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Jensen’s Inequality

Definition III.7.2 A set C ⊂ Rk is convex if whenever x1, x2 ∈ C and
α ∈ [0, 1], then αx1 + (1− α)x2 ∈ C . A function f : C → R1 is convex if
C is convex and for every α ∈ [0, 1],then

f (αx1 + (1− α)x2) ≤ αf (x1) + (1− α)f (x2)

and f is concave if f (αx1 + (1− α)x2) ≥ αf (x1) + (1− α)f (x2). �
- L(x1, x2) = {αx1 + (1− α)x2 : α ∈ [0, 1]} is the line segment joining x1
and x2

- if f : C → R1 is convex then −f is concave and conversely
- fact: if f : C → R1 is defined on open convex C ⊂ Rk , then f is convex
whenever the Hessian matrix(

∂2f (x1, . . . , xk )
∂xi∂xj

)
∈ Rk×k

is positive semidefinite for every x ∈ C
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Exercise III.7.5 (i) Prove the line segment L(x1, x2) is convex.
(ii) Prove [a,b] ⊂ Rk is convex. What about (a,b], (a,b), [a,b)?
(iii) Prove Br (µ) ⊂ Rk is convex.
(iv) Prove Er (µ,Σ) is convex (hint: use Er (µ,Σ) = µ+ Σ1/2Br (0).
(v) Prove that the affi ne function f : Rk → R1 given by f (x) = a+ c′x
for constants a ∈ R1, c ∈ Rk is convex on Rk .
(vi) Prove that f (x) = − log x is convex on C = (0,∞).
(vii) If Σ ∈ Rk×k is positive semidefinite, then prove f (x) = x′Σx is
convex on Rk .

Example III.7.2 - suppose PX({x1, x2}) = 1 with PX({x1}) = α1,
PX({x2}) = 1− α1

- then L(x1, x2) is convex and note PX(L(x1, x2)) = 1 (L(x1, x2) ∈ Bk )
- suppose f : L(x1, x2)→ R1 is convex

- then for this simple context Jensen’s inequality is immediate

E (f (X)) = α1f (x1) + (1− α1)f (x2) ≥ f (α1x1 + (1− α1)x2) = f (E (X))
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- geometrically consider the line segment

{α(x1, f (x1)) + (1− α)(x2, f (x2)) : α ∈ [0, 1]}

in Rk+1 and convexity of f on the line segment implies the line segment
lies above the graph

{(αx1 + (1− α)x2, f (αx1 + (1− α)x2)) : α ∈ [0, 1]}

and E (X) = α1x1 + (1− α1)x2 gives E (f (X)) ≥ f (E (X)) �
Exercise III.7.6 Suppose C1,C2 ⊂ Rk are convex. Prove that C1 ∩ C2 is
convex.

Exercise III.7.7 Suppose C ⊂ Rk is convex and let
C∗ = a+ BC = {y = a+ Bx : x ∈ C}. Prove that C∗ is convex.
Exercise III.7.8 If C is a linear subspace of Rk , then C is convex.
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Proposition III.7.5 (Supporting Hyperplane Theorem) If C ⊂ Rk is
convex and x0 ∈ Rk is not an interior point of C (there isn’t a ball
Br (x0) ⊂ C with r > 0), then there exists c ∈ Rk\{0} such that
c′x ≥ c′x0 for every x ∈ C .
Proof: See a text on convex analysis.

- for a set A ⊂ Rk it is always possible to find a set of the form
{x ∈Rk : a+ Bx = 0} for some a ∈ R l ,B ∈ R l×k for some l ≤ k s.t.
A ⊂ {x ∈Rk : a+ Bx = 0}
- e.g., take a = 0 ∈ Rk ,B = 0 ∈ R1×k so {x : a+ Bx = 0} = Rk

- the set {x ∈Rk : a+ Bx = 0} is called an affi ne subset of Rk and it has
a dimension (point has dimension 0, line has dimension 1, ..., hyperplane
has dimension k − 1,Rk has dimension k)
Definition III.7.3 If A ⊂ Rk the affi ne dimension of A is the smallest
dimension of an affi ne set containing A.
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Proposition III.7.7 If C ⊂ Rk is convex, PX(C ) = 1 and E (X) ∈ Rk ,
then E (X) ∈ C .
Proof: (Induction on the affi ne dimension of C .)

If the affi ne dim of C is 0, then C = {x} and E (X) = x ∈ C and the
result holds.

Assume wlog that E (X) = 0, else put Y = X− E (X),C∗ = C − E (X) is
convex (Exercise III.7.7) and note

PY(C∗) = P(Y ∈ C∗) = P(X ∈ C ) = PX(C ) = 1
and E (X) ∈ C iff E (Y) = 0 ∈ C∗.
Now assume the result holds for affi ne dim C < k.

