Probability and Stochastic Processes I - Lecture 4

Michael Evans
University of Toronto
http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

1.7 Statistical Independence

- recall

Definition 1.6.1 When (Ω, \mathcal{A}, P) is a probability model and $C \in \mathcal{A}$ satisfies $P(C)>0$, then the conditional probability model given C is $(\Omega, \mathcal{A}, P(\cdot \mid C))$ where $P(\cdot \mid C): \mathcal{A} \rightarrow[0,1]$ is given by

$$
P(A \mid C)=\frac{P(A \cap C)}{P(C)}
$$

- this leads to the concept of statistical independence (no change in belief, no relationship, no evidence, ...)
- basic idea follows from conditional probability as A and C are statistically independent whenever $P(A \mid C)=P(A)$ so knowing that C is true does not change our belief that A is true
- note $P(A \mid C)=P(A)$ implies

$$
P(A \cap C)=P(A) P(C)
$$

- but to cover the case when $P(C)=0$ the following definition is used

Definition 1.7.1 When (Ω, \mathcal{A}, P) is a probability model and $A, C \in \mathcal{A}$, then A and C are statistically independent whenever $P(A \cap C)=P(A) P(C)$.

- it is immediate from the definition that whenever $P(C)>0$ then

$$
P(A \mid C)=\frac{P(A \cap C)}{P(C)}=\frac{P(A) P(C)}{P(C)}=P(A)
$$

- if $P(C)=0$, then $P(A \cap C) \leq P(C)$, because $A \cap C \subset C$, and thus $P(A \cap C)=P(A) P(C)=0$ so A and C are stat. ind.

Exercise 1.7.1 If A and B are stat. ind. then show that every element of $\left\{\phi, A, A^{c}, \Omega\right\}$ (the σ-algebra generated by A) is stat. ind. of every element of $\left\{\phi, B, B^{c}, \Omega\right\}$ (the σ-algebra generated by B). So we say the two σ-algebras are stat. ind.

- now consider the stat. independence of more than two events
- it turns out to be easier to define what it means for an arbitrary collection of σ-algebras to be mutually statistically independent

Definition 1.7.2 When (Ω, \mathcal{A}, P) is a probability model and $\left\{\mathcal{A}_{\lambda}: \lambda \in \Lambda\right\}$ is a collection of sub σ-algebras of \mathcal{A}, then the \mathcal{A}_{λ} are mutually statistically independent whenever for any n and distinct $\lambda_{1}, \ldots, \lambda_{n} \in \Lambda$ and any $A_{1} \in \mathcal{A}_{\lambda_{1}}, \ldots, A_{n} \in \mathcal{A}_{\lambda_{n}}$, then

$$
P\left(A_{1} \cap \cdots \cap A_{n}\right)=\prod_{i=1}^{n} P\left(A_{i}\right)
$$

- note - this tells us how to define the mut. stat. ind. of events $A_{1}, \ldots, A_{n} \in \mathcal{A}$, namely, the σ-algebras $\left\{\phi, A_{i}, A_{i}^{c}, \Omega\right\}$ for $i=1, \ldots, n$ must be mut. stat. ind.

Example 1.7.1 $P(A \cap B \cap C)=P(A) P(B) P(C)$ does not imply mutual independence

- consider tossing a fair coin 3 times where head $=1$ and tail $=0$ so
$\Omega=\{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}$
with $\mathcal{A}=2^{\Omega}$ and put
$A=$ "first toss is a head"

$$
=\{(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}
$$

$B=$ "last two tosses are tails or first two tosses are heads"

$$
=\{(0,0,0),(1,0,0),(1,1,0),(1,1,1)\}
$$

$C=$ "last two tosses are different"

$$
=\{(0,0,1),(0,1,0),(1,0,1),(1,1,0)\}
$$

- with uniform P then $P(A)=P(B)=P(C)=1 / 2$,

$$
P(A \cap B \cap C)=P(\{(1,1,0)\})=1 / 8=P(A) P(B) P(C)
$$

but

$$
\begin{aligned}
P(A \cap B \cap \Omega) & =P(\{(1,0,0),(1,1,0),(1,1,1)\}) \\
& =3 / 8 \neq P(A) P(B) P(\Omega)=1 / 4
\end{aligned}
$$

and so A, B and C are not mut. stat. ind.
Example 1.7.2 Pairwise independence does not imply mutual independence.

