Probability and Stochastic Processes I - Lecture 5

Michael Evans
University of Toronto
http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

II. Random Variables and Stochastic Processes

II. 1 Definition of Random Variables and Vectors

- we start (as always) with a probability model (Ω, \mathcal{A}, P)
- a random variable isn't really "random", it is just a function X defined on Ω and taking values in R^{1}, namely, $X: \Omega \rightarrow R^{1}$
- think of Ω as a population and $X(\omega)$ is a measurement of some sort taken of ω
- we want to assign probabilities to events like $a \leq X(\omega) \leq b$, namely, $X(\omega) \in[a, b]$
- but the probabilities are on Ω not R^{1} so how do we do this? answer: through inverse images
- the inverse image of the set $B \subset R$ under the function $X: \Omega \rightarrow R^{1}$ is given by

$$
X^{-1} B=\{\omega \in \Omega: X(\omega) \in B\}
$$

and it is the set of ω that get mapped into B by

Example II.1.1 - suppose $\Omega=\{1,2,3,5,6\}$ and

$$
X(\omega)= \begin{cases}0.00 & \omega=1 \\ 0.20 & \omega=2 \\ 0.30 & \omega=3 \\ 0.01 & \omega=4 \\ 0.20 & \omega=5 \\ 0.20 & \omega=6\end{cases}
$$

- note that X is not $1-1$
if $B=[0,1]$, then $X^{-1} B=\Omega$
if $B=[0.00,0.25]$, then $X^{-1} B=\{1,2,4,5,6\}$,
if $B=\{0\}$, then $X^{-1} B=\{1\}$
if $B=(-\infty, 0)$, then $X^{-1} B=\phi$
- X^{-1} has the important property that it preserves Boolean operations

$$
\begin{aligned}
X^{-1}\left(B_{1} \cup B_{2}\right) & =X^{-1} B_{1} \cup X^{-1} B_{2} \\
X^{-1}\left(B_{1} \cap B_{2}\right) & =X^{-1} B_{1} \cap X^{-1} B_{2} \\
X^{-1} B^{c} & =\left(X^{-1} B\right)^{c}
\end{aligned}
$$

Exercise II.1.1 Prove that X^{-1} preserves Boolean operations and if $B_{1} \cap B_{2}=\phi$, then $X^{-1} B_{1}$ and $X^{-1} B_{2}$ are also disjoint.
note - this property holds for any number of Boolean operations, e.g., $X^{-1} \cup_{i=1}^{\infty} B_{i}=\cup_{i=1}^{\infty} X^{-1} B_{i}$

- when $X: \Omega \rightarrow R^{1}$ it is natural to assign the probability $P\left(X^{-1} B\right)$ to the event $X(\omega) \in B$ since $X(\omega) \in B$ iff $\omega \in X^{-1} B$
- but for this we need to place a restriction on X

Definition II. 1 A random variable (r.v.) is a function $X: \Omega \rightarrow R^{1}$ with the property that for any $B \in \mathcal{B}^{1}$ (B is a Borel set in R^{1}) then $X^{-1} B \in \mathcal{A}$.

- then when X is a r.v. the assignment $P\left(\right.$ " $\left.X(\omega) \in B^{\prime \prime}\right)=P\left(X^{-1} B\right)$ can be made

Proposition II.1.1 When X is a r.v., then P_{X} defined on \mathcal{B}^{1} by $P_{X}(B)=P\left(X^{-1} B\right)$ is a probability measure on \mathcal{B}^{1} called the marginal probability measure of X.

Proof: Clearly $P_{X}: \mathcal{B}^{1} \rightarrow[0,1]$. Now
(i) $P_{X}\left(R^{1}\right)=P\left(X^{-1} R^{1}\right)=P(\Omega)=1$ so P_{X} is normed and (ii) if B_{1}, B_{2}, \ldots are mutually disjoint elements of \mathcal{B}^{1}, then

$$
\begin{aligned}
P_{X}\left(\cup_{i=1}^{\infty} B_{i}\right) & =P\left(X^{-1} \cup_{i=1}^{\infty} B_{i}\right)=P\left(\cup_{i=1}^{\infty} X^{-1} B_{i}\right) \\
& =\sum_{i=1}^{\infty} P\left(X^{-1} B_{i}\right)=\sum_{i=1}^{\infty} P_{X}\left(B_{i}\right)
\end{aligned}
$$

and P_{X} is countably additive.

- a r.v. X has an associated probability model $\left(R^{1}, \mathcal{B}^{1}, P_{X}\right)$

Example II.1.2 - when $\mathcal{A}=2^{\Omega}$, then any $X: \Omega \rightarrow R^{1}$ is a r.v.

- how do we check whether or not a specific $X: \Omega \rightarrow R^{1}$ is a r.v.?

