Probability and Stochastic Processes I - Lecture 3

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

Michael Evans University of Toronto http://Probability and Stochastic Processes I - Lectu

023 1 / 12

I.5 Continuity of P

- consider why P is required to be countably additive rather than just finitely additive

- for this we need to define what it means for a sequence of sets $A_n\subseteq\Omega$ to converge to a set $A\subseteq\Omega$

Definition 1.5.1 For a sequence $A_n \subseteq \Omega$ define

 $\liminf A_n = \bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} A_i = \{ \omega : \omega \text{ is in all but finitely many } A_i \},\\ \limsup A_n = \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_i = \{ \omega : \omega \text{ is in infinitely many } A_i \}.$

Then A_n converges to the set A, and write $\lim_{n\to\infty} A_n = A$ or $A_n \to A$, whenever $A = \liminf_{n\to\infty} A_n = \limsup_{n\to\infty} A_n$.

- $\liminf A_n \subseteq \limsup A_n$

- $\cap_{i=1}^{\infty} A_i \subseteq \cap_{i=2}^{\infty} A_i \subseteq \cdots$ and so $\cap_{i=n}^{\infty} A_i$ is an increasing sequence of sets

- $\bigcup_{i=1}^{\infty} A_i \supseteq \bigcup_{i=2}^{\infty} A_i \supseteq \cdots$ and so $\bigcup_{i=n}^{\infty} A_i$ is a decreasing sequence of sets

- if $A_n \in \mathcal{A}$ for every *n*, then $\bigcap_{i=n}^{\infty} A_i$, $\bigcup_{i=n}^{\infty} A_i \in \mathcal{A}$ for every *n* (they are "events") and this implies $\liminf A_n$, $\limsup A_n \in \mathcal{A}$ and also, when $A_n \to A$, then $A \in \mathcal{A}$ (are all events)

Proposition 1.5.1 If $A_n \in \mathcal{A}$ for every n and $A_1 \supseteq A_2 \supseteq \cdots$ (a monotone decreasing sequence of sets), then $A_n \to A = \bigcap_{i=1}^{\infty} A_i$.

Proof: Now let $\omega \in \bigcap_{i=n}^{\infty} A_i$ so $\omega \in A_n \subseteq A_{n-1} \subseteq \cdots \subseteq A_1$ which implies $\omega \in \bigcap_{i=1}^{\infty} A_i$ and therefore $\bigcap_{i=n}^{\infty} A_i \subseteq \bigcap_{i=1}^{\infty} A_i$ while it is clear that $\bigcap_{i=1}^{\infty} A_i \subseteq \bigcap_{i=n}^{\infty} A_i$ for every *n*. Therefore, $\bigcap_{i=n}^{\infty} A_i = \bigcap_{i=1}^{\infty} A_i$ for every *n* which implies $\lim \inf A_n = \bigcap_{i=1}^{\infty} A_i$. Also $\bigcup_{i=n}^{\infty} A_i = A_n$ by the monotonicity and so $\limsup A_n = \bigcap_{i=1}^{\infty} A_i$. Therefore, $A_n \to A = \bigcap_{i=1}^{\infty} A_i$.

Exercise 1.5.1 If $A_1 \subseteq A_2 \subseteq \cdots$ (a monotone increasing sequence of sets), then prove $A_n \to A = \bigcup_{i=1}^{\infty} A_i$.

★個 ▶ ★ 注 ▶ ★ 注 ▶ … 注

Proposition 1.5.2 (*Continuity of* P) If $A_n \in \mathcal{A}$ for every n and $A_n \to A$, then $P(A_n) \to P(A)$ as $n \to \infty$.

Proof: As noted $\bigcup_{i=n}^{\infty} A_i$ is a monotone decreasing sequence and so (Prop. 1.4.1) $\bigcup_{i=n}^{\infty} A_i \to \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_i = \limsup A_n$ and similarly (Ex. 1.4.1) $\bigcap_{i=n}^{\infty} A_i \to \liminf A_n$. So, if we prove the result for monotone sequences, then

$$P(\bigcup_{i=n}^{\infty} A_i) \rightarrow P(\limsup A_n),$$

$$P(\bigcap_{i=n}^{\infty} A_i) \rightarrow P(\liminf A_n).$$

Now note

$$P(\cap_{i=n}^{\infty}A_i) \leq P(A_n) \leq P(\bigcup_{i=n}^{\infty}A_i),$$

and since $A = \liminf A_n = \limsup A_n$ we would have $P(A_n) \to P(A)$.

