Probability and Stochastic Processes I - Lecture 22

Michael Evans
University of Toronto

http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

Chapter IV - Convergence

- applications of probability theory are often concerned with approximations
- the underlying idea of "approximation" is the notion of a limit
- for example, for a sequence of real numbers $\left\{x_{n}: n \in \mathbb{N}\right\}$

Definition. The limit of $\left\{x_{n}: n \in \mathbb{N}\right\}$ exists if there is $x \in R^{1}$ such that for any $\varepsilon>0$, there exists N_{ε} such that for all $n \geq N_{\varepsilon}$ then $\left|x_{n}-x\right|<\varepsilon$ and we write $\lim _{n \rightarrow \infty} x_{n}=x$.
then we approximate x by x_{n} for large n and try to say something about the error $\left|x_{n}-x\right|$ in this approximation

- if we have a sequence of r.v.'s $\left\{X_{n}: n \in \mathbb{N}\right\}$, then the pointwise convergence of X_{n} to r.v. X means $\lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)$ for every $\omega \in \Omega$ but this is too strong and we weakened this to convergence with probability 1 , namely, $X_{n} \xrightarrow{w p 1} X$ if $P\left(\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}\right)=1$
- there are weaker forms of convergence that are useful

IV. 1 Convergence in Distribution (Weak Convergence)

Definition IV.1.1 The sequence X_{n} of r.v.'s converges in distribution to r.v. X if

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)
$$

for every continuity point x of the $\operatorname{cdf} F_{X}$ of X and we write $X_{n} \xrightarrow{d} X$. \square

- then $P_{X_{n}}((a, b])=F_{X_{n}}(b)-F_{X_{n}}(a) \approx F_{X}(b)-F_{X}(a)$ for large n provided a, b are cty points of F_{X}
- so convergence in distribution is about approximating the distribution of a r.v. and not about approximating the value of the r.v.

Example IV.1.1 Why restrict to convergence at continuity points of F_{X} ?

- suppose $P_{X_{n}}(\{-1 / n\})=P_{X_{n}}(\{1 / n\})=1 / 2$ so

$$
F_{X_{n}}(x)= \begin{cases}0 & \text { if } x<-1 / n \\ 1 / 2 & \text { if }-1 / n \leq x<1 / n \\ 1 & \text { if } 1 / n \leq x\end{cases}
$$

- then as n gets bigger all the probability mass "piles up at 0 " and let X be degenerate at 0 so

$$
\begin{aligned}
F_{X}(x) & = \begin{cases}0 & \text { if } x<0 \\
1 & \text { if } 0 \leq x\end{cases} \\
\lim _{n \rightarrow \infty} F_{X_{n}}(x) & = \begin{cases}0 & \text { if } x<0 \\
1 / 2 & \text { if } x=0 \\
1 & \text { if } 0<x\end{cases}
\end{aligned}
$$

- so $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$ at every cty point of F_{X} but $\lim _{n \rightarrow \infty} F_{X_{n}}(0) \neq F_{X}(0)$ and 0 is not a cty point of $F_{X} \square$

Proposition IV.1.1 If $E\left(|X|^{k}\right)<\infty$, then $c_{X}(t)=\sum_{j=0}^{k} \frac{(i t)^{j}}{j!} \mu_{j}+o\left(t^{k}\right)$ where the remainder $o\left(t^{k}\right)$ is a function of t satisfying $\lim _{t \rightarrow 0} O\left(t^{k}\right) / t^{k}=0$.
Proof: We have, using integration by parts with $u=e^{i s}, d v=(x-s)^{n}$, so $d u=i e^{i s}, v=-(x-s)^{n+1} /(n+1)$

$$
\begin{equation*}
\int_{0}^{x}(x-s)^{n} e^{i s} d s=\frac{x^{n+1}}{n+1}+\frac{i}{n+1} \int_{0}^{x}(x-s)^{n+1} e^{i s} d s \tag{*}
\end{equation*}
$$

and so

$$
\begin{aligned}
-i\left(e^{i x}-1\right)= & \int_{0}^{x}(x-s)^{0} e^{i s} d s \stackrel{\text { by } *}{=} x+i \int_{0}^{x}(x-s)^{1} e^{i s} d s \\
& \stackrel{\text { by }}{=} x+\frac{i x^{2}}{2}+\cdots+\frac{i^{n-1} x^{n}}{n!}+\frac{i^{n}}{n!} \int_{0}^{x}(x-s)^{n} e^{i s} d s \\
e^{i x}= & \sum_{j=0}^{n} \frac{(i x)^{j}}{j!}+\frac{i^{n+1}}{n!} \int_{0}^{x}(x-s)^{n} e^{i s} d s
\end{aligned}
$$

