Probability and Stochastic Processes I Lecture 2

Michael Evans
University of Toronto
http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

I. 4 Borel Sets

Proposition 1.4.1 If $\left\{\mathcal{A}_{\lambda}: \lambda \in \Lambda\right\}$ is a family of σ-algebras on Ω, then $\cap_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$ is a σ-algebra on Ω.
Proof: We check that $\cap_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$ has all the necessary properties to be a σ-algebra.
(i) Since $\phi \in \mathcal{A}_{\lambda}$ for every λ it follows that $\phi \in \cap_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$.
(ii) Suppose $A_{1}, A_{2}, \ldots \in \mathcal{A}_{\lambda}$ for every λ. Then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{A}_{\lambda}$ for every λ since \mathcal{A}_{λ} is a σ-algebra. This in turn implies that $\cup_{i=1}^{\infty} A_{i} \in \cap_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$. (iii) Suppose $A \in \mathcal{A}_{\lambda}$ for every λ and so $A^{c} \in \mathcal{A}_{\lambda}$ for every λ which implies $A^{c} \cap_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$.
Therefore $\cap_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$ is a σ-algebra on Ω. \square
Example 1.4.1 $\Omega=\{1,2,3,4\}$

- $\mathcal{A}_{1}=\{\phi,\{1,2\},\{3,4\}, \Omega\}, \mathcal{A}_{2}=\{\phi,\{1\},\{2,3,4\}, \Omega\}$
- $\mathcal{A}_{1} \cap \mathcal{A}_{2}=\{\phi, \Omega\} \square$
- note - Λ does not have to be countable (can be placed in 1-1 correspondence with the natural numbers)

Definition 1.4.1 For any $\mathcal{C} \subseteq 2^{\Omega}(\mathcal{C}$ is a set consisting of subsets of $\Omega)$ the σ-algebra generated by \mathcal{C}, denoted $\mathcal{A}(\mathcal{C})$, is the intersection of all σ-algebras containing \mathcal{C}.

- clearly $\mathcal{A}(\mathcal{C})$ is the smallest σ-algebra on Ω that contains all the subsets in \mathcal{C} (any σ-algebra containing \mathcal{C} is in the intersection)

Example 1.4.2 $\Omega=\{1,2,3,4\}$

- if $\mathcal{C}=\{\{1,2\}\}$, then $\mathcal{A}(\mathcal{C})=\{\phi,\{1,2\},\{3,4\}, \Omega\}$
- if $\mathcal{C}=\{\{1\},\{2\}\}$, then

$$
\mathcal{A}(\mathcal{C})=\{\phi,\{1\},\{2\},\{1,2\},\{3,4\},\{1,3,4\},\{2,3,4\}, \Omega\}
$$

Exercise 1.4.1 If $\Omega=\{1,2,3,4,5\}$ and $\mathcal{C}=\{\{1,2\},\{3,4\},\{3,4,5\}\}$ what is $\mathcal{A}(\mathcal{C})$?

- the Borel sets \mathcal{B}^{k} is the most commonly used σ-algebra when $\Omega=R^{k}$

Definition 1.4.2 The Borel sets \mathcal{B}^{k} is the smallest σ-algebra on R^{k} that contains all rectangles of the form

$$
\begin{aligned}
(\mathbf{a}, \mathbf{b}] & =X_{i=1}^{k}\left(a_{i}, b_{i}\right]=\left(a_{1}, b_{1}\right] \times \cdots \times\left(a_{k}, b_{k}\right] \\
& =\left\{\left(x_{1}, \ldots, x_{k}\right): a_{i}<x_{i} \leq b_{i}\right\}
\end{aligned}
$$

where $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)^{\prime}, \mathbf{b}=\left(b_{1}, \ldots, b_{k}\right)^{\prime} \in R^{k}$.

- note - elements of R^{k} will be written as columns and $/$ denotes transpose
- since $2^{R^{k}}$ contains all such rectangles this proves $\mathcal{B}^{k} \neq \phi$
- fact: $\mathcal{B}^{k} \neq 2^{R^{k}}$, namely, there is a subset $A \subseteq R^{k}$ and A is not a Borel set

Exercise 1.4.3 A rectangle in R^{1} is just an interval such as $(a, b]$. Prove that $\{a\} \in \mathcal{B}^{1}$ for all $a \in R^{1}$ (consider the intersection of intervals $(a-1 / n, a])$. Prove that $[a, b],(a, b),[a, b),(-\infty, b],(a, \infty) \in \mathcal{B}^{1}$ for all $a, b \in R^{1}$.

Exercise 1.4.4 For $\mathbf{a}, \mathbf{b} \in R^{2}$ prove that $\{\mathbf{a}\},(\mathbf{a}, \mathbf{b}),[\mathbf{a}, \mathbf{b}),[\mathbf{a}, \mathbf{b}],(\infty, \mathbf{b}] \in$ \mathcal{B}^{2} and also $\left(a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right) \in \mathcal{B}^{2}$.