Now suppose A_n is a monotone increasing sequence of sets, so (Ex. 1.4.1) $A_n \rightarrow A = \bigcup_{i=1}^{\infty} A_i$. Put

$$B_1=A_1$$
 , $B_2=A_2\cap A_1^c$, $B_3=A_3\cap A_2^c$, \dots

< 個 → < 注 → < 注 → □ 注

and note that the $B_n \in A$, are mutually disjoint with $A_n = \bigcup_{i=1}^n B_i$. Therefore, $P(A_n) = \sum_{i=1}^n P(B_i)$ and

$$\lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} \sum_{i=1}^n P(B_i) = \sum_{i=1}^\infty P(B_i)$$
$$= P(\bigcup_{i=1}^\infty B_i) = P(\bigcup_{i=1}^\infty A_i) = P(\lim_{n \to \infty} A_n).$$

A similar argument establishes this result when A_n is a monotone decreasing sequence of sets.

Exercise 1.5.2 Prove that if A_n is a monotone decreasing sequence of sets, then $\lim_{n\to\infty} P(A_n) = P(\lim_{n\to\infty} A_n)$. (Hint: A_n^c is a monotone increasing sequence of sets.)

- the converse (under finite additivity) of Prop. 1.4.2 is also true

Proposition 1.5.3 If $P : \mathcal{A} \to [0, 1]$ satisfies (i) $P(\Omega) = 1$, (ii) P is additive $(A, B \in \mathcal{A}$ mutually disjoint then $P(A \cup B) = P(A) + P(B))$ and (iii) $P(A_n) \to P(A)$ as $n \to \infty$ whenever $A_n \in \mathcal{A}$ for every n and $A_n \to A$, then P is a probability measure on \mathcal{A} . Proof: **Exercise 1.5.3**.

- so countable additivity is equivalent to continuity of P which is only really needed when $\#(\Omega) = \infty$ and in that case (in practice) we are approximating something that is essentially finite

Proposition 1.5.4 (Boole's inequality) If $A_n \in \mathcal{A}$ for every *n*, then (i) $P(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n P(A_i)$ and (ii) $P(\bigcup_{i=1}^\infty A_i) \leq \sum_{i=1}^\infty P(A_i)$.

Proof: Recall from Exercise I.1.4,

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2) \le P(A_1) + P(A_2)$$

and now assume (i) holds for a specified $n \ge 2$. Then

$$P(\bigcup_{i=1}^{n+1}A_i) = P((\bigcup_{i=1}^nA_i) \cup A_{n+1}) \le P(\bigcup_{i=1}^nA_i) + P(A_{n+1}) \le \sum_{i=1}^{n+1}P(A_i)$$

and by induction the result (i) holds for every n. Also, since

$$P(\cup_{i=1}^n A_i) \leq \sum_{i=1}^n P(A_i)$$

the LHS converges to $P(\bigcup_{i=1}^{\infty} A_i)$ (since $\bigcup_{i=1}^{n} A_i$ is monotone increasing and P is continuous) and the RHS converges to $\sum_{i=1}^{\infty} P(A_i)$ proving (ii). **Proposition 1.5.5** (*Borel-Cantelli lemma*) If $A_n \in A$ for every *n* and $\sum_{i=1}^{\infty} P(A_i) < \infty$, then $P(\limsup A_n) = 0$.

Proof: We have that $P(\limsup A_n) = P(\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_i) \le P(\bigcup_{i=n}^{\infty} A_i)$ for every *n* and, using Boole's inequality, $P(\bigcup_{i=n}^{\infty} A_i) \le \sum_{i=n}^{\infty} P(A_i) \to 0$ as $n \to \infty$ which establishes the result.

