{\mu-k \sigma, \mu+k \sigma\})=1-P(X=\mu)$.
Proof: Since $|X-\mu|$ is nonnegative we can apply Markov and obtain
$P(|X-\mu| \geq k \sigma)=P\left((X-\mu)^{2} \geq k^{2} \sigma^{2}\right) \leq \frac{E\left((X-\mu)^{2}\right)}{k^{2} \sigma^{2}}=\frac{\sigma^{2}}{k^{2} \sigma^{2}}=\frac{1}{k^{2}}$ and the equality result follows as with Markov.

- note - $P(|X-\mu| \geq k \sigma)=P(X \geq \mu+k \sigma)+P(X \leq \mu-k \sigma)$ so

Chebyshev is a bound on two tail probabilities of X
Example III.7.1 5 sigma

- $P(|X-\mu| \geq 5 \sigma) \leq 1 / 25=0.04$ while if $X \sim N\left(\mu, \sigma^{2}\right)$, then
$P(|X-\mu| \geq 5 \sigma)=5.733031 e-07$

Corollary III.7.3 (Chernoff Bounds) If $E(\exp \{t X\})$ is finite for all $t \in(a, b)$ where $a<0<b$, then

$$
\begin{array}{lll}
P(X \geq x) \leq \inf _{t \in(0, b)}\left\{E\left(e^{t X}\right) e^{-t x}\right\} & \text { if } & x>0 \\
P(X \leq x) \leq \inf _{t \in(a, 0)}\left\{E\left(e^{t X}\right) e^{-t x}\right\} & \text { if } x<0
\end{array}
$$

Proof: When $x>0$, then for every $t \in(0, b)$, by Markov's inequality

$$
\begin{aligned}
P(X \geq x) & =P(t X \geq t x)=P(\exp \{t X\} \geq \exp \{t x\}) \\
& \leq E(\exp \{t X\}) / \exp \{t x\}
\end{aligned}
$$

When $x<0$, then for every $t \in(a, 0)$, by Markov's inequality

$$
\begin{aligned}
P(X \leq x) & =P(t X \geq t x)=P(\exp \{t X\} \geq \exp \{t x\}) \\
& \leq E(\exp \{t X\}) / \exp \{t x\}
\end{aligned}
$$

Example III.7.2 Standard Normal

- suppose $X \sim N(0,1)$ then

$$
E\left(e^{t X}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t x} e^{-x^{2} / 2} d x=\frac{e^{t^{2} / 2}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-(x-t)^{2} / 2} d x=e^{t^{2} / 2}
$$

so for $x>0$

$$
1-\Phi(x)=P(X \geq x) \leq \inf _{t>0} e^{t^{2} / 2-t x}=e^{-x^{2} / 2}
$$

since $t^{2} / 2-t x$ is minimized at $t=x$

- note - X_{+}has mean $E\left(X_{+}\right)=(2 \pi)^{-1 / 2} \int_{0}^{\infty} x e^{-x^{2} / 2} d x=(2 \pi)^{-1 / 2}$ so using Markov's inequality when $x>0$, then

$$
1-\Phi(x)=P(X \geq x)=P\left(X_{+} \geq x\right) \leq(2 \pi)^{-1 / 2} / x
$$

but $e^{-x^{2} / 2} /(1 / x)=x e^{-x^{2} / 2} \rightarrow 0$ as $x \rightarrow \infty$ so the Chernoff bound is better but even better bounds can be obtained \square

Cauchy-Schwartz Inequality

Proposition III.7.3 (Cauchy-Schwartz Inequality) If
$E\left(X^{2}\right)<\infty, E\left(Y^{2}\right)<\infty$, then

$$
|E(X Y)| \leq \sqrt{E\left(X^{2}\right)} \sqrt{E\left(Y^{2}\right)}
$$

with equality iff $Y=c X$ (or $X=c Y$) wp1 with $c=0$ when
$P(Y=0)=1(P(X=0)=1)$ and $c=E(X Y) / E\left(X^{2}\right)$ otherwise.
Proof: If $E\left(X^{2}\right)=0$, then $P(X=0)=1$ which implies $P(X Y=0)=1$ so $E(X Y)=0$ and $X=0 Y$ so the result follows. So assume hereafter that $E\left(X^{2}\right)>0, E\left(Y^{2}\right)>0$.
For any $c \in R^{1}$

$$
\begin{aligned}
& 0 \leq(Y-c X)^{2}=Y^{2}-2 c X Y+c^{2} X^{2} \text { which implies } \\
& 0 \leq E\left(Y^{2}\right)-2 c E(X Y)+c^{2} E\left(X^{2}\right)
\end{aligned}
$$

which is a convex parabola in c with minimum at $c=E(X Y) / E\left(X^{2}\right)$ so

$$
0 \leq E\left(Y^{2}\right)-2 \frac{(E(X Y))^{2}}{E\left(X^{2}\right)}+\frac{(E(X Y))^{2}}{E\left(X^{2}\right)}=E\left(Y^{2}\right)-\frac{(E(X Y))^{2}}{E\left(X^{2}\right)}
$$

