Probability and Stochastic Processes I - Lecture 20

Michael Evans
University of Toronto

http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

III. 8 Conditional Expectation

- consider r.v. Y where $E(|Y|)<\infty$ and random vector \mathbf{X}
- from the joint distribution of (\mathbf{X}, Y) we get the conditional distribution of Y given that $\mathbf{X}=\mathbf{x}$ and now we want the conditional mean of Y given that $\mathbf{X}=\mathbf{x}$

discrete case

- the joint distribution of $(\mathbf{X}, Y) \in R^{k+1}$ is given by the prob. function

$$
p_{(\mathbf{X}, Y)}(\mathbf{x}, y)=P_{(\mathbf{x}, Y)}(\{(\mathbf{x}, y)\})=P(\mathbf{X}=\mathbf{x}, Y=y)
$$

and so the conditional distribution of $Y \mid \mathbf{X}=\mathbf{x}$, namely, the probability measure $P_{Y \mid \mathbf{X}}$, has prob. function

$$
p_{Y \mid \mathbf{X}}(y \mid \mathbf{x})=p_{(\mathbf{x}, Y)}(\mathbf{x}, y) / p_{\mathbf{X}}(\mathbf{x})
$$

when $p_{\mathbf{X}}(\mathbf{x})=P_{\mathbf{X}}(\{\mathbf{x}\})=P(\mathbf{X}=\mathbf{x})=\sum_{y} p_{(\mathbf{X}, Y)}(\mathbf{x}, y)>0$ (otherwise cond. dist. not defined)

- then the conditional expectation of Y given $\mathbf{X}=\mathbf{x}$ is given by

$$
E_{p_{Y \mid \mathbf{x}}}(Y \mid \mathbf{X})(\mathbf{x})=\sum_{y>0} y p_{Y \mid \mathbf{X}}(y \mid \mathbf{x})-\sum_{y<0} y p_{Y \mid \mathbf{X}}(y \mid \mathbf{x})
$$

when defined and note that

$$
\begin{aligned}
& \sum_{y}|y| p_{Y \mid \mathbf{X}}(y \mid \mathbf{x})=\sum_{y}|y| \frac{p_{(\mathbf{X}, Y)}(\mathbf{x}, y)}{p_{\mathbf{X}}(\mathbf{x})} \\
= & \frac{1}{p_{\mathbf{X}}(\mathbf{x})} \sum_{y, p_{(\mathbf{X}, Y)}(\mathbf{x}, y)>0}|y| p_{(\mathbf{X}, Y)}(\mathbf{x}, y) \\
\leq & \frac{1}{p_{\mathbf{X}}(\mathbf{x})} \sum_{(\mathbf{z}, y)}|y| p_{(\mathbf{X}, Y)}(\mathbf{z}, y)=\frac{1}{p_{\mathbf{X}}(\mathbf{x})} E(|Y|)<\infty
\end{aligned}
$$

- so when $E(|Y|)<\infty$, the conditional expectation is also finite
- sometimes we write $E_{p_{Y \mid \mathbf{X}}}(Y \mid \mathbf{X}=\mathbf{x})=E_{p_{Y \mid \mathbf{X}}}(Y \mid \mathbf{X})(\mathbf{x})$
- but we want to think of $E_{p_{Y \mid \mathbf{X}}}(Y \mid \mathbf{X}):\left(R^{k}, \mathcal{B}^{k}\right) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$ and then define $E(Y \mid \mathbf{X}):(\Omega, A) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$ by

$$
E(Y \mid \mathbf{X})(\omega)=E_{P_{Y \mid \mathbf{X}}}(Y \mid \mathbf{X})(\mathbf{X}(\omega))
$$

