Probability and Stochastic Processes I - Lecture 19

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

1 / 12

Michael Evans University of Toronto http://Probability and Stochastic Processes I - Lectu

Jensen's Inequality

Definition III.7.2 A set $C \subset R^k$ is *convex* if whenever $\mathbf{x}_1, \mathbf{x}_2 \in C$ and $\alpha \in [0, 1]$, then $\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2 \in C$. A function $f : C \to R^1$ is *convex* if C is convex and for every $\alpha \in [0, 1]$, then

$$f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2)$$

and f is concave if $f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \ge \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$.

- $L(x_1, x_2) = \{ \alpha x_1 + (1 - \alpha) x_2 : \alpha \in [0, 1] \}$ is the *line segment* joining x_1 and x_2

- if $f: C \rightarrow R^1$ is convex then -f is concave and conversely

- **fact**: if $f : C \to R^1$ is defined on open convex $C \subset R^k$, then f is convex whenever the Hessian matrix

$$\left(\frac{\partial^2 f(x_1,\ldots,x_k)}{\partial x_i \partial x_j}\right) \in R^{k \times k}$$

is positive semidefinite for every $\mathbf{x} \in C$

Exercise III.7.5 (i) Prove the line segment $L(\mathbf{x}_1, \mathbf{x}_2)$ is convex. (ii) Prove $[\mathbf{a}, \mathbf{b}] \subset R^k$ is convex. What about $(\mathbf{a}, \mathbf{b}), (\mathbf{a}, \mathbf{b}), [\mathbf{a}, \mathbf{b})$? (iii) Prove $B_r(\boldsymbol{\mu}) \subset R^k$ is convex. (iv) Prove $E_r(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is convex (hint: use $E_r(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \boldsymbol{\mu} + \boldsymbol{\Sigma}^{1/2} B_r(\mathbf{0})$. (v) Prove that the affine function $f : R^k \to R^1$ given by $f(\mathbf{x}) = \mathbf{a} + \mathbf{c'x}$ for constants $\mathbf{a} \in R^1$, $\mathbf{c} \in R^k$ is convex on R^k . (vi) Prove that $f(x) = -\log x$ is convex on $C = (0, \infty)$. (vii) If $\boldsymbol{\Sigma} \in R^{k \times k}$ is positive semidefinite, then prove $f(x) = \mathbf{x'} \boldsymbol{\Sigma} \mathbf{x}$ is convex on R^k .

Example III.7.2 - suppose $P_{\mathbf{X}}({\mathbf{x}_1, \mathbf{x}_2}) = 1$ with $P_{\mathbf{X}}({\mathbf{x}_1}) = \alpha_1$, $P_{\mathbf{X}}({\mathbf{x}_2}) = 1 - \alpha_1$

- then $L(\mathbf{x}_1, \mathbf{x}_2)$ is convex and note $P_{\mathbf{X}}(L(\mathbf{x}_1, \mathbf{x}_2)) = 1$ $(L(\mathbf{x}_1, \mathbf{x}_2) \in \mathcal{B}^k)$
- suppose $f: L(\mathbf{x}_1, \mathbf{x}_2) \to R^1$ is convex
- then for this simple context Jensen's inequality is immediate

$$E(f(\mathbf{X})) = \alpha_1 f(\mathbf{x}_1) + (1 - \alpha_1) f(\mathbf{x}_2) \ge f(\alpha_1 \mathbf{x}_1 + (1 - \alpha_1) \mathbf{x}_2) = f(E(\mathbf{X}))$$

- geometrically consider the line segment

$$\{\alpha(\mathbf{x}_1, f(\mathbf{x}_1)) + (1 - \alpha)(\mathbf{x}_2, f(\mathbf{x}_2)) : \alpha \in [0, 1]\}$$

in \mathbb{R}^{k+1} and convexity of f on the line segment implies the line segment lies above the graph

$$\{(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2, f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2)) : \alpha \in [0, 1]\}$$

and $E(\mathbf{X}) = \alpha_1 \mathbf{x}_1 + (1 - \alpha_1) \mathbf{x}_2$ gives $E(f(\mathbf{X})) \ge f(E(\mathbf{X})) \blacksquare$

Exercise III.7.6 Suppose C_1 , $C_2 \subset R^k$ are convex. Prove that $C_1 \cap C_2$ is convex.

