Probability and Stochastic Processes I - Lecture 19

Michael Evans
University of Toronto

http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

Jensen's Inequality

Definition III.7.2 A set $C \subset R^{k}$ is convex if whenever $\mathbf{x}_{1}, \mathbf{x}_{2} \in C$ and $\alpha \in[0,1]$, then $\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in C$. A function $f: C \rightarrow R^{1}$ is convex if C is convex and for every $\alpha \in[0,1]$, then

$$
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right)
$$

and f is concave if $f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \geq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right)$.

- $L\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left\{\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}: \alpha \in[0,1]\right\}$ is the line segment joining \mathbf{x}_{1} and \mathbf{x}_{2}
- if $f: C \rightarrow R^{1}$ is convex then $-f$ is concave and conversely
- fact: if $f: C \rightarrow R^{1}$ is defined on open convex $C \subset R^{k}$, then f is convex whenever the Hessian matrix

$$
\left(\frac{\partial^{2} f\left(x_{1}, \ldots, x_{k}\right)}{\partial x_{i} \partial x_{j}}\right) \in R^{k \times k}
$$

is positive semidefinite for every $\mathbf{x} \in C$

Exercise III. 7.5 (i) Prove the line segment $L\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ is convex. (ii) Prove $[\mathbf{a}, \mathbf{b}] \subset R^{k}$ is convex. What about $(\mathbf{a}, \mathbf{b}],(\mathbf{a}, \mathbf{b}),[\mathbf{a}, \mathbf{b})$?
(iii) Prove $B_{r}(\boldsymbol{\mu}) \subset R^{k}$ is convex.
(iv) Prove $E_{r}(\boldsymbol{\mu}, \Sigma)$ is convex (hint: use $E_{r}(\boldsymbol{\mu}, \Sigma)=\boldsymbol{\mu}+\Sigma^{1 / 2} B_{r}(\mathbf{0})$.
(v) Prove that the affine function $f: R^{k} \rightarrow R^{1}$ given by $f(\mathbf{x})=a+\mathbf{c}^{\prime} \mathbf{x}$ for constants $a \in R^{1}, \mathbf{c} \in R^{k}$ is convex on R^{k}.
(vi) Prove that $f(x)=-\log x$ is convex on $C=(0, \infty)$.
(vii) If $\Sigma \in R^{k \times k}$ is positive semidefinite, then prove $f(x)=\mathbf{x}^{\prime} \Sigma \mathbf{x}$ is convex on R^{k}.

Example III. 7.2 - suppose $P_{\mathbf{X}}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}\right)=1$ with $P_{\mathbf{X}}\left(\left\{\mathbf{x}_{1}\right\}\right)=\alpha_{1}$, $P_{\mathbf{X}}\left(\left\{\mathbf{x}_{2}\right\}\right)=1-\alpha_{1}$

- then $L\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ is convex and note $P_{\mathbf{x}}\left(L\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right)=1\left(L\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \mathcal{B}^{k}\right)$
- suppose $f: L\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \rightarrow R^{1}$ is convex
- then for this simple context Jensen's inequality is immediate

$$
E(f(\mathbf{X}))=\alpha_{1} f\left(\mathbf{x}_{1}\right)+\left(1-\alpha_{1}\right) f\left(\mathbf{x}_{2}\right) \geq f\left(\alpha_{1} \mathbf{x}_{1}+\left(1-\alpha_{1}\right) \mathbf{x}_{2}\right)=f(E(\mathbf{X}))
$$

- geometrically consider the line segment

$$
\left\{\alpha\left(\mathbf{x}_{1}, f\left(\mathbf{x}_{1}\right)\right)+(1-\alpha)\left(\mathbf{x}_{2}, f\left(\mathbf{x}_{2}\right)\right): \alpha \in[0,1]\right\}
$$

in R^{k+1} and convexity of f on the line segment implies the line segment lies above the graph

$$
\left\{\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}, f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right)\right): \alpha \in[0,1]\right\}
$$

and $E(\mathbf{X})=\alpha_{1} \mathbf{x}_{1}+\left(1-\alpha_{1}\right) \mathbf{x}_{2}$ gives $E(f(\mathbf{X})) \geq f(E(\mathbf{X})) \square$
Exercise III.7.6 Suppose $C_{1}, C_{2} \subset R^{k}$ are convex. Prove that $C_{1} \cap C_{2}$ is convex.