- loosely speaking any set you can define explicitly is a Borel set
- for example, a ball of radius r and centered at \mathbf{x}_{0}, namely,

$$
B_{r}\left(\mathbf{x}_{0}\right)=\left\{\mathbf{x}:\left(\mathbf{x}-\mathbf{x}_{0}\right)^{\prime}\left(\mathbf{x}-\mathbf{x}_{0}\right)=\sum_{i=1}^{k}\left(x_{i}-x_{0 i}\right)^{2} \leq r^{2}\right\} \in \mathcal{B}^{k}
$$

and a sphere of radius r and centered at \mathbf{x}_{0}, namely,

$$
S_{r}\left(\mathbf{x}_{0}\right)=\left\{\mathbf{x}:\left(\mathbf{x}-\mathbf{x}_{0}\right)^{\prime}\left(\mathbf{x}-\mathbf{x}_{0}\right)=r^{2}\right\} \in \mathcal{B}^{k}
$$

- also, (nice) transformations of Borel sets are typically Borel sets
- for example, let

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 k} \\
\vdots & & \vdots \\
a_{k 1} & \ldots & a_{k k}
\end{array}\right)=\left(a_{i j}\right) \in R^{k \times k}
$$

be an invertible $k \times k$ matrix and $\mathbf{b} \in R^{k}$

- define a new set

$$
\begin{aligned}
A B_{r}\left(\mathbf{x}_{0}\right)+\mathbf{b} & =\left\{\mathbf{y}: \mathbf{y}=A \mathbf{x}+\mathbf{b} \text { for some } \mathbf{x} \in B_{r}\left(\mathbf{x}_{0}\right)\right\} \\
& =\left\{\mathbf{y}:\left(A^{-1}(\mathbf{y}-\mathbf{b})-\mathbf{x}_{0}\right)^{\prime}\left(A^{-1}(\mathbf{y}-\mathbf{b})-\mathbf{x}_{0}\right) \leq r^{2}\right\} \\
& =\left\{\mathbf{y}:\left(\mathbf{y}-\mathbf{b}-A \mathbf{x}_{0}\right)^{\prime}\left(A^{-1}\right)^{\prime} A^{-1}\left(\mathbf{y}-\mathbf{b}-A \mathbf{x}_{0}\right) \leq r^{2}\right\} \\
& =\left\{\mathbf{y}:(\mathbf{y}-\boldsymbol{\mu})^{\prime} \Sigma^{-1}(\mathbf{y}-\boldsymbol{\mu}) \leq r^{2}\right\} \\
& =E_{r}(\boldsymbol{\mu}, \Sigma) \in \mathcal{B}^{k}
\end{aligned}
$$

where $\boldsymbol{\mu}=A \mathbf{x}_{0}+\mathbf{b}$ and $\Sigma=\left(\left(A^{-1}\right)^{\prime} A^{-1}\right)^{-1}=A A^{\prime}$

- $E_{r}(\mu, \Sigma)$ is the ellipsoidal region with center at μ and axes and orientation determined by Σ and r
- note that
$\Sigma \in R^{k \times k}$ is symmetric since $\Sigma^{\prime}=\left(A A^{\prime}\right)^{\prime}=\left(A^{\prime}\right)^{\prime} A^{\prime}=A A^{\prime}=\Sigma$,
Σ is invertible since $\left(\left(A^{-1}\right)^{\prime} A^{-1}\right) \Sigma=\left(\left(A^{-1}\right)^{\prime} A^{-1}\right) A A^{\prime}=I$ so
$\Sigma^{-1}=\left(A^{-1}\right)^{\prime} A^{-1}$
Σ is positive definite since for any $\mathbf{w} \in R^{k}$ then

$$
\mathbf{w}^{\prime} \Sigma \mathbf{w}=\mathbf{w}^{\prime} A A^{\prime} \mathbf{w}=\left\|A^{\prime} \mathbf{w}\right\|^{2} \geq 0
$$

and is 0 only when $\mathbf{w}=\mathbf{0}$ since A is invertible which implies A^{\prime} is invertible
Exercise 1.4.5 Suppose

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

and $\mathbf{x}_{0}=(0,0)^{\prime}, \mathbf{b}=(1,1)^{\prime}$. Write out $E_{3 / 2}(\boldsymbol{\mu}, \Sigma)$ in terms of an inequality that the coordinates y_{1} and y_{2} have to satisfy.

Example 1.4.3 Uniform probability measure on $[0,1]^{k}$

- suppose $\Omega=[0,1]^{k}=[\mathbf{0}, \mathbf{1}]$ where $\mathbf{0}=(0, \ldots, 0)^{\prime}, \mathbf{1}=(1, \ldots, 1)^{\prime} \in R^{k}$
- for $[\mathbf{a}, \mathbf{b}] \subseteq[\mathbf{0}, \mathbf{1}]$ define $P([\mathbf{a}, \mathbf{b}])=\prod_{i=1}^{k}\left(b_{i}-a_{i}\right)=$ the volume of the k-cell
- $P([\mathbf{0}, \mathbf{1}])=\prod_{i=1}^{k}(1-0)=1$ and volume is additive
- fact: there is a unique probability measure P on the Borel subsets of
$[\mathbf{0}, \mathbf{1}]$ that agrees with volume measure on the k-cells
- the Borel subsets of $[\mathbf{0}, \mathbf{1}]$ are given by $\mathcal{B}^{k} \cap[\mathbf{0}, \mathbf{1}]$
- this P is called the uniform probability measure on $[\mathbf{0}, \mathbf{1}]$ and
$\left([\mathbf{0}, \mathbf{1}], \mathcal{B}^{k} \cap[\mathbf{0}, \mathbf{1}], P\right)$ is the uniform probability model on $[\mathbf{0}, \mathbf{1}]$
- note that $P(\{\mathbf{a}\}])=P([\mathbf{a}, \mathbf{a}])=0$ for every $\mathbf{a} \in[\mathbf{0}, \mathbf{1}]$
- this is an example of a continuous probability measure but recall this is an approximation to a discrete probability measure on a large (finite) number of equispaced points in $[\mathbf{0}, \mathbf{1}]$ ■
Exercise 1.4.6 Define a uniform probability measure on $[\mathbf{a}, \mathbf{b}] \subseteq R^{k}$ when $a_{i} \leq b_{i}$ for $i=1, \ldots, k$.