Suppose 0 /∈ C , then the SHT gives c ∈ Rk\{0} s.t. c′x ≥ c′0 = 0 for
every x ∈ C . This implies P(c′X ≥ 0) = 1 (so c′X is a nonnegative r.v.)
and since E (c′X) = c′E (X) = 0 then P(c′X = 0) = 1. Therefore,
P(X ∈ {x : c′x = 0} ∩ C ) = 1 and {x : c′x = 0} ∩ C is a convex set
(Exercises III.7.8 and III.7.6) having affi ne dimension no greater than
k − 1. So by the inductive hypothesis 0 ∈ {x : c′x = 0} ∩ C which implies
0 ∈ C which is a contradiction. This implies E (X) = 0 ∈ C . �
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Proposition III.7.8 (Jensen’s Inequality) If C ⊂ Rk is convex,
PX(C ) = 1,E (X) ∈ Rk , and f : C → R1 is convex, then

E (f (X)) ≥ f (E (X)).

Equality is obtained iff f (x)
wp1
= a+ b′x for constants a,b.

Proof: (Induction on the affi ne dimension of C .)

If affi ne dim C is 0, then C = {x} and E (f (X)) = f (x) = f (E (X)) and
f (x)

wp1
= f (x) + 0′x so the result holds.

Now assume the result holds for affi ne dim C < k. Let

S = {(x, y) : x ∈ C , y ≥ f (x)},

note that S ⊂ Rk+1 is convex (Exercise III.7.9) and (E (X), f (E (X))) is
a boundary point of S (not an interior point). Then by SHT there exists
c ∈ Rk+1\{0} s.t. for every z ∈ S

c′z =
k

∑
i=1
cizi + ck+1zk+1 ≥ c′

(
E (X)
f (E (X))

)
=

k

∑
i=1
ciE (Xi )+ ck+1f (E (X)).
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If ck+1 < 0, then the inequality can be violated by taking zk+1 large so
ck+1 ≥ 0.
Case 1: ck+1 > 0

Let

Y =
k

∑
i=1
ci (Xi − E (Xi )) + ck+1(f (X)− f (E (X))

and note that P(Y ≥ 0) = 1 so 0 ≤ E (Y ) = ck+1(E (f (X))− f (E (X))
which implies E (f (X)) ≥ f (E (X)). Also E (f (X)) = f (E (X) iff
E (Y ) = 0 which occurs iff P(Y = 0) = 1 and so

f (X) = f (E (X))−
k

∑
i=1

ci
ck+1

(Xi − E (Xi ))

=

(
f (E (X)) +

k

∑
i=1

ci
ck+1

E (Xi )

)
+

k

∑
i=1

(
− ci
ck+1

)
Xi

which is of the required form.
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Case 2: ck+1 = 0

Then Y = ∑k
i=1 ci (Xi − E (Xi )) and since P(Y ≥ 0) = 1 with E (Y ) = 0,

this implies P(Y = 0) = 1 which in turn implies

P(X ∈ {x : c′x = c′E (X)} ∩ C ) = 1

and {x : c′x = c′E (X)} ∩ C is a convex set of affi ne dim < k and so by
the inductive hypothesis the result holds. �
- f : C → R1 is concave and PX(C ) = 1,E (X) ∈ Rk then the concave
version of Jensen says E (f (X)) ≤ f (E (X))
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Definition III.7.4 Suppose P,Q are probability measures on (Ω,A) with
probability (density) functions p and q respectively. The Kullback-Liebler
distance between P and Q is defined to be

KL(P ||Q) = EP
(
− log q

p

)
= −

∫
Ω
p(ω) log

q(ω)
p(ω)

ν(dω)

when EP (− log q/p) exists, where ν is counting (discrete case) or volume
measure (abs. cont. case).

- KL(P ||Q) serves as a distance measure between probability measures P
and Q

Proposition III.7.9 When EP (− log q/p) exists then KL(P ||Q) ≥ 0
with equality iff P = Q.

Proof: Since − log x is convex on (0,∞) (Exercise III.7.5(vi)), applying
Jensen gives

KL(P ||Q) ≥ − log
(
EP

(
q
p

))
= − log

(∫
Ω
p(ω)

q(ω)
p(ω)

ν(dω)

)
= − log

(∫
Ω
q(ω) ν(dω)

)
= − log 1 = 0.
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Equality holds iff there exist a, b such that for every ω,

− log q(ω)
p(ω)

wp1
= a+ b

q(ω)
p(ω)

. (*)

Then (*) holds when p
wp1
= q, and so P = Q, with a = b = 0.

Otherwise. (*) implies a = −b since KL(P ||Q) = 0 implies 0 = a+ b by
taking the expectation of both sides of (*) wrt P. This implies

− log q(ω)
p(ω)

wp1
= a

(
1− q(ω)

p(ω)

)
.

Now − log x and a(1− x) agree at x = 1 and at most at one other point
(draw the graphs). Let A = {ω : q(ω) = p(ω)}. If P(A) = 1 then
P = Q. If P(A) < 1, then on Ac we have q(ω) = rp(ω) for some real
number r . This implies Q(A) = P(A),Q(Ac ) = rP(Ac ) = rQ(Ac ) which

implies r = 1 and p
wp1
= q. �

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html ()Probability and Stochastic Processes I - Lecture 19 2023 11 / 12



Exercise III.7.10 Suppose P is the N(µ1, σ
2
1) probability measure and Q

is the N(µ2, σ
2
2) probability measure. Compute KL(P ||Q).

Exercise III.7.11 Does KL(P ||Q) = KL(Q ||P)?
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