Again, by *

$$
\begin{aligned}
\int_{0}^{x}(x-s)^{n-1} e^{i s} d s & =\frac{x^{n}}{n}+\frac{i}{n} \int_{0}^{x}(x-s)^{n} e^{i s} d s \text { which implies } \\
\int_{0}^{x}(x-s)^{n} e^{i s} d s & =\frac{n}{i}\left(\int_{0}^{x}(x-s)^{n-1} e^{i s} d s-\frac{x^{n}}{n}\right) \text { and } \\
e^{i x} & =\sum_{j=0}^{n} \frac{(i x)^{j}}{j!}+\frac{i^{n}}{(n-1)!} \int_{0}^{x}(x-s)^{n-1}\left(e^{i s}-1\right) d s
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left|e^{i x}-\sum_{j=0}^{n} \frac{(i x)^{j}}{j!}\right| \leq \min \left\{\frac{|x|^{n+1}}{(n+1)!}, \frac{2|x|^{n}}{n!}\right\} \text { which implies } \\
& \frac{1}{|t|^{k}}\left|c_{X}(t)-\sum_{j=0}^{k} \frac{(i t)^{j}}{j!} \mu_{j}\right|=\frac{1}{|t|^{k}}\left|E\left(e^{i t X}-\sum_{j=0}^{k} \frac{(i t X)^{j}}{j!}\right)\right| \\
\leq & \frac{1}{|t|^{k}} E\left(\min \left\{\frac{|t X|^{k+1}}{(k+1)!}, \frac{2|t X|^{k}}{k!}\right\}\right)=E\left(\min \left\{\frac{|t||X|^{k+1}}{(k+1)!}, \frac{2|X|^{k}}{k!}\right\}\right)
\end{aligned}
$$

and this upper bound is finite since $E\left(|X|^{k}\right)<\infty$ and goes to 0 as $t \rightarrow 0$ which proves the result.

Proposition IV.1.2 (Continuity Theorem) Suppose X_{n} is a sequence of r.v.'s. (i) If $X_{n} \xrightarrow{d} X$, then $c_{X_{n}}(t) \rightarrow c_{X}(t)$ for every t. (ii) If $c_{X_{n}}(t) \rightarrow c(t)$ for every t and c is continuous at 0 , then c is the cf of a r.v. X such that $X \xrightarrow{d} X$.

Proof: Accept.

Proposition IV.1.3 (Weak Law of Large Numbers) If X_{n} is a sequence of i.i.d. r.v.'s with $E\left(X_{i}\right)=\mu \in R^{1}$, then

$$
\frac{1}{n} S_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{d} \mu(\text { the r.v. with distribution generate at } \mu) .
$$

Proof: Let X be degenerate at μ so $c_{X}(t)=\exp (i t \mu)$ and note this is continuous at 0. Also,

$$
\begin{aligned}
c_{\frac{1}{n}} S_{n}(t) & =E\left(\exp \left(\frac{i t}{n} \sum_{i=1}^{n} X_{i}\right)\right) \stackrel{i . i . d .}{=} c_{X_{1}}^{n}\left(\frac{t}{n}\right) \\
& =\left(1+i \mu \frac{t}{n}+o\left(\frac{t}{n}\right)\right)^{n}(\text { by Prop IV.1.1) } \\
& =\left(1+i \mu \frac{t}{n}\right)^{n}\left(1+\frac{o\left(\frac{t}{n}\right)}{1+i \mu \frac{t}{n}}\right)^{n} \rightarrow \exp (i t \mu)
\end{aligned}
$$

since, when $x_{n} \rightarrow 0$ and $n x_{n}$ converges to a finite limit, then

$$
\log \left(1+x_{n}\right)^{n}=n \log \left(1+x_{n}\right)=n\left(x_{n}-x_{n}^{2} / 2+x_{n}^{3} / 3-\cdots\right) \rightarrow \lim n x_{n} .
$$

The result follows by the Continuity Theorem.

- the Strong Law of Large Numbers says

$$
\frac{1}{n} S_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{w p 1} \mu
$$

and we will prove that if $X_{n} \xrightarrow{\text { wp } 1} X$, then $X_{n} \xrightarrow{d} X$ and so the the SLLN implies the WLLN
Proposition IV.1.4 (The Central Limit Theorem) If X_{n} is a sequence of i.i.d. r.v.'s with $E\left(X_{i}\right)=\mu \in R^{1}, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, then

$$
Z_{n}=\frac{\frac{1}{n} S_{n}-\mu}{\sigma / \sqrt{n}} \xrightarrow{d} Z \sim N(0,1) .
$$