- suppose $\Omega=\{1,2,3,4\}, \mathcal{A}=2^{\Omega}, A=\{1,2\}, B=\{1,3\}, C=\{1,4\}$
- $\Lambda=\{a, b, c\}, \mathcal{A}_{a}=\mathcal{A}(\{A\})=\{\phi,\{1,2\},\{3,4\}, \Omega\}$ and similarly
$\mathcal{A}_{b}=\mathcal{A}(\{B\}), \mathcal{A}_{c}=\mathcal{A}(\{C\})$
- assign $P(\{1\})=P(\{2\})=P(\{3\})=P(\{4\}=1 / 4$ (the uniform) so

$$
\begin{aligned}
P(A) & =P(B)=P(C)=1 / 2 \\
P(\{1\}) & =P(A \cap B)=P(A \cap C)=P(B \cap C)=1 / 4
\end{aligned}
$$

- so A and B are stat. ind., and similarly A and C are stat. ind. and B and C are stat. ind.
- this implies $\mathcal{A}(\{A\}), \mathcal{A}(\{B\})$ and $\mathcal{A}(\{C\})$ are pairwise independent but

$$
P(\{1\})=P(A \cap B \cap C) \neq 1 / 8=P(A) P(B) P(C)
$$

and so $\mathcal{A}(\{A\}), \mathcal{A}(\{B\})$ and $\mathcal{A}(\{C\})$ are not mutually statistically independent

Exercise 1.7.2 Suppose $\Omega=\{1,2\} \times\{1,2\}, \mathcal{A}=2^{\Omega}$ and P is the uniform probability measure.
(a) Show that $\mathcal{A}_{1}=\{\phi,\{1\} \times\{1,2\},\{2\} \times\{1,2\}, \Omega\}$ and $\mathcal{A}_{2}=\{\phi,\{1,2\} \times\{1\},\{1,2\} \times\{2\}, \Omega\}$ are sub σ-algebras of \mathcal{A}.
(b) Determine whether or not \mathcal{A}_{1} and \mathcal{A}_{2} are statistically independent.

8. Exercises for Chapter 1

Exercise 1.8.1 Evans and Rosenthal (E\&R)1.3.8

- the following 3 exercises deal with the inclusion-exclusion formulas

Exercise 1.8.2 Prove:

$$
\begin{aligned}
P(A \cup B \cup C)= & P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)- \\
& P(B \cap C)+P(A \cap B \cap C) .
\end{aligned}
$$

Exercise 1.8.3 Generalize the result in Ex. 1.8.2 to A_{1}, \ldots, A_{n} and prove using induction.

Exercise 1.8.4 Note that $P(A \cap B)=P(A)+P(B)-P(A \cup B)$. Generalize this to three events A, B, C. State the general result for A_{1}, \ldots, A_{n}.

Exercise 1.8.5 Suppose $A_{n}=(-1 / n, 1+(n-1) / n]$. Determine $\lim \inf A_{n}$ and $\lim \sup A_{n}$. If this sequence of Borel sets converges then determine the limiting probability when P is the $N(0,1)$ probability measure. Justify all your results.

Exercise 1.8.6 (E\&R) 1.6.10
Exercise 1.8.7 (E\&R) 1.6.11 Hint: for events A_{1}, A_{2}, \ldots what does the sequence of events $B_{n}=\cup_{i=1}^{n} A_{i}$ converge to?