Proposition II.1.2 If $X^{-1}(a, b] \in \mathcal{A}$ for every $a, b \in R^{1}$, then X is a r.v. Proof: Let

$$
\mathcal{B}_{*}^{1}=\left\{B \in \mathcal{B}^{1}: X^{-1} B \in \mathcal{A}\right\} .
$$

Since $\phi \in \mathcal{B}^{1}$ and $X^{-1} \phi=\phi \in \mathcal{A}$ then $\phi \in \mathcal{B}_{*}^{1}$. If $B \in \mathcal{B}_{*}^{1}$ then $X^{-1} B \in \mathcal{A}$ which implies $\left(X^{-1} B\right)^{c}=X^{-1} B^{c} \in \mathcal{A}$ and since $B^{c} \in \mathcal{B}^{1}$ this implies $B^{c} \in \mathcal{B}_{*}^{1}$. If $B_{1}, B_{2}, \ldots \in \mathcal{B}_{*}^{1}$ then $X^{-1} B_{1}, X^{-1} B_{2}, \ldots \in \mathcal{A}$ which implies that $\cup_{i=1}^{\infty} X^{-1} B_{i}=X^{-1} \cup_{i=1}^{\infty} B_{i} \in \mathcal{A}$ and since $\cup_{i=1}^{\infty} B_{i} \in \mathcal{B}^{1}$ this implies $\cup_{i=1}^{\infty} B_{i} \in \mathcal{B}_{*}^{1}$. Therefore, \mathcal{B}_{*}^{1} is a sub σ-algebra of \mathcal{B}^{1}.
By hypothesis, $(a, b] \in \mathcal{B}_{*}^{1}$ for every $a, b \in R^{1}$ and so $\mathcal{B}^{1} \subset \mathcal{B}_{*}^{1}$ as \mathcal{B}^{1} is the smallest containing all the intervals $(a, b]$. Therefore, $\mathcal{B}_{*}^{1}=\mathcal{B}^{1}$. This implies $X^{-1} B \in \mathcal{A}$ for every $B \in \mathcal{B}^{1}$ and so X is a r.v.

- note - $(a, b]=(-\infty, b] \backslash(-\infty, a]$ so "If $X^{-1}(-\infty, b] \in \mathcal{A}$ for every $b \in R^{1}$, then X is a r.v." is also true.

Example II.1.2

- let $\Omega=R^{1}, \mathcal{A}=\mathcal{B}^{1}$
- let $X: \Omega \rightarrow R^{1}$ be given by $X(\omega)=c$ for all ω, so X is constant, is R^{1} a r.v.?
- for any $(-\infty, b]$ then

$$
X^{-1}(-\infty, b]=\left\{\begin{array}{cl}
\Omega & \text { if } c \leq b \\
\phi & \text { if } c>b
\end{array}\right.
$$

so $X^{-1}(-\infty, b] \in \mathcal{A}$ for every b and X is a r.v.

- now consider $X(\omega)=\omega$, for any $(-\infty, b]$ then
$X^{-1}(-\infty, b]=(-\infty, b] \in \mathcal{A}$ for every b, so X is a r.v.
- consider $X(\omega)=\omega^{2}$, for any $(-\infty, b]$ then

$$
X^{-1}(-\infty, b]=\left\{\begin{array}{cl}
{[-\sqrt{b}, \sqrt{b}]} & \text { if } b \geq 0 \\
\phi & \text { if } b<0
\end{array}\right.
$$

so $X^{-1}(-\infty, b] \in \mathcal{A}$ for every b and X is a r.v.

Exercise II.1.2 For Example II.1.2 show that $X(\omega)=\omega^{n}$ is a r.v. for any $n \in \mathbb{Z}$.
Example II.1.3 - let $\Omega=\{1,2,3,4\}, \mathcal{A}=\{\phi,\{1,2\},\{3,4\}, \Omega\}$ and $X: \Omega \rightarrow R^{1}$ be given by

$$
X(1)=3, X(2)=4, X(3)=5, X(4)=5
$$

- then let $B=\{4\} \in \mathcal{B}^{1}$ and note that $X^{-1}\{4\}=\{2\}$ and $\{2\} \notin \mathcal{A}$ so X is not a r.v.

Example II.1.4 - quite often $\Omega=R^{k}, \mathcal{A}=\mathcal{B}^{k}$ and almost any $X: \Omega \rightarrow R^{1}$ that you can think of is a r.v.

- in particular if X is continuous then X is a random variable
- suppose $X\left(\omega_{1}, \ldots, \omega_{k}\right)=\omega_{i}=$ projection on the i-th coordinate
- then X is continuous and so is a random variable but also

$$
\begin{aligned}
X^{-1}(-\infty, b] & =\left\{\left(\omega_{1}, \ldots, \omega_{k}\right) \in R^{k}: \omega_{i} \leq b\right\} \\
& =R^{1} \times \cdots \times(-\infty, b] \times \cdots \times R^{1} \in \mathcal{B}^{n}
\end{aligned}
$$

and so X is a r.v.

Proposition II.1.3 If X, Y are r.v.'s defined on Ω, then (i) $W=X+Y$ is a r.v. and (ii) $W=X Y$ is a r.v.

