Probability and Stochastic Processes I - Lecture 3

Michael Evans
University of Toronto

http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

I. 5 Continuity of P

- consider why P is required to be countably additive rather than just finitely additive
- for this we need to define what it means for a sequence of sets $A_{n} \subseteq \Omega$ to converge to a set $A \subseteq \Omega$

Definition 1.5.1 For a sequence $A_{n} \subseteq \Omega$ define

$$
\begin{aligned}
\liminf A_{n} & =\cup_{n=1}^{\infty} \cap_{i=n}^{\infty} A_{i}=\left\{\omega: \omega \text { is in all but finitely many } A_{i}\right\} \\
\limsup A_{n} & =\cap_{n=1}^{\infty} \cup_{i=n}^{\infty} A_{i}=\left\{\omega: \omega \text { is in infinitely many } A_{i}\right\}
\end{aligned}
$$

Then A_{n} converges to the set A, and write $\lim _{n \rightarrow \infty} A_{n}=A$ or $A_{n} \rightarrow A$, whenever $A=\liminf A_{n}=\limsup A_{n}$. \square
$-\lim \inf A_{n} \subseteq \lim \sup A_{n}$

- $\cap_{i=1}^{\infty} A_{i} \subseteq \cap_{i=2}^{\infty} A_{i} \subseteq \cdots$ and so $\cap_{i=n}^{\infty} A_{i}$ is an increasing sequence of sets
- $\cup_{i=1}^{\infty} A_{i} \supseteq \cup_{i=2}^{\infty} A_{i} \supseteq \cdots$ and so $\cup_{i=n}^{\infty} A_{i}$ is a decreasing sequence of sets
- if $A_{n} \in \mathcal{A}$ for every n, then $\cap_{i=n}^{\infty} A_{i}, \cup_{i=n}^{\infty} A_{i} \in \mathcal{A}$ for every n (they are "events") and this implies $\lim \inf A_{n}, \lim \sup A_{n} \in \mathcal{A}$ and also, when $A_{n} \rightarrow A$, then $A \in \mathcal{A}$ (are all events)

Proposition 1.5.1 If $A_{n} \in \mathcal{A}$ for every n and $A_{1} \supseteq A_{2} \supseteq \cdots$ (a monotone decreasing sequence of sets), then $A_{n} \rightarrow A=\cap_{i=1}^{\infty} A_{i}$.

Proof: Now let $\omega \in \cap_{i=n}^{\infty} A_{i}$ so $\omega \in A_{n} \subseteq A_{n-1} \subseteq \cdots \subseteq A_{1}$ which implies $\omega \in \cap_{i=1}^{\infty} A_{i}$ and therefore $\cap_{i=n}^{\infty} A_{i} \subseteq \cap_{i=1}^{\infty} A_{i}$ while it is clear that $\cap_{i=1}^{\infty} A_{i} \subseteq \cap_{i=n}^{\infty} A_{i}$ for every n. Therefore, $\cap_{i=n}^{\infty} A_{i}=\cap_{i=1}^{\infty} A_{i}$ for every n which implies $\lim \inf A_{n}=\cap_{i=1}^{\infty} A_{i}$. Also $\cup_{i=n}^{\infty} A_{i}=A_{n}$ by the monotonicity and so $\lim \sup A_{n}=\cap_{i=1}^{\infty} A_{i}$. Therefore, $A_{n} \rightarrow A=\cap_{i=1}^{\infty} A_{i}$.

Exercise 1.5.1 If $A_{1} \subseteq A_{2} \subseteq \cdots$ (a monotone increasing sequence of sets), then prove $A_{n} \rightarrow A=\cup_{i=1}^{\infty} A_{i}$.

Proposition 1.5.2 (Continuity of P) If $A_{n} \in \mathcal{A}$ for every n and $A_{n} \rightarrow A$, then $P\left(A_{n}\right) \rightarrow P(A)$ as $n \rightarrow \infty$.

Proof: As noted $\cup_{i=n}^{\infty} A_{i}$ is a monotone decreasing sequence and so (Prop. 1.4.1) $\cup_{i=n}^{\infty} A_{i} \rightarrow \cap_{n=1}^{\infty} \cup_{i=n}^{\infty} A_{i}=\lim \sup A_{n}$ and similarly (Ex. 1.4.1) $\cap_{i=n}^{\infty} A_{i} \rightarrow \lim \inf A_{n}$. So, if we prove the result for monotone sequences, then

$$
\begin{aligned}
P\left(\cup_{i=n}^{\infty} A_{i}\right) & \rightarrow P\left(\limsup A_{n}\right) \\
P\left(\cap_{i=n}^{\infty} A_{i}\right) & \rightarrow P\left(\liminf A_{n}\right)
\end{aligned}
$$