Exercise III.7.7 Suppose $C \subset R^k$ is convex and let $C_* = \mathbf{a} + BC = \{\mathbf{y} = \mathbf{a} + B\mathbf{x} : \mathbf{x} \in C\}$. Prove that C_* is convex.

Exercise III.7.8 If C is a linear subspace of R^k , then C is convex.

Proposition III.7.5 (Supporting Hyperplane Theorem) If $C \subset R^k$ is convex and $\mathbf{x}_0 \in R^k$ is not an interior point of C (there isn't a ball $B_r(\mathbf{x}_0) \subset C$ with r > 0), then there exists $\mathbf{c} \in R^k \setminus \{\mathbf{0}\}$ such that $\mathbf{c'x} \ge \mathbf{c'x}_0$ for every $\mathbf{x} \in C$. Proof: See a text on convex analysis.

- for a set $A \subset R^k$ it is always possible to find a set of the form $\{\mathbf{x} \in R^k : \mathbf{a} + B\mathbf{x} = \mathbf{0}\}$ for some $\mathbf{a} \in R^l$, $B \in R^{l \times k}$ for some $l \le k$ s.t. $A \subset \{\mathbf{x} \in R^k : \mathbf{a} + B\mathbf{x} = \mathbf{0}\}$

- e.g., take $\mathbf{a} = \mathbf{0} \in R^k$, $B = \mathbf{0} \in R^{1 imes k}$ so $\{\mathbf{x} : \mathbf{a} + B\mathbf{x} = \mathbf{0}\} = R^k$

- the set $\{\mathbf{x} \in \mathbb{R}^k : \mathbf{a} + B\mathbf{x} = \mathbf{0}\}$ is called an *affine subset* of \mathbb{R}^k and it has a dimension (point has dimension 0, line has dimension 1, ..., hyperplane has dimension k - 1, \mathbb{R}^k has dimension k)

Definition III.7.3 If $A \subset R^k$ the affine dimension of A is the smallest dimension of an affine set containing A.

Proposition III.7.7 If $C \subset R^k$ is convex, $P_{\mathbf{X}}(C) = 1$ and $E(\mathbf{X}) \in R^k$, then $E(\mathbf{X}) \in C$.

Proof: (Induction on the affine dimension of C.)

If the affine dim of C is 0, then $C = {x}$ and $E(X) = x \in C$ and the result holds.

Assume wlog that $E(\mathbf{X}) = \mathbf{0}$, else put $\mathbf{Y} = \mathbf{X} - E(\mathbf{X})$, $C_* = C - E(\mathbf{X})$ is convex (Exercise III.7.7) and note

$$P_{\mathbf{Y}}(C_*) = P(\mathbf{Y} \in C_*) = P(\mathbf{X} \in C) = P_{\mathbf{X}}(C) = 1$$

and $E(\mathbf{X}) \in C$ iff $E(\mathbf{Y}) = \mathbf{0} \in C_*$.

Now assume the result holds for affine dim C < k.

