Probability and Stochastic Processes I Lecture 2

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

Michael Evans University of Toronto http://probability and Stochastic Processes I Lecture

I.4 Borel Sets

Proposition 1.4.1 If $\{A_{\lambda} : \lambda \in \Lambda\}$ is a family of σ -algebras on Ω , then $\bigcap_{\lambda \in \Lambda} A_{\lambda}$ is a σ -algebra on Ω .

Proof: We check that $\cap_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$ has all the necessary properties to be a σ -algebra.

(i) Since $\phi \in \mathcal{A}_{\lambda}$ for every λ it follows that $\phi \in \bigcap_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$. (ii) Suppose $A_1, A_2, \ldots \in \mathcal{A}_{\lambda}$ for every λ . Then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}_{\lambda}$ for every λ since \mathcal{A}_{λ} is a σ -algebra. This in turn implies that $\bigcup_{i=1}^{\infty} A_i \in \bigcap_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$. (iii) Suppose $A \in \mathcal{A}_{\lambda}$ for every λ and so $A^c \in \mathcal{A}_{\lambda}$ for every λ which implies $A^c \cap_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$. Therefore $\bigcap_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$.

Therefore $\cap_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$ is a σ -algebra on Ω .

Example 1.4.1 $\Omega = \{1, 2, 3, 4\}$

-
$$\mathcal{A}_1 = \{\phi, \{1, 2\}, \{3, 4\}, \Omega\}, \mathcal{A}_2 = \{\phi, \{1\}, \{2, 3, 4\}, \Omega\}$$

- $\mathcal{A}_1 \cap \mathcal{A}_2 = \{\phi, \Omega\}$ \blacksquare

- **note** - Λ does not have to be countable (can be placed in 1-1 correspondence with the natural numbers)

Definition 1.4.1 For any $C \subseteq 2^{\Omega}$ (C is a set consisting of subsets of Ω) the σ -algebra generated by C, denoted $\mathcal{A}(C)$, is the intersection of all σ -algebras containing C.

- clearly $\mathcal{A}(\mathcal{C})$ is the smallest σ -algebra on Ω that contains all the subsets in \mathcal{C} (any σ -algebra containing \mathcal{C} is in the intersection)

Example 1.4.2 $\Omega = \{1, 2, 3, 4\}$

- if
$$\mathcal{C}=\{\{1,2\}\}$$
, then $\mathcal{A}(\mathcal{C})=\{\phi,\{1,2\},\{3,4\},\Omega\}$

- if $\mathcal{C}=\{\{1\},\{2\}\},$ then

$$\mathcal{A}(\mathcal{C}) = \{\phi, \{1\}, \{2\}, \{1, 2\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \Omega\}$$

Exercise 1.4.1 If $\Omega = \{1, 2, 3, 4, 5\}$ and $C = \{\{1, 2\}, \{3, 4\}, \{3, 4, 5\}\}$ what is $\mathcal{A}(C)$?

- the Borel sets \mathcal{B}^k is the most commonly used σ -algebra when $\Omega= \mathcal{R}^k$

Definition 1.4.2 The *Borel sets* \mathcal{B}^k is the smallest σ -algebra on \mathbb{R}^k that contains all rectangles of the form

$$\begin{aligned} (\mathbf{a}, \mathbf{b}] &= X_{i=1}^{k} (a_{i}, b_{i}] = (a_{1}, b_{1}] \times \cdots \times (a_{k}, b_{k}] \\ &= \{ (x_{1}, \dots, x_{k}) : a_{i} < x_{i} \leq b_{i} \} \end{aligned}$$

where $\mathbf{a} = (a_1, \ldots, a_k)'$, $\mathbf{b} = (b_1, \ldots, b_k)' \in R^k$.

- note - elements of R^k will be written as columns and I denotes transpose - since 2^{R^k} contains all such rectangles this proves $\mathcal{B}^k \neq \phi$ - **fact:** $\mathcal{B}^k \neq 2^{R^k}$, namely, there is a subset $A \subseteq R^k$ and A is not a Borel set

Exercise 1.4.3 A rectangle in \mathbb{R}^1 is just an interval such as (a, b]. Prove that $\{a\} \in \mathcal{B}^1$ for all $a \in \mathbb{R}^1$ (consider the intersection of intervals (a - 1/n, a]). Prove that $[a, b], (a, b), [a, b), (-\infty, b], (a, \infty) \in \mathcal{B}^1$ for all $a, b \in \mathbb{R}^1$.

Exercise 1.4.4 For $\mathbf{a}, \mathbf{b} \in R^2$ prove that $\{\mathbf{a}\}, (\mathbf{a}, \mathbf{b}), [\mathbf{a}, \mathbf{b}), [\mathbf{a}, \mathbf{b}], (\infty, \mathbf{b}] \in \mathcal{B}^2$ and also $(a_1, b_1] \times [a_2, b_2) \in \mathcal{B}^2$.