Now note

$$
P\left(\cap_{i=n}^{\infty} A_{i}\right) \leq P\left(A_{n}\right) \leq P\left(\cup_{i=n}^{\infty} A_{i}\right),
$$

and since $A=\liminf A_{n}=\lim \sup A_{n}$ we would have $P\left(A_{n}\right) \rightarrow P(A)$.
Now suppose A_{n} is a monotone increasing sequence of sets, so (Ex. 1.4.1) $A_{n} \rightarrow A=\cup_{i=1}^{\infty} A_{i}$. Put

$$
B_{1}=A_{1}, B_{2}=A_{2} \cap A_{1}^{c}, B_{3}=A_{3} \cap A_{2}^{c}, \ldots
$$

and note that the $B_{n} \in \mathcal{A}$, are mutually disjoint with $A_{n}=\cup_{i=1}^{n} B_{i}$. Therefore, $P\left(A_{n}\right)=\sum_{i=1}^{n} P\left(B_{i}\right)$ and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(A_{n}\right) & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} P\left(B_{i}\right)=\sum_{i=1}^{\infty} P\left(B_{i}\right) \\
& =P\left(\cup_{i=1}^{\infty} B_{i}\right)=P\left(\cup_{i=1}^{\infty} A_{i}\right)=P\left(\lim _{n \rightarrow \infty} A_{n}\right)
\end{aligned}
$$

A similar argument establishes this result when A_{n} is a monotone decreasing sequence of sets.

Exercise 1.5.2 Prove that if A_{n} is a monotone decreasing sequence of sets, then $\lim _{n \rightarrow \infty} P\left(A_{n}\right)=P\left(\lim _{n \rightarrow \infty} A_{n}\right)$. (Hint: A_{n}^{c} is a monotone increasing sequence of sets.)

- the converse (under finite additivity) of Prop. 1.4.2 is also true Proposition 1.5.3 If $P: \mathcal{A} \rightarrow[0,1]$ satisfies (i) $P(\Omega)=1$, (ii) P is additive $(A, B \in \mathcal{A}$ mutually disjoint then $P(A \cup B)=P(A)+P(B))$ and (iii) $P\left(A_{n}\right) \rightarrow P(A)$ as $n \rightarrow \infty$ whenever $A_{n} \in \mathcal{A}$ for every n and $A_{n} \rightarrow A$, then P is a probability measure on \mathcal{A}.
Proof: Exercise 1.5.3.
- so countable additivity is equivalent to continuity of P which is only really needed when $\#(\Omega)=\infty$ and in that case (in practice) we are approximating something that is essentially finite

Proposition 1.5.4 (Boole's inequality) If $A_{n} \in \mathcal{A}$ for every n, then (i) $P\left(\cup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)$ and (ii) $P\left(\cup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} P\left(A_{i}\right)$.
Proof: Recall from Exercise I.1.4,

$$
P\left(A_{1} \cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} \cap A_{2}\right) \leq P\left(A_{1}\right)+P\left(A_{2}\right)
$$

and now assume (i) holds for a specified $n \geq 2$. Then
$P\left(\cup_{i=1}^{n+1} A_{i}\right)=P\left(\left(\cup_{i=1}^{n} A_{i}\right) \cup A_{n+1}\right) \leq P\left(\cup_{i=1}^{n} A_{i}\right)+P\left(A_{n+1}\right) \leq \sum_{i=1}^{n+1} P\left(A_{i}\right)$
and by induction the result (i) holds for every n. Also, since

$$
P\left(\cup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)
$$

the LHS converges to $P\left(\cup_{i=1}^{\infty} A_{i}\right)$ (since $\cup_{i=1}^{n} A_{i}$ is monotone increasing and P is continuous) and the RHS converges to $\sum_{i=1}^{\infty} P\left(A_{i}\right)$ proving (ii).

Proposition 1.5.5 (Borel-Cantelli lemma) If $A_{n} \in \mathcal{A}$ for every n and $\sum_{i=1}^{\infty} P\left(A_{i}\right)<\infty$, then $P\left(\lim \sup A_{n}\right)=0$.

Proof: We have that $P\left(\lim \sup A_{n}\right)=P\left(\cap_{n=1}^{\infty} \cup_{i=n}^{\infty} A_{i}\right) \leq P\left(\cup_{i=n}^{\infty} A_{i}\right)$ for every n and, using Boole's inequality, $P\left(\cup_{i=n}^{\infty} A_{i}\right) \leq \sum_{i=n}^{\infty} P\left(A_{i}\right) \rightarrow 0$ as $n \rightarrow \infty$ which establishes the result.