Suppose $\mathbf{0} \notin C$, then the SHT gives $\mathbf{c} \in R^k \setminus \{\mathbf{0}\}$ s.t. $\mathbf{c'x} \ge \mathbf{c'0} = 0$ for every $\mathbf{x} \in C$. This implies $P(\mathbf{c'X} \ge 0) = 1$ (so $\mathbf{c'X}$ is a nonnegative r.v.) and since $E(\mathbf{c'X}) = \mathbf{c'}E(\mathbf{X}) = 0$ then $P(\mathbf{c'X} = 0) = 1$. Therefore, $P(\mathbf{X} \in \{\mathbf{x} : \mathbf{c'x} = 0\} \cap C) = 1$ and $\{\mathbf{x} : \mathbf{c'x} = 0\} \cap C$ is a convex set (Exercises III.7.8 and III.7.6) having affine dimension no greater than k - 1. So by the inductive hypothesis $\mathbf{0} \in \{\mathbf{x} : \mathbf{c'x} = 0\} \cap C$ which implies $\mathbf{0} \in C$ which is a contradiction. This implies $E(\mathbf{X}) = \mathbf{0} \in C$. \blacksquare is a convex set (Michael Evens University of Torono http://Probability and Stochastic Processes 1-Lect) 202 6/12 **Proposition III.7.8** (Jensen's Inequality) If $C \subset R^k$ is convex, $P_{\mathbf{X}}(C) = 1, E(\mathbf{X}) \in R^k$, and $f : C \to R^1$ is convex, then $E(f(\mathbf{X})) > f(E(\mathbf{X})).$

Equality is obtained iff $f(\mathbf{x}) \stackrel{wp1}{=} \mathbf{a} + \mathbf{b}'\mathbf{x}$ for constants \mathbf{a}, \mathbf{b} .

Proof: (Induction on the affine dimension of C.)

If affine dim C is 0, then $C = \{\mathbf{x}\}$ and $E(f(\mathbf{X})) = f(\mathbf{x}) = f(E(\mathbf{X}))$ and $f(\mathbf{x}) \stackrel{wp1}{=} f(\mathbf{x}) + \mathbf{0}'\mathbf{x}$ so the result holds.

Now assume the result holds for affine dim C < k. Let

$$S = \{(\mathbf{x}, y) : \mathbf{x} \in C, y \ge f(\mathbf{x})\},\$$

note that $S \subset \mathbb{R}^{k+1}$ is convex (Exercise III.7.9) and $(E(\mathbf{X}), f(E(\mathbf{X})))$ is a boundary point of S (not an interior point). Then by SHT there exists $\mathbf{c} \in \mathbb{R}^{k+1} \setminus \{\mathbf{0}\}$ s.t. for every $\mathbf{z} \in S$

$$\mathbf{c}'\mathbf{z} = \sum_{i=1}^{k} c_i z_i + c_{k+1} z_{k+1} \ge \mathbf{c}' \begin{pmatrix} E(\mathbf{X}) \\ f(E(\mathbf{X})) \end{pmatrix} = \sum_{i=1}^{k} c_i E(X_i) + c_{k+1} f(E(\mathbf{X}))$$

If $c_{k+1} < 0$, then the inequality can be violated by taking z_{k+1} large so $c_{k+1} \ge 0$.

Case 1: $c_{k+1} > 0$

Let

$$Y = \sum_{i=1}^{k} c_i (X_i - E(X_i)) + c_{k+1} (f(\mathbf{X}) - f(E(\mathbf{X})))$$

and note that $P(Y \ge 0) = 1$ so $0 \le E(Y) = c_{k+1}(E(f(\mathbf{X})) - f(E(\mathbf{X})))$ which implies $E(f(\mathbf{X})) \ge f(E(\mathbf{X}))$. Also $E(f(\mathbf{X})) = f(E(\mathbf{X}))$ iff E(Y) = 0 which occurs iff P(Y = 0) = 1 and so

$$f(\mathbf{X}) = f(E(\mathbf{X})) - \sum_{i=1}^{k} \frac{c_i}{c_{k+1}} (X_i - E(X_i))$$

= $\left(f(E(\mathbf{X})) + \sum_{i=1}^{k} \frac{c_i}{c_{k+1}} E(X_i) \right) + \sum_{i=1}^{k} \left(-\frac{c_i}{c_{k+1}} \right) X_i$

which is of the required form.