Proposition III.8.1 If $h:\left(R^{k}, \mathcal{B}^{k}\right) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$ is s.t. $E(|Y h(\mathbf{X})|)<\infty$, then

$$
E(Y h(\mathbf{X}))=E(h(\mathbf{X}) E(Y \mid \mathbf{X}))
$$

Proof:

$$
\begin{aligned}
& E(Y h(\mathbf{X}))=\sum_{(\mathbf{x}, \mathrm{y})} y h(\mathbf{x}) p_{(\mathbf{x}, Y)}(\mathbf{x}, y)=\sum_{(\mathbf{x}, \mathrm{y})} y h(\mathbf{x}) p_{\mathbf{X}}(\mathbf{x}) \frac{p_{(\mathbf{X}, Y)}(\mathbf{x}, y)}{p_{\mathbf{X}}(\mathbf{x})} \\
= & \sum_{(\mathbf{x}, y)} y h(\mathbf{x}) p_{\mathbf{X}}(\mathbf{x}) p_{Y \mid \mathbf{x}}(y \mid \mathbf{x})=\sum_{\mathbf{x}} h(\mathbf{x})\left(\sum_{y} y p_{Y \mid \mathbf{X}}(y \mid \mathbf{x})\right) p_{\mathbf{X}}(\mathbf{x}) \\
= & \sum_{\mathbf{x}} h(\mathbf{x}) E_{p_{Y \mid \mathbf{x}}}(Y \mid \mathbf{X})(\mathbf{x}) p_{\mathbf{X}}(\mathbf{x})=E(h(\mathbf{X}) E(Y \mid \mathbf{X})) .
\end{aligned}
$$

Corollary III.8.2 $E(Y h(\mathbf{X}) \mid \mathbf{X})=h(\mathbf{X}) E(Y \mid \mathbf{X})$
note $-E(Y \mid \mathbf{X})$ has all the properties of E as it is an expectation
Corollary III.8.3 (Theorem of Total Expectation) For random vector (\mathbf{X}, Y) such that $E(|Y|)<\infty$,

$$
E(Y)=E(E(Y \mid \mathbf{X})) .
$$

Proof: Put $h(\mathbf{x}) \equiv 1$.

- if $Y=I_{A}$ for $A \in \mathcal{A}$, then
$E(Y \mid \mathbf{X})(\mathbf{x})=\sum y p_{Y \mid \mathbf{x}}(y \mid \mathbf{x})=0 p_{Y \mid \mathbf{x}}(0 \mid \mathbf{x})+1 p_{Y \mid \mathbf{X}}(1 \mid \mathbf{x})=P(A \mid \mathbf{X})(\mathbf{x})$
Corollary III.8.3 (Theorem of Total Probability) If $A \in \mathcal{A}$, then

$$
P(A)=E(P(A \mid \mathbf{X})) .
$$

Corollary III.8.4 If also $E\left(Y^{2}\right)<\infty$, then

$$
\operatorname{Var}(Y)=E(\operatorname{Var}(Y \mid \mathbf{X}))+\operatorname{Var}(E(Y \mid \mathbf{X}))
$$

Proof: We have

$$
\begin{aligned}
& \operatorname{Var}(Y)=E\left((Y-E(Y))^{2}\right) \stackrel{\mathrm{TTE}}{=} E\left(E\left((Y-E(Y))^{2} \mid \mathbf{X}\right)\right) \\
= & E\left(E\left((Y-E(Y \mid \mathbf{X})+E(Y \mid \mathbf{X})-E(Y))^{2} \mid \mathbf{X}\right)\right) \\
& \text { and } \\
& E\left((Y-E(Y \mid \mathbf{X})+E(Y \mid \mathbf{X})-E(Y))^{2} \mid \mathbf{X}\right) \\
= & E\left((Y-E(Y \mid \mathbf{X}))^{2} \mid \mathbf{X}\right)+ \\
& 2 E((Y-E(Y \mid \mathbf{X}))(E(Y \mid \mathbf{X})-E(Y)) \mid \mathbf{X})+ \\
& E\left((E(Y \mid \mathbf{X})-E(Y))^{2} \mid \mathbf{X}\right) \\
= & \operatorname{Var}(Y \mid \mathbf{X})+2(E(Y \mid \mathbf{X})-E(Y \mid \mathbf{X}))(E(Y \mid \mathbf{X})-E(Y))+ \\
& (E(Y \mid \mathbf{X})-E(Y))^{2} \\
= & \operatorname{Var}(Y \mid \mathbf{X})+(E(Y \mid \mathbf{X})-E(Y))^{2}
\end{aligned}
$$

and applying E to both sides gives the result.

