
Probability and Stochastic Processes I - Lecture 22

Michael Evans
University of Toronto

http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html ()Probability and Stochastic Processes I - Lecture 22 2023 1 / 14



Chapter IV - Convergence

- applications of probability theory are often concerned with approximations

- the underlying idea of "approximation" is the notion of a limit

- for example, for a sequence of real numbers {xn : n ∈N}
Definition. The limit of {xn : n ∈N} exists if there is x ∈ R1 such that
for any ε > 0, there exists Nε such that for all n ≥ Nε then |xn − x | < ε
and we write limn→∞ xn = x .

then we approximate x by xn for large n and try to say something about
the error |xn − x | in this approximation
- if we have a sequence of r.v.’s {Xn : n ∈N}, then the pointwise
convergence of Xn to r.v. X means limn→∞ Xn(ω) = X (ω) for every
ω ∈ Ω but this is too strong and we weakened this to convergence with

probability 1, namely, Xn
wp1→ X if P({ω : limn→∞ Xn(ω) = X (ω)}) = 1

- there are weaker forms of convergence that are useful
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IV.1 Convergence in Distribution (Weak Convergence)

Definition IV.1.1 The sequence Xn of r.v.’s converges in distribution to
r.v. X if

lim
n→∞

FXn (x) = FX (x)

for every continuity point x of the cdf FX of X and we write Xn
d→ X . �

- then PXn ((a, b]) = FXn (b)− FXn (a) ≈ FX (b)− FX (a) for large n
provided a, b are cty points of FX

- so convergence in distribution is about approximating the distribution of
a r.v. and not about approximating the value of the r.v.
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Example IV.1.1 Why restrict to convergence at continuity points of FX ?

- suppose PXn ({−1/n}) = PXn ({1/n}) = 1/2 so

FXn (x) =


0 if x < −1/n
1/2 if −1/n ≤ x < 1/n
1 if 1/n ≤ x

- then as n gets bigger all the probability mass "piles up at 0" and let X
be degenerate at 0 so

FX (x) =

{
0 if x < 0
1 if 0 ≤ x

lim
n→∞

FXn (x) =


0 if x < 0
1/2 if x = 0
1 if 0 < x

- so limn→∞ FXn (x) = FX (x) at every cty point of FX but
limn→∞ FXn (0) 6= FX (0) and 0 is not a cty point of FX �
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Proposition IV.1.1 If E (|X |k ) < ∞, then cX (t) = ∑k
j=0

(it)j

j ! µj + o(t
k )

where the remainder o(tk ) is a function of t satisfying
limt→0 o(tk )/tk = 0.
Proof: We have, using integration by parts with u = e is , dv = (x − s)n, so
du = ie is , v = −(x − s)n+1/(n+ 1)∫ x

0
(x − s)ne is ds = xn+1

n+ 1
+

i
n+ 1

∫ x

0
(x − s)n+1e is ds (*)

and so

−i(e ix − 1) =
∫ x

0
(x − s)0e is ds by *= x + i

∫ x

0
(x − s)1e is ds

by *
= x +

ix2

2
+ · · ·+ i

n−1xn

n!
+
in

n!

∫ x

0
(x − s)ne is ds

e ix =
n

∑
j=0

(ix)j

j !
+
in+1

n!

∫ x

0
(x − s)ne is ds.
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Again, by *∫ x

0
(x − s)n−1e is ds =

xn

n
+
i
n

∫ x

0
(x − s)ne is ds which implies∫ x

0
(x − s)ne is ds =

n
i

(∫ x

0
(x − s)n−1e is ds − x

n

n

)
and

e ix =
n

∑
j=0

(ix)j

j !
+

in

(n− 1)!

∫ x

0
(x − s)n−1(e is − 1) ds.

Therefore∣∣∣∣∣e ix − n

∑
j=0

(ix)j

j !

∣∣∣∣∣ ≤ min
{ |x |n+1
(n+ 1)!

,
2|x |n
n!

}
which implies

1
|t|k

∣∣∣∣∣cX (t)− k

∑
j=0

(it)j

j !
µj

∣∣∣∣∣ = 1
|t|k

∣∣∣∣∣E
(
e itX −

k

∑
j=0

(itX )j

j !

)∣∣∣∣∣
≤ 1
|t|k E

(
min

{ |tX |k+1
(k + 1)!

,
2|tX |k
k !

})
= E

(
min

{ |t||X |k+1
(k + 1)!

,
2|X |k
k !

})
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and this upper bound is finite since E (|X |k ) < ∞ and goes to 0 as t → 0
which proves the result. �
Proposition IV.1.2 (Continuity Theorem) Suppose Xn is a sequence of
r.v.’s. (i) If Xn

d→ X , then cXn (t)→ cX (t) for every t. (ii) If
cXn (t)→ c(t) for every t and c is continuous at 0, then c is the cf of a

r.v. X such that Xn
d→ X .