Case 2: $c_{k+1} = 0$ Then $Y = \sum_{i=1}^{k} c_i (X_i - E(X_i))$ and since $P(Y \ge 0) = 1$ with E(Y) = 0, this implies P(Y = 0) = 1 which in turn implies

$$P(\mathbf{X} \in \{\mathbf{x} : \mathbf{c}'\mathbf{x} = \mathbf{c}'E(\mathbf{X})\} \cap C) = 1$$

and $\{\mathbf{x} : \mathbf{c}'\mathbf{x} = \mathbf{c}'E(\mathbf{X})\} \cap C$ is a convex set of affine dim < k and so by the inductive hypothesis the result holds.

- $f: C \to R^1$ is concave and $P_{\mathbf{X}}(C) = 1, E(\mathbf{X}) \in R^k$ then the concave version of Jensen says $E(f(\mathbf{X})) \leq f(E(\mathbf{X}))$

Definition III.7.4 Suppose *P*, *Q* are probability measures on (Ω, A) with probability (density) functions *p* and *q* respectively. The *Kullback-Liebler distance* between *P* and *Q* is defined to be

$$KL(P || Q) = E_P\left(-\log \frac{q}{p}\right) = -\int_{\Omega} p(\omega) \log \frac{q(\omega)}{p(\omega)} \nu(d\omega)$$

when $E_P(-\log q/p)$ exists, where ν is counting (discrete case) or volume measure (abs. cont. case).

- $\mathit{KL}(P \,||\, Q)$ serves as a distance measure between probability measures P and Q

Proposition III.7.9 When $E_P(-\log q/p)$ exists then $KL(P || Q) \ge 0$ with equality iff P = Q.

Proof: Since $-\log x$ is convex on $(0, \infty)$ (Exercise III.7.5(vi)), applying Jensen gives

$$\begin{aligned} \mathsf{KL}(P \mid\mid Q) &\geq -\log\left(E_P\left(\frac{q}{p}\right)\right) &= -\log\left(\int_{\Omega} p(\omega) \frac{q(\omega)}{p(\omega)} \nu(d\omega)\right) \\ &= -\log\left(\int_{\Omega} q(\omega) \nu(d\omega)\right) = -\log 1 = 0. \end{aligned}$$

Michael Evans University of Toronto http://Probability and Stochastic Processes I - Lectu

Equality holds iff there exist *a*, *b* such that for every ω ,

$$-\log \frac{q(\omega)}{p(\omega)} \stackrel{\text{wp1}}{=} a + b \frac{q(\omega)}{p(\omega)}.$$
 (*)

Then (*) holds when $p \stackrel{wp1}{=} q$, and so P = Q, with a = b = 0. Otherwise. (*) implies a = -b since KL(P || Q) = 0 implies 0 = a + b by taking the expectation of both sides of (*) wrt *P*. This implies

$$-\lograc{q(\omega)}{p(\omega)} \stackrel{\scriptscriptstyle{wp1}}{=} a\left(1-rac{q(\omega)}{p(\omega)}
ight)$$

Now $-\log x$ and a(1-x) agree at x = 1 and at most at one other point (draw the graphs). Let $A = \{\omega : q(\omega) = p(\omega)\}$. If P(A) = 1 then P = Q. If P(A) < 1, then on A^c we have $q(\omega) = rp(\omega)$ for some real number r. This implies Q(A) = P(A), $Q(A^c) = rP(A^c) = rQ(A^c)$ which implies r = 1 and $p \stackrel{wp1}{=} q$.

Exercise III.7.10 Suppose *P* is the $N(\mu_1, \sigma_1^2)$ probability measure and *Q* is the $N(\mu_2, \sigma_2^2)$ probability measure. Compute KL(P || Q).

Exercise III.7.11 Does KL(P || Q) = KL(Q || P)?