Corollary III.8.5 The random variable $E(Y \mid \mathbf{X})$ is the best predictor of Y from \mathbf{X} in the sense that it minimizes $E\left((Y-h(\mathbf{X}))^{2}\right)$ among all $h:\left(R^{k}, \mathcal{B}^{k}\right) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$ and smallest residual error is $E(\operatorname{Var}(Y \mid \mathbf{X}))$.

Proof:

$$
\begin{aligned}
& E\left((Y-h(\mathbf{X}))^{2}\right)=E\left((Y-E(Y \mid \mathbf{X})+E(Y \mid \mathbf{X})-h(\mathbf{X}))^{2}\right) \\
= & E\left((Y-E(Y \mid \mathbf{X}))^{2}\right)+ \\
& \left.2 E((Y-E(Y \mid \mathbf{X}))(E(Y \mid \mathbf{X})-h(\mathbf{X})))+E(E(Y \mid \mathbf{X})-h(\mathbf{X}))^{2}\right) \\
& \text { and } \\
& E((Y-E(Y \mid \mathbf{X}))(E(Y \mid \mathbf{X})-h(\mathbf{X}))) \\
& \stackrel{\text { TTE }}{=} E(E((Y-E(Y \mid \mathbf{X}))(E(Y \mid \mathbf{X})-h(\mathbf{X})) \mid \mathbf{X}))=0
\end{aligned}
$$

and so

$$
\begin{aligned}
E\left((Y-h(\mathbf{X}))^{2}\right) & =E\left((Y-E(Y \mid \mathbf{X}))^{2}+E(E(Y \mid \mathbf{X})-h(\mathbf{X}))^{2}\right) \\
& \geq E\left((Y-E(Y \mid \mathbf{X}))^{2}\right)=E(\operatorname{Var}(Y \mid \mathbf{X}))
\end{aligned}
$$

with equality when $h(\mathbf{X})=E(Y \mid \mathbf{X})$.

- in general, if r.v. Y satisfies $E(|Y|)<\infty$, then $E(Y \mid \mathbf{X})$ is defined as the r.v. $E(Y \mid \mathbf{X}):(\Omega, A) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$ that satisfies

$$
\begin{equation*}
E(Y h(\mathbf{X}))=E(h(\mathbf{X}) E(Y \mid \mathbf{X})) \tag{1}
\end{equation*}
$$

for every $h:\left(R^{k}, \mathcal{B}^{k}\right) \rightarrow\left(R^{1}, \mathcal{B}^{1}\right)$ such that $E(|Y h(\mathbf{X})|)<\infty$

- it can be proven that $E(Y \mid \mathbf{X})$ exists and two versions are the same wp1
- this can be generalized to define $E\left(Y \mid\left\{\left(t, X_{t}\right): t \in T\right\}\right)$ the conditional expectation of Y given the process $\left\{\left(t, X_{t}\right): t \in T\right\}$
- all the results proved here also apply to these general contexts

Exercise III.9.1 If (\mathbf{X}, Y) has density $f_{(\mathbf{X}, Y)}$ and $E(|Y|)<\infty$, then prove

$$
\begin{aligned}
E(Y \mid \mathbf{X})(\mathbf{x}) & =\int_{-\infty}^{\infty} y f_{Y \mid \mathbf{X}}(y \mid \mathbf{x}) d y \text { where } \\
f_{Y \mid \mathbf{X}}(y \mid \mathbf{x}) & =\frac{f_{(\mathbf{X}, Y)}(\mathbf{x}, y)}{f_{\mathbf{X}}(\mathbf{x})} \text { and } f_{\mathbf{X}}(\mathbf{x})=\int_{-\infty}^{\infty} f_{(\mathbf{X}, Y)}(\mathbf{x}, y) d y .
\end{aligned}
$$

Hint: use (1).