- Borel-Cantelli says if the sum of all the probabilities $P(A_i)$ is finite, then it is impossible that infinitely many of the events are true

Example 1.5.1

- consider a sequence of experiments where a fair coin is tossed n times and let $A_n = "n$ heads are obtained in the *n*-th experiment" so $P(A_n) = 1/2^n$ and (summing a geometric series)

$$\sum_{i=1}^{\infty} P(A_i) = \sum_{i=1}^{\infty} \frac{1}{2^i} = \sum_{i=0}^{\infty} \frac{1}{2^i} - 1 = \frac{1}{1 - 1/2} - 1 = 2 - 1 = 1 < \infty$$

and so by Borel-Cantelli the event that all heads occurs can only happen finitely many times as $n \to \infty$

- the most important concept in probability (relationships among variables, measuring evidence, etc.)

Definition 1.6.1 When (Ω, \mathcal{A}, P) is a probability model and $C \in \mathcal{A}$ satisfies P(C) > 0, then the *conditional probability model given* C is $(\Omega, \mathcal{A}, P(\cdot | C))$ where $P(\cdot | C) : \mathcal{A} \to [0, 1]$ is given by

$$P(A \mid C) = \frac{P(A \cap C)}{P(C)}. \blacksquare$$

Exercise 1.6.1 Prove that $(\Omega, \mathcal{A}, P(\cdot | C))$ is a probability model.

- application: initially the measure of belief that A is true is given by P(A) but then the information is provided that C is true and so the belief measure is modified to P(A | C)

- principle of conditional probability: you must modify beliefs in this way

- note: if $A \cap C = \phi$, then $P(A \mid C) = 0$ while $P(C \mid C) = 1$ so really the probability model can be taken to be $(C, A \cap C, P(\cdot \mid C))$ where

$$\mathcal{A} \cap \mathcal{C} = \{ A \cap \mathcal{C} : A \in \mathcal{A} \}$$

is a σ -sigma (closure under complementation means complements wrt C)

Proposition 1.6.1 (*Theorem of Total Probability*) Suppose $C_1, C_2, \ldots \in \mathcal{A}$ with $P(C_i) > 0$ for all *i* and $\Omega = \bigcup_{i=1}^{\infty} C_i$ with $C_i \cap C_j = \phi$ for all *i*, *j*, then for any $A \in \mathcal{A}$

$$P(A) = \sum_{i=1}^{\infty} P(C_i) P(A \mid C_i).$$

Proof: Clearly $A = \bigcup_{i=1}^{\infty} A \cap C_i$ and the sets $C_i \cap A$ are mutually disjoint. Therefore,

$$P(A) = \sum_{i=1}^{\infty} P(A \cap C_i) = \sum_{i=1}^{\infty} \frac{P(A \cap C_i)}{P(C_i)} P(C_i) = \sum_{i=1}^{\infty} P(C_i) P(A \mid C_i). \blacksquare$$

- we call $\{C_i : i = 1, 2, ...\}$, as described in Prop. 1.5.1, a *partition* of Ω

Exercise 1.6.2 Prove that $A = \bigcup_{i=1}^{\infty} (A \cap C_i)$ and the sets $C_i \cap A$ are mutually disjoint when $\{C_i : i = 1, 2, ...\}$ is a partition of Ω .

- the value of the theorem lies in simplifying calculations

Example 1.6.1

- suppose there are three urns, with the following contents

urn 1 contains 50 white balls and 50 black balls urn 2 contains 60 white balls and 80 black balls urn 3 contains 20 white balls and 30 black balls

- an urn is selected according to a probabilistic mechanism where

P("urn 1 is selected") = 2/3,P("urn 2 is selected") = 1/5,P("urn 3 is selected") = 2/15

and then a ball is drawn from the selected urn after thorough mixing

- question: what is the probability that a white ball is selected?

-
$$\Omega = \{(1, B), (1, W), (2, B), (2, W), (3, B), (3, W)\}, \mathcal{A} = 2^{\Omega}$$

- partition Ω via $C_i = "urn i$ is selected" = {(i, B), (i, W)}
- by the Theorem of Total Probability

$$P("white ball is selected")$$

$$= \sum P\left("white ball is selected" \mid "urn i is selected" \mid P\left("urn i is selected"\right) P\left("urn i is selected"\right)$$

$$= \sum P(\{(i, W)\} \mid \{(i, B), (i, W)\})P(\{(i, B), (i, W)\})$$

$$= \frac{50}{100}\frac{2}{3} + \frac{60}{140}\frac{1}{5} + \frac{20}{50}\frac{2}{15} = \frac{248}{525} = 0.47238$$