Exercise III.7.7 Suppose $C \subset R^{k}$ is convex and let
$C_{*}=\mathbf{a}+B C=\{\mathbf{y}=\mathbf{a}+B \mathbf{x}: \mathbf{x} \in C\}$. Prove that C_{*} is convex.
Exercise III.7.8 If C is a linear subspace of R^{k}, then C is convex.

Proposition III.7.5 (Supporting Hyperplane Theorem) If $C \subset R^{k}$ is convex and $\mathrm{x}_{0} \in R^{k}$ is not an interior point of C (there isn't a ball $B_{r}\left(\mathbf{x}_{0}\right) \subset C$ with $\left.r>0\right)$, then there exists $\mathbf{c} \in R^{k} \backslash\{\mathbf{0}\}$ such that $\mathbf{c}^{\prime} \mathbf{x} \geq \mathbf{c}^{\prime} \mathbf{x}_{0}$ for every $\mathbf{x} \in C$.
Proof: See a text on convex analysis.

- for a set $A \subset R^{k}$ it is always possible to find a set of the form $\left\{\mathbf{x} \in R^{k}: \mathbf{a}+B \mathbf{x}=\mathbf{0}\right\}$ for some $\mathbf{a} \in R^{\prime}, B \in R^{l \times k}$ for some $l \leq k$ s.t.
$A \subset\left\{\mathbf{x} \in R^{k}: \mathbf{a}+B \mathbf{x}=\mathbf{0}\right\}$
- e.g., take $\mathbf{a}=\mathbf{0} \in R^{k}, B=0 \in R^{1 \times k}$ so $\{\mathbf{x}: \mathbf{a}+B \mathbf{x}=\mathbf{0}\}=R^{k}$
- the set $\left\{\mathbf{x} \in R^{k}: \mathbf{a}+B \mathbf{x}=\mathbf{0}\right\}$ is called an affine subset of R^{k} and it has a dimension (point has dimension 0 , line has dimension $1, \ldots$, hyperplane has dimension $k-1, R^{k}$ has dimension k)
Definition III.7.3 If $A \subset R^{k}$ the affine dimension of A is the smallest dimension of an affine set containing A.

Proposition III.7.7 If $C \subset R^{k}$ is convex, $P_{\mathbf{X}}(C)=1$ and $E(\mathbf{X}) \in R^{k}$, then $E(\mathbf{X}) \in C$.
Proof: (Induction on the affine dimension of C.)
If the affine dim of C is 0 , then $C=\{\mathbf{x}\}$ and $E(\mathbf{X})=\mathbf{x} \in C$ and the result holds.
Assume wlog that $E(\mathbf{X})=\mathbf{0}$, else put $\mathbf{Y}=\mathbf{X}-E(\mathbf{X}), C_{*}=C-E(\mathbf{X})$ is convex (Exercise III.7.7) and note

$$
P_{\mathbf{Y}}\left(C_{*}\right)=P\left(\mathbf{Y} \in C_{*}\right)=P(\mathbf{X} \in C)=P_{\mathbf{X}}(C)=1
$$