Example III.9.1 $N_{k}(\mu, \Sigma)$

- suppose Σ is p.d. and

$$
\begin{gathered}
\binom{\mathbf{Y}}{\mathbf{X}} \sim N_{k}(\boldsymbol{\mu}, \Sigma) \text { with } \mathbf{Y} \in R^{\prime} \\
\mu=\binom{\mu_{\mathbf{Y}}}{\mu_{\mathbf{X}}}, \quad \Sigma=\left(\begin{array}{ll}
\Sigma_{\mathbf{Y}} & \Sigma_{\mathbf{Y X}} \\
\Sigma_{\mathbf{Y X}}^{\prime} & \Sigma_{\mathbf{X}}
\end{array}\right)
\end{gathered}
$$

- then

$$
\mathbf{Y} \mid \mathbf{X}=\mathbf{x} \sim N_{k}\left(\mu_{\mathbf{Y}}+\Sigma_{\mathbf{Y} \mathbf{X}} \Sigma_{\mathbf{X}}^{-1}\left(\mathbf{x}-\mu_{\mathbf{X}}\right), \Sigma_{\mathbf{Y}}-\Sigma_{\mathbf{Y} \mathbf{X}} \Sigma_{\mathbf{X}}^{-1} \Sigma_{\mathbf{Y X}}^{\prime}\right)
$$

so $E(\mathbf{Y} \mid \mathbf{X})(\mathbf{x})=\mu_{\mathbf{Y}}+\Sigma_{\mathbf{Y} \mathbf{X}} \Sigma_{\mathbf{X}}^{-1}\left(\mathbf{x}-\mu_{\mathbf{X}}\right)$ and this minimizes

$$
\sum_{i=1}^{\prime} E\left(\left(Y_{i}-h_{i}(\mathbf{X})\right)^{2}\right)=E\left(\|\mathbf{Y}-\mathbf{h}(\mathbf{X})\|^{2}\right)
$$

among all $\mathbf{h}:\left(R^{k-l}, \mathcal{B}^{k-l}\right) \rightarrow\left(R^{\prime}, \mathcal{B}^{\prime}\right) \square$

Example III.9.2 Martingales

- consider a game of coin tossing where a gambler bets on H which occurs with probability $1 / 2$, and if the gambler bets $\$ x$ the payoff is $\$ 2 x$ so the expected gain on a toss is $0.5(2 x-x)-0.5 x=0$
- the gambler adopts the following strategy: they bet $\$ 1$ on the first toss, if they lose this bet they bet $\$ 2$ on the next toss, if they lose this bet they bet $\$ 4$ on the next toss and generally if they lose the first n bets they bet $\$ 2^{n}$ on the next bet and they stop as soon as they win which happens with probability 1
- if the first H occurs at time n then gain is
$2^{n}-\left(1+2+\cdots+2^{n-1}\right)=2^{n}-2^{n}+1=1$ so this guarantees a profit
- but note that expected loss just before win is

$$
\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}\left(2^{n}-1\right)=\infty
$$

so you need a big bank account if you want to use this strategy

- let X_{n} denote the gambler's gain (loss) at toss n
- SO

$$
X_{n+1}= \begin{cases}X_{n} & \text { if stopped by toss } n \\ X_{n}+2^{n} & \text { if } H \text { at toss } n \\ X_{n}-2^{n} & \text { if } T \text { at toss } n\end{cases}
$$

- then

$$
\begin{aligned}
E\left(X_{n+1} \mid X_{1}, \ldots, X_{n}\right)\left(x_{1}, \ldots, x_{n}\right) & =x_{n} \text { and so } \\
E\left(X_{n+1} \mid X_{1}, \ldots, X_{n}\right) & =X_{n}
\end{aligned}
$$

- a s. p. $\left\{\left(n, X_{n}\right): n \in \mathbb{N}\right\}$ with this property is called a martingale