- loosely speaking any set you can define explicitly is a Borel set
- for example, a *ball* of radius r and centered at \mathbf{x}_0 , namely,

$$B_r(\mathbf{x}_0) = \{\mathbf{x} : (\mathbf{x} - \mathbf{x}_0)'(\mathbf{x} - \mathbf{x}_0) = \sum_{i=1}^k (x_i - x_{0i})^2 \le r^2\} \in \mathcal{B}^k$$

and a *sphere* of radius r and centered at \mathbf{x}_0 , namely,

$$S_r(\mathbf{x}_0) = \{\mathbf{x} : (\mathbf{x} - \mathbf{x}_0)'(\mathbf{x} - \mathbf{x}_0) = r^2\} \in \mathcal{B}^k$$

- also, (nice) transformations of Borel sets are typically Borel sets
- for example, let

$$A = \begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \dots & a_{kk} \end{pmatrix} = (a_{ij}) \in R^{k \times k}$$

be an invertible $k \times k$ matrix and $\mathbf{b} \in R^k$

Michael Evans University of Toronto http://Probability and Stochastic Processes I Lecture

- define a new set

$$\begin{aligned} AB_r(\mathbf{x}_0) + \mathbf{b} &= \{\mathbf{y} : \mathbf{y} = A\mathbf{x} + \mathbf{b} \text{ for some } \mathbf{x} \in B_r(\mathbf{x}_0)\} \\ &= \{\mathbf{y} : (A^{-1}(\mathbf{y} - \mathbf{b}) - \mathbf{x}_0)'(A^{-1}(\mathbf{y} - \mathbf{b}) - \mathbf{x}_0) \le r^2\} \\ &= \{\mathbf{y} : (\mathbf{y} - \mathbf{b} - A\mathbf{x}_0)'(A^{-1})'A^{-1}(\mathbf{y} - \mathbf{b} - A\mathbf{x}_0) \le r^2\} \\ &= \{\mathbf{y} : (\mathbf{y} - \boldsymbol{\mu})'\Sigma^{-1}(\mathbf{y} - \boldsymbol{\mu}) \le r^2\} \\ &= E_r(\boldsymbol{\mu}, \Sigma) \in \mathcal{B}^k \end{aligned}$$

where $\boldsymbol{\mu} = A \mathbf{x}_0 + \mathbf{b}$ and $\boldsymbol{\Sigma} = ((A^{-1})' A^{-1})^{-1} = A A'$

- $E_r(\mu, \Sigma)$ is the *ellipsoidal region* with center at μ and axes and orientation determined by Σ and r

- note that

$$\Sigma \in \mathbb{R}^{k \times k}$$
 is symmetric since $\Sigma' = (AA')' = (A')'A' = AA' = \Sigma$,
 Σ is invertible since $((A^{-1})'A^{-1})\Sigma = ((A^{-1})'A^{-1})AA' = I$ so
 $\Sigma^{-1} = (A^{-1})'A^{-1}$

 Σ is *positive definite* since for any $\mathbf{w} \in R^k$ then

$$\mathbf{w}' \Sigma \mathbf{w} = \mathbf{w}' A A' \mathbf{w} = ||A' \mathbf{w}||^2 \ge 0$$

and is 0 only when $\mathbf{w} = \mathbf{0}$ since A is invertible which implies A' is invertible Exercise 1.4.5 Suppose

$$A=\left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight)$$

and $\mathbf{x}_0 = (0, 0)'$, $\mathbf{b} = (1, 1)'$. Write out $E_{3/2}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ in terms of an inequality that the coordinates y_1 and y_2 have to satisfy.

Example 1.4.3 Uniform probability measure on $[0, 1]^k$

- suppose $\Omega = [0,1]^k = [\mathbf{0},\mathbf{1}]$ where $\mathbf{0} = (0,\ldots,0)', \mathbf{1} = (1,\ldots,1)' \in R^k$

- for $[a, b] \subseteq [0, 1]$ define $P([a, b]) = \prod_{i=1}^{k} (b_i - a_i)$ = the volume of the *k*-cell

- $P([\mathbf{0},\mathbf{1}]) = \prod_{i=1}^k (1-0) = 1$ and volume is additive

- fact: there is a unique probability measure P on the Borel subsets of [0, 1] that agrees with volume measure on the k-cells

- the Borel subsets of $[\mathbf{0},\mathbf{1}]$ are given by $\mathcal{B}^k\cap [\mathbf{0},\mathbf{1}]$

- this *P* is called the uniform probability measure on [0, 1] and $([0, 1], B^k \cap [0, 1], P)$ is the uniform probability model on [0, 1]

- note that $P(\{\mathbf{a}\}])=P([\mathbf{a},\mathbf{a}])=\mathbf{0}$ for every $\mathbf{a}\in\![\mathbf{0},\mathbf{1}]$

< 個 → < 注 → < 注 → □ 注

- this is an example of a continuous probability measure but recall this is an approximation to a discrete probability measure on a large (finite) number of equispaced points in [0, 1]

Exercise 1.4.6 Define a uniform probability measure on $[\mathbf{a}, \mathbf{b}] \subseteq R^k$ when $a_i \leq b_i$ for i = 1, ..., k.