and $E(\mathbf{X}) \in C$ iff $E(\mathbf{Y})=\mathbf{0} \in C_{*}$.
Now assume the result holds for affine $\operatorname{dim} C<k$.
Suppose $\mathbf{0} \notin C$, then the SHT gives $\mathbf{c} \in R^{k} \backslash\{\mathbf{0}\}$ s.t. $\mathbf{c}^{\prime} \mathbf{x} \geq \mathbf{c}^{\prime} \mathbf{0}=0$ for every $\mathbf{x} \in C$. This implies $P\left(\mathbf{c}^{\prime} \mathbf{X} \geq 0\right)=1$ (so $\mathbf{c}^{\prime} \mathbf{X}$ is a nonnegative r.v.) and since $E\left(\mathbf{c}^{\prime} \mathbf{X}\right)=\mathbf{c}^{\prime} E(\mathbf{X})=0$ then $P\left(\mathbf{c}^{\prime} \mathbf{X}=0\right)=1$. Therefore, $P\left(\mathbf{X} \in\left\{\mathbf{x}: \mathbf{c}^{\prime} \mathbf{x}=0\right\} \cap C\right)=1$ and $\left\{\mathbf{x}: \mathbf{c}^{\prime} \mathbf{x}=0\right\} \cap C$ is a convex set (Exercises III.7.8 and III.7.6) having affine dimension no greater than $k-1$. So by the inductive hypothesis $\mathbf{0} \in\left\{\mathbf{x}: \mathbf{c}^{\prime} \mathbf{x}=0\right\} \cap C$ which implies
$\mathbf{0} \in C$ which is a contradiction. This implies $E(\mathbf{X})=\mathbf{0} \in C$.

Proposition III.7.8 (Jensen's Inequality) If $C \subset R^{k}$ is convex, $P_{\mathbf{X}}(C)=1, E(\mathbf{X}) \in R^{k}$, and $f: C \rightarrow R^{1}$ is convex, then

$$
E(f(\mathbf{X})) \geq f(E(\mathbf{X}))
$$

Equality is obtained iff $f(\mathbf{x}) \stackrel{\text { wp } 1}{=} a+\mathbf{b}^{\prime} \mathbf{x}$ for constants a, \mathbf{b}.
Proof: (Induction on the affine dimension of C.)
If affine $\operatorname{dim} C$ is 0 , then $C=\{\mathbf{x}\}$ and $E(f(\mathbf{X}))=f(\mathbf{x})=f(E(\mathbf{X}))$ and $f(\mathbf{x}) \stackrel{w p 1}{=} f(\mathbf{x})+\mathbf{0}^{\prime} \mathbf{x}$ so the result holds.
Now assume the result holds for affine $\operatorname{dim} C<k$. Let

$$
S=\{(\mathbf{x}, y): \mathbf{x} \in C, y \geq f(\mathbf{x})\}
$$

note that $S \subset R^{k+1}$ is convex (Exercise III.7.9) and $(E(\mathbf{X}), f(E(\mathbf{X}))$) is a boundary point of S (not an interior point). Then by SHT there exists $\mathbf{c} \in R^{k+1} \backslash\{\mathbf{0}\}$ s.t. for every $\mathbf{z} \in S$
$\mathbf{c}^{\prime} \mathbf{z}=\sum_{i=1}^{k} c_{i} z_{i}+c_{k+1} z_{k+1} \geq \mathbf{c}^{\prime}\binom{E(\mathbf{X})}{f(E(\mathbf{X}))}=\sum_{i=1}^{k} c_{i} E\left(X_{i}\right)+c_{k+1} f(E(\mathbf{X}))$.

If $c_{k+1}<0$, then the inequality can be violated by taking z_{k+1} large so $c_{k+1} \geq 0$.

Case 1: $c_{k+1}>0$
Let

$$
Y=\sum_{i=1}^{k} c_{i}\left(X_{i}-E\left(X_{i}\right)\right)+c_{k+1}(f(\mathbf{X})-f(E(\mathbf{X}))
$$

and note that $P(Y \geq 0)=1$ so $0 \leq E(Y)=c_{k+1}(E(f(\mathbf{X}))-f(E(\mathbf{X}))$ which implies $E(f(\mathbf{X})) \geq f(E(\mathbf{X}))$. Also $E(f(\mathbf{X}))=f(E(\mathbf{X})$ iff $E(Y)=0$ which occurs iff $P(Y=0)=1$ and so

$$
\begin{aligned}
f(\mathbf{X}) & =f(E(\mathbf{X}))-\sum_{i=1}^{k} \frac{c_{i}}{c_{k+1}}\left(X_{i}-E\left(X_{i}\right)\right) \\
& =\left(f(E(\mathbf{X}))+\sum_{i=1}^{k} \frac{c_{i}}{c_{k+1}} E\left(X_{i}\right)\right)+\sum_{i=1}^{k}\left(-\frac{c_{i}}{c_{k+1}}\right) X_{i}
\end{aligned}
$$

which is of the required form.