- Borel-Cantelli says if the sum of all the probabilities $P\left(A_{i}\right)$ is finite, then it is impossible that infinitely many of the events are true

Example 1.5.1

- consider a sequence of experiments where a fair coin is tossed n times and let $A_{n}=$ " n heads are obtained in the n-th experiment" so $P\left(A_{n}\right)=1 / 2^{n}$ and (summing a geometric series)

$$
\sum_{i=1}^{\infty} P\left(A_{i}\right)=\sum_{i=1}^{\infty} \frac{1}{2^{i}}=\sum_{i=0}^{\infty} \frac{1}{2^{i}}-1=\frac{1}{1-1 / 2}-1=2-1=1<\infty
$$

and so by Borel-Cantelli the event that all heads occurs can only happen finitely many times as $n \rightarrow \infty$

1.6 Conditional Probability

- the most important concept in probability (relationships among variables, measuring evidence, etc.)

Definition 1.6.1 When (Ω, \mathcal{A}, P) is a probability model and $C \in \mathcal{A}$ satisfies $P(C)>0$, then the conditional probability model given C is $(\Omega, \mathcal{A}, P(\cdot \mid C))$ where $P(\cdot \mid C): \mathcal{A} \rightarrow[0,1]$ is given by

$$
P(A \mid C)=\frac{P(A \cap C)}{P(C)}
$$

Exercise 1.6.1 Prove that $(\Omega, \mathcal{A}, P(\cdot \mid C))$ is a probability model.

- application: initially the measure of belief that A is true is given by $P(A)$ but then the information is provided that C is true and so the belief measure is modified to $P(A \mid C)$
- principle of conditional probability: you must modify beliefs in this way
- note: if $A \cap C=\phi$, then $P(A \mid C)=0$ while $P(C \mid C)=1$ so really the probability model can be taken to be $(C, \mathcal{A} \cap C, P(\cdot \mid C))$ where

$$
\mathcal{A} \cap C=\{A \cap C: A \in \mathcal{A}\}
$$

is a σ-sigma (closure under complementation means complements wrt C)
Proposition 1.6.1 (Theorem of Total Probability) Suppose
$C_{1}, C_{2}, \ldots \in \mathcal{A}$ with $P\left(C_{i}\right)>0$ for all i and $\Omega=\cup_{i=1}^{\infty} C_{i}$ with $C_{i} \cap C_{j}=\phi$ for all i, j, then for any $A \in \mathcal{A}$

$$
P(A)=\sum_{i=1}^{\infty} P\left(C_{i}\right) P\left(A \mid C_{i}\right)
$$

Proof: Clearly $A=\cup_{i=1}^{\infty} A \cap C_{i}$ and the sets $C_{i} \cap A$ are mutually disjoint. Therefore,

$$
P(A)=\sum_{i=1}^{\infty} P\left(A \cap C_{i}\right)=\sum_{i=1}^{\infty} \frac{P\left(A \cap C_{i}\right)}{P\left(C_{i}\right)} P\left(C_{i}\right)=\sum_{i=1}^{\infty} P\left(C_{i}\right) P\left(A \mid C_{i}\right)
$$

- we call $\left\{C_{i}: i=1,2, \ldots\right\}$, as described in Prop. 1.5.1, a partition of Ω

Exercise 1.6.2 Prove that $A=\cup_{i=1}^{\infty}\left(A \cap C_{i}\right)$ and the sets $C_{i} \cap A$ are mutually disjoint when $\left\{C_{i}: i=1,2, \ldots\right\}$ is a partition of Ω.

- the value of the theorem lies in simplifying calculations

Example 1.6.1

- suppose there are three urns, with the following contents
urn 1 contains 50 white balls and 50 black balls
urn 2 contains 60 white balls and 80 black balls
urn 3 contains 20 white balls and 30 black balls
- an urn is selected according to a probabilistic mechanism where

$$
\begin{aligned}
& P(\text { "urn } 1 \text { is selected" })=2 / 3, \\
& P(\text { "urn } 2 \text { is selected" })=1 / 5, \\
& P(\text { "urn } 3 \text { is selected" })=2 / 15
\end{aligned}
$$

and then a ball is drawn from the selected urn after thorough mixing

- question: what is the probability that a white ball is selected?
$-\Omega=\{(1, B),(1, W),(2, B),(2, W),(3, B),(3, W)\}, \mathcal{A}=2^{\Omega}$
- partition Ω via $C_{i}=$ "urn i is selected" $=\{(i, B),(i, W)\}$
- by the Theorem of Total Probability
P ("white ball is selected")

$$
\begin{aligned}
& =\sum P\left(\text { "white ball is selected" } \left\lvert\, \begin{array}{c}
\text { "urn } \mathrm{i} \text { is } \\
\text { selected" }
\end{array}\right.\right) P\binom{\text { "urn } \mathrm{i} \text { is }}{\text { selected" }} \\
& =\sum P(\{(i, W)\} \mid\{(i, B),(i, W)\}) P(\{(i, B),(i, W)\}) \\
& =\frac{50}{100} \frac{2}{3}+\frac{60}{140} \frac{1}{5}+\frac{20}{50} \frac{2}{15}=\frac{248}{525}=0.47238
\end{aligned}
$$