Proof: Note that

$$
E\left(\frac{1}{n} S_{n}\right)=\mu, \quad \operatorname{Var}\left(\frac{1}{n} S_{n}\right)=\frac{\sigma^{2}}{n}
$$

so Z_{n} has mean 0 and variance 1. Also $Y_{i}=\left(X_{i}-\mu\right) / \sigma$ has mean 0 and variance 1,

$$
Z_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_{i}
$$

and Y_{1}, \ldots, Y_{n} are i.i.d. Therefore

$$
\begin{aligned}
c_{Z_{n}}(t) & =c_{Y_{1}}^{n}\left(\frac{t}{\sqrt{n}}\right) \\
& =\left(1+\frac{i t}{\sqrt{n}} E\left(Y_{1}\right)-\frac{t^{2}}{2 n} E\left(Y_{1}^{2}\right)+o\left(\frac{t^{2}}{n}\right)\right)^{n} \quad(\text { by Prop IV.1.1) } \\
& =\left(1-\frac{t^{2}}{2 n}+o\left(\frac{t^{2}}{n}\right)\right)^{n} \rightarrow e^{-t^{2} / 2}
\end{aligned}
$$

which is the of of $Z \sim N(0,1)$ and the result follows by the Continuity Theorem.

Example IV.1.2 Normal approximation to the binomial.

- X_{1}, X_{2}, \ldots i.i.d. $\operatorname{Bernoulli}(p), E\left(X_{i}\right)=p, \operatorname{Var}\left(X_{i}\right)=p(1-p)$ so $S_{n} \sim$ binomial (n, p)
- $\frac{1}{n} S_{n}=$ proportion of 1 's in $X_{1}, X_{2}, \ldots, X_{n}$ then by CLT

$$
\frac{\frac{1}{n} S_{n}-p}{\sqrt{p(1-p) / n}} \rightarrow N(0,1)
$$

- so for large n with $Z \sim N(0,1)$

$$
\begin{aligned}
\Phi(b)-\Phi(a) & =P(a<Z \leq b) \approx P\left(a<\frac{\frac{1}{n} S_{n}-p}{\sqrt{p(1-p) / n}} \leq b\right) \\
& =P\left(n p+a \sqrt{n p(1-p)}<S_{n} \leq n p+b \sqrt{n p(1-p)}\right)
\end{aligned}
$$

- note a, b reflect how long interval about mean is in terms of standard deviations

Example IV.1.3 Poisson approximation to the binomial (rare events).

- consider a situation where $X_{1}, X_{2}, \ldots, X_{n}$ i.i.d. $\operatorname{Bernoulli}\left(p_{n}\right)$ with $p_{n}=\lambda / n+o(1 / n) \rightarrow 0$ with $n($ since $n o(1 / n) \rightarrow 0$, then $o(1 / n) \rightarrow 0)$
- think of X_{i} as indicating whether or not, in n independent units, X_{i} is either on (1) or off (0) and the probability of being on is very small
- since $S_{n} \sim \operatorname{binomial}(n, \lambda / n+o(1 / n))$, the expected number on is

$$
n p_{n}=\lambda+n o(1 / n) \rightarrow \lambda
$$

- this permits working backwards from the expected number on to say $p_{n}=\lambda / n+o(1 / n)$
- therefore,

$$
\begin{aligned}
& P\left(S_{n}=k\right)=\binom{n}{k}\left(\frac{\lambda}{n}+o(1 / n)\right)^{k}\left(1-\frac{\lambda}{n}-o(1 / n)\right)^{n-k} \\
= & \frac{n(n-1) \cdots(n-k+1)}{n^{k}} \frac{\lambda^{k}}{k!}\left(1+\frac{n o(1 / n)}{\lambda}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n} \times \\
& \left(1-\frac{o(1 / n)}{1-\frac{\lambda}{n}}\right)^{n}\left(1-\frac{\lambda}{n}-o(1 / n)\right)^{-k} \\
= & {\left[1\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{k}{n}+\frac{1}{n}\right)\right]\left(1+\frac{n o(1 / n)}{\lambda}\right)^{k}\left(1-\frac{o(1 / n)}{1-\frac{\lambda}{n}}\right)^{n} \times } \\
& \left(1-\frac{\lambda}{n}-o(1 / n)\right)^{-k} \frac{\lambda^{k}}{k!}\left(1-\frac{\lambda}{n}\right)^{n} \rightarrow 1 \cdot 1 \cdot 1 \cdot 1 \cdot \frac{\lambda^{k}}{k!} e^{-\lambda}=\frac{\lambda^{k}}{k!} e^{-\lambda}
\end{aligned}
$$

using the expansion of $\log \left(1+x_{n}\right)^{n}$ as in Prop.IV.1.3 for the limits

- so at any cty point of the Poisson (λ), say $y \in(k, k+1)$ where $k \in \mathbb{N}$

$$
P\left(S_{n} \leq y\right) \rightarrow \sum_{i=0}^{k} \frac{\lambda^{i}}{i!} e^{-\lambda}=\text { cdf of Poisson }(\lambda) \text { at } y
$$

which proves $S_{n} \xrightarrow{d}$ Poisson (λ)