which gives the inequality. Equality occurs iff, when $c=E(X Y) / E\left(X^{2}\right)$, $0=E\left((Y-c X)^{2}\right)$ which occurs iff

$$
1=P\left((Y-c X)^{2}=0\right)=P(Y-c X=0)=P(Y=c X) .
$$

Corollary III.7.4 (Correlation Inequality) If $0<\sigma_{X}^{2}<\infty, 0<\sigma_{Y}^{2}<\infty$, then

$$
-1 \leq \rho_{X Y}=\operatorname{Corr}(X, Y) \leq 1
$$

with equality iff $Y \stackrel{\text { wp1 }}{=} \mu_{Y}+\sigma_{Y}\left(X-\mu_{X}\right) / \sigma_{X}$ when $\rho_{X Y}=1$ and $Y \stackrel{\text { wp } 1}{=} \mu_{Y}-\sigma_{Y}\left(X-\mu_{X}\right) / \sigma_{X}$ when $\rho_{X Y}=-1$.
Proof: In CS inequality replace X by $\left(X-\mu_{X}\right) / \sigma_{X}$ and Y by $\left(Y-\mu_{Y}\right) / \sigma_{Y}$ so $E\left(\left(X-\mu_{X}\right)^{2} / \sigma_{X}^{2}\right)=E\left(\left(Y-\mu_{Y}\right)^{2} / \sigma_{Y}^{2}\right)=1$ and so

$$
\left|\rho_{X Y}\right|=\left|E\left(\frac{X-\mu_{X}}{\sigma_{X}}\right)\left(\frac{Y-\mu_{Y}}{\sigma_{Y}}\right)\right| \leq 1
$$

with equality iff

$$
\left(\frac{Y-\mu_{Y}}{\sigma_{Y}}\right) \stackrel{\text { wp1 }}{=} c\left(\frac{X-\mu_{X}}{\sigma_{X}}\right)
$$

where

$$
c=\frac{E\left(\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)\left(\frac{Y-\mu_{Y}}{\sigma_{Y}}\right)\right)}{E\left(\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}\right)}=\rho_{X Y}
$$

which implies

$$
Y \stackrel{\text { wp } 1}{=} \mu_{Y}+\sigma_{Y} \rho_{X Y}\left(\frac{X-\mu_{X}}{\sigma_{X}}\right)
$$

and $\rho_{X Y}= \pm 1$.
note - a measure of the total variation in Y is given by

$$
\operatorname{Var}(Y)=E\left(\left(Y-\mu_{Y}\right)^{2}\right)
$$

- if we approximate Y by $a+b X$ for some constants a and b then the amount of variation in Y that is not explained (the residual variation) by $a+b X$ is

$$
E\left((Y-a-b X)^{2}\right)
$$

Definition III.7.1 The best affine predictor (linear regression) of Y from X is given by $a+b X$ where a, b are constants that minimize $E\left((Y-a-b X)^{2}\right)$.

Exercise III.7.3 Assume $0<\sigma_{X}^{2}<\infty, 0<\sigma_{Y}^{2}<\infty$. Show that if a, b minimize $E\left((Y-a-b X)^{2}\right)$, then a_{*}, b_{*} with $a_{*}=a-\mu_{Y}+b \mu_{X}, b_{*}=b$ minimizes $E\left(\left(\left(Y-\mu_{Y}\right)-a_{*}-b_{*}\left(X-\mu_{X}\right)\right)^{2}\right)$ over all constants a_{*}, b_{*}.
Exercise III. 7.4 (i) Assume $\mu_{X}=\mu_{Y}=0$ and
$0<\sigma_{X}^{2}<\infty, 0<\sigma_{Y}^{2}<\infty$. For all constants a, b, and putting $c_{X Y}=\sigma_{Y} \rho_{X Y} / \sigma_{X}$, prove
$E\left(Y-c_{X Y} X\right)=0, \operatorname{Cov}\left(Y-c_{X Y} X, a+b X\right)=0$ and

$$
E\left((Y-a-b X)^{2}=\operatorname{Var}\left(Y-c_{X Y} X\right)+a^{2}+\left(b-c_{X Y}\right)^{2} \operatorname{Var}(X)\right.
$$

Use this to prove that $c_{X Y} X$ is the best affine predictor of Y from X.
(ii) Combine (i) and Exercise III. 7.3 to determine the best affine predictor of Y from X when the assumption of 0 means is not made.
(iii) Show that the proportion of the total variation in Y explained by the best affine predictor from X is given by $\rho_{X Y}^{2}$.
(iv) When

$$
\binom{X}{Y} \sim N_{2}\left(\binom{\mu_{X}}{\mu_{Y}},\left(\begin{array}{cc}
\sigma_{X}^{2} & \sigma_{X} \sigma_{Y} \rho_{X Y} \\
\sigma_{X} \sigma_{Y} \rho_{X Y} & \sigma_{Y}^{2}
\end{array}\right)\right)
$$

show that $E_{Y \mid X}(Y \mid x)$ equals the best affine predictor of Y from X.