Proof: Accept.
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Proposition IV.1.3 (Weak Law of Large Numbers) If Xn is a sequence of
i.i.d. r.v.’s with E (Xi ) = µ ∈ R1, then

1
n
Sn =

1
n

n

∑
i=1
Xi

d→ µ (the r.v. with distribution generate at µ).

Proof: Let X be degenerate at µ so cX (t) = exp(itµ) and note this is
continuous at 0. Also,

c 1
n Sn
(t) = E

(
exp

(
it
n

n

∑
i=1
Xi

))
i .i .d .
= cnX1

(
t
n

)
=

(
1+ iµ

t
n
+ o

(
t
n

))n
(by Prop IV.1.1)

=

(
1+ iµ

t
n

)n (
1+

o
( t
n

)
1+ iµ tn

)n
→ exp(itµ)

since, when xn → 0 and nxn converges to a finite limit, then

log(1+ xn)n = n log(1+ xn) = n(xn − x2n/2+ x3n/3− · · · )→ lim nxn.

The result follows by the Continuity Theorem. �
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- the Strong Law of Large Numbers says

1
n
Sn =

1
n

n

∑
i=1
Xi

wp1→ µ

and we will prove that if Xn
wp1→ X , then Xn

d→ X and so the the SLLN
implies the WLLN

Proposition IV.1.4 (The Central Limit Theorem) If Xn is a sequence of
i.i.d. r.v.’s with E (Xi ) = µ ∈ R1,Var(Xi ) = σ2, then

Zn =
1
nSn − µ

σ/
√
n

d→ Z ∼ N(0, 1).

Proof: Note that

E
(
1
n
Sn

)
= µ, Var

(
1
n
Sn

)
=

σ2

n

so Zn has mean 0 and variance 1. Also Yi = (Xi − µ)/σ has mean 0 and
variance 1,

Zn =
1√
n

n

∑
i=1
Yi
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and Y1, . . . ,Yn are i.i.d. Therefore

cZn (t) = cnY1

(
t√
n

)
=

(
1+

it√
n
E (Y1)−

t2

2n
E (Y 21 ) + o

(
t2

n

))n
(by Prop IV.1.1)

=

(
1− t2

2n
+ o

(
t2

n

))n
→ e−t

2/2

which is the cf of Z ∼ N(0, 1) and the result follows by the Continuity
Theorem. �

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html ()Probability and Stochastic Processes I - Lecture 22 2023 10 / 14



Example IV.1.2 Normal approximation to the binomial.

- X1,X2, . . . i.i.d. Bernoulli(p),E (Xi ) = p,Var(Xi ) = p(1− p) so Sn ∼
binomial(n, p)

- 1nSn = proportion of 1’s in X1,X2, . . . ,Xn then by CLT

1
nSn − p√
p(1− p)/n

→ N(0, 1)

- so for large n with Z ∼ N(0, 1)

Φ(b)−Φ(a) = P(a < Z ≤ b) ≈ P
(
a <

1
nSn − p√
p(1− p)/n

≤ b
)

= P
(
np + a

√
np(1− p) < Sn ≤ np + b

√
np(1− p)

)
- note a, b reflect how long interval about mean is in terms of standard
deviations �
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Example IV.1.3 Poisson approximation to the binomial (rare events).

- consider a situation where X1,X2, . . . ,Xn i.i.d. Bernoulli(pn) with
pn = λ/n+ o(1/n)→ 0 with n (since no(1/n)→ 0, then o(1/n)→ 0)

- think of Xi as indicating whether or not, in n independent units, Xi is
either on (1) or off (0) and the probability of being on is very small

- since Sn ∼ binomial(n,λ/n+ o(1/n)), the expected number on is

npn = λ+ no(1/n)→ λ

- this permits working backwards from the expected number on to say
pn = λ/n+ o(1/n)

- therefore,
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P(Sn = k) =
(
n
k

)(
λ

n
+ o(1/n)

)k (
1− λ

n
− o(1/n)

)n−k
=

n(n− 1) · · · (n− k + 1)
nk

λk

k !

(
1+

no(1/n)
λ

)k (
1− λ

n

)n
×(

1− o(1/n)
1− λ

n

)n (
1− λ

n
− o(1/n)

)−k
=

[
1
(
1− 1

n

)
· · ·
(
1− k

n
+
1
n

)](
1+

no(1/n)
λ

)k (
1− o(1/n)

1− λ
n

)n
×

(
1− λ

n
− o(1/n)

)−k λk

k !

(
1− λ

n

)n
→ 1 · 1 · 1 · 1 · λk

k !
e−λ =

λk

k !
e−λ

using the expansion of log(1+ xn)n as in Prop.IV.1.3 for the limits
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- so at any cty point of the Poisson(λ), say y ∈ (k, k + 1) where k ∈N

P(Sn ≤ y)→
k

∑
i=0

λi

i !
e−λ = cdf of Poisson(λ) at y

which proves Sn
d→ Poisson(λ)

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html ()Probability and Stochastic Processes I - Lecture 22 2023 14 / 14