Case 2: $c_{k+1}=0$
Then $Y=\sum_{i=1}^{k} c_{i}\left(X_{i}-E\left(X_{i}\right)\right)$ and since $P(Y \geq 0)=1$ with $E(Y)=0$, this implies $P(Y=0)=1$ which in turn implies

$$
P\left(\mathbf{X} \in\left\{\mathbf{x}: \mathbf{c}^{\prime} \mathbf{x}=\mathbf{c}^{\prime} E(\mathbf{X})\right\} \cap C\right)=1
$$

and $\left\{\mathbf{x}: \mathbf{c}^{\prime} \mathbf{x}=\mathbf{c}^{\prime} E(\mathbf{X})\right\} \cap C$ is a convex set of affine $\operatorname{dim}<k$ and so by the inductive hypothesis the result holds.

- $f: C \rightarrow R^{1}$ is concave and $P_{\mathbf{X}}(C)=1, E(\mathbf{X}) \in R^{k}$ then the concave version of Jensen says $E(f(\mathbf{X})) \leq f(E(\mathbf{X}))$

Definition III.7.4 Suppose P, Q are probability measures on (Ω, \mathcal{A}) with probability (density) functions p and q respectively. The Kullback-Liebler distance between P and Q is defined to be

$$
K L(P \| Q)=E_{P}\left(-\log \frac{q}{p}\right)=-\int_{\Omega} p(\omega) \log \frac{q(\omega)}{p(\omega)} v(d \omega)
$$

when $E_{P}(-\log q / p)$ exists, where v is counting (discrete case) or volume measure (abs. cont. case).

- $K L(P \| Q)$ serves as a distance measure between probability measures P and Q

Proposition III.7.9 When $E_{P}(-\log q / p)$ exists then $K L(P \| Q) \geq 0$ with equality iff $P=Q$.
Proof: Since $-\log x$ is convex on $(0, \infty)$ (Exercise III.7.5(vi)), applying Jensen gives

$$
\begin{aligned}
K L(P \| Q) & \geq-\log \left(E_{P}\left(\frac{q}{p}\right)\right)=-\log \left(\int_{\Omega} p(\omega) \frac{q(\omega)}{p(\omega)} v(d \omega)\right) \\
& =-\log \left(\int_{\Omega} q(\omega) v(d \omega)\right)=-\log 1=0
\end{aligned}
$$

Equality holds iff there exist a, b such that for every ω,

$$
\begin{equation*}
-\log \frac{q(\omega)}{p(\omega)} \stackrel{w p 1}{=} a+b \frac{q(\omega)}{p(\omega)} . \tag{}
\end{equation*}
$$

Then $\left(^{*}\right)$ holds when $p \stackrel{w p 1}{=} q$, and so $P=Q$, with $a=b=0$.
Otherwise. $\left(^{*}\right)$ implies $a=-b$ since $K L(P \| Q)=0$ implies $0=a+b$ by taking the expectation of both sides of $\left(^{*}\right)$ wrt P. This implies

$$
-\log \frac{q(\omega)}{p(\omega)} \stackrel{w p 1}{=} a\left(1-\frac{q(\omega)}{p(\omega)}\right) .
$$

Now $-\log x$ and $a(1-x)$ agree at $x=1$ and at most at one other point (draw the graphs). Let $A=\{\omega: q(\omega)=p(\omega)\}$. If $P(A)=1$ then $P=Q$. If $P(A)<1$, then on A^{c} we have $q(\omega)=r p(\omega)$ for some real number r. This implies $Q(A)=P(A), Q\left(A^{c}\right)=r P\left(A^{c}\right)=r Q\left(A^{c}\right)$ which implies $r=1$ and $p \stackrel{w p 1}{=} q$. \square

Exercise III.7.10 Suppose P is the $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ probability measure and Q is the $N\left(\mu_{2}, \sigma_{2}^{2}\right)$ probability measure. Compute $K L(P \| Q)$.
Exercise III.7.11 Does $K L(P \| Q)=K L(Q \| P)$?