Proof: (i) Let $c_{n} \in \mathbb{Q}$ be s.t. $c_{n} \downarrow b$. Suppose $\omega \in W^{-1}(-\infty, b]=\{\omega: X(\omega)+Y(\omega) \leq b\}$. Then $\exists q \in \mathbb{Q}$ s.t. $X(\omega) \leq q, Y(\omega) \leq c_{n}-q$ s.t.

$$
\omega \in X^{-1}(-\infty, q] \cap Y^{-1}\left(-\infty, c_{n}-q\right] \in \mathcal{A}
$$

and putting

$$
C_{n}=\cup_{q \in \mathbb{Q}}\{\omega: X(\omega) \leq q\} \cap\left\{\omega: Y(\omega) \leq c_{n}-q\right\}
$$

we have $W^{-1}(-\infty, b] \subset C_{n}$ for every n and $C_{n} \in \mathcal{A}$ (since Q is countable C_{n} is a countable union of elements of \mathcal{A}). Now note that C_{n} is monotone decreasing so $\lim _{n \rightarrow \infty} C_{n}=\cap_{n=1}^{\infty} C_{n}=W^{-1}(-\infty, b] \in \mathcal{A}$ and $W=X+Y$ is a r.v.
(ii) Exercise II.1.3. (Challenge).

Exercise II.1.4. Prove that a polynomial $p(X)=\sum_{i=0}^{n} a_{i} X^{i}$ is a r.v. whenever X is a r.v.
Exercise II.1.5. When $a, b, c \in R^{1}$ and X, Y r.v.'s then prove that $a X+b Y+c$ is a r.v.

- later we will need the σ-algebra generated by r.v. X

Proposition II.1.3 When X is a r.v., then

$$
\mathcal{A}_{X}=X^{-1} \mathcal{B}^{1}=\left\{X^{-1} B: B \in \mathcal{B}^{1}\right\}
$$

is a sub σ-algebra of \mathcal{A} called the σ-algebra on Ω generated by X.
Proof: (i) $\phi=X^{-1} \phi \in \mathcal{A}_{X}$. (ii) If $A_{1}, A_{2}, \ldots \in \mathcal{A}_{X}$, then there exist $B_{1}, B_{2}, \ldots \in \mathcal{B}^{1}$ such that $A_{i}=X^{-1} B_{i}$. Then

$$
\cup_{i=1}^{\infty} A_{i}=\cup_{i=1}^{\infty} X^{-1} B_{i}=X^{-1} \cup_{i=1}^{\infty} B_{i} \in \mathcal{A}_{X}
$$

since $\cup_{i=1}^{\infty} B_{i} \in \mathcal{B}^{1}$. (iii) If $A \in \mathcal{A}_{X}$, then there exists $B \in \mathcal{B}^{1}$ such that $A=X^{-1} B$. This implies $A^{c}=\left(X^{-1} B\right)^{c}=X^{-1} B^{c} \in \mathcal{A}_{X}$ since $B^{c} \in \mathcal{B}^{1}$. We conclude that \mathcal{A}_{X} is a sub σ-algebra of \mathcal{A}. note also can write $\mathcal{A}_{X}=\mathcal{A}\left(\left\{X^{-1}(a, b]: a, b \in R^{1}\right\}\right)$

Definition II. 2 A random vector is a function $\mathbf{X}: \Omega \rightarrow R^{k}$ with the property that for any $B \in \mathcal{B}^{k}\left(B\right.$ is a Borel set in $\left.R^{k}\right)$ then $\mathbf{X}^{-1} B=\{\omega: \mathbf{X}(\omega) \in B\} \in \mathcal{A}$.

- similar results hold for random vectors as for random variables
- if \mathbf{X}, \mathbf{Y} are random vectors $a, b \in R^{1}$, then $a \mathbf{X}+b \mathbf{Y}$ is a random vector
- $P_{\mathbf{X}}: \mathcal{B}^{k} \rightarrow[0,1]$ given by $P_{\mathbf{X}}(B)=P\left(\mathbf{X}^{-1} B\right)$ is the marginal probability measure of \mathbf{X}
- $\mathcal{A}_{\mathbf{X}}=\mathbf{X}^{-1} \mathcal{B}^{k}=\left\{\mathbf{X}^{-1} B: B \in \mathcal{B}^{k}\right\}=\mathcal{A}\left(\left\{\mathbf{X}^{-1}(\mathbf{a}, \mathbf{b}]: \mathbf{a}, \mathbf{b} \in R^{k}\right\}\right)$ is the σ-algebra on Ω generated by \mathbf{X}

Example II.1.5 - suppose $\Omega=\{1,2,3\}, \mathcal{A}=2^{\Omega}$ and let P be the uniform probability measure

- define X_{1}, X_{2} by

$$
\begin{aligned}
& X_{1}(1)=0, X_{1}(2)=0, X_{1}(3)=1 \\
& X_{2}(1)=1, X_{2}(2)=0, X_{2}(3)=0
\end{aligned}
$$

and let $\mathbf{X}=\binom{X_{1}}{X_{2}}: \Omega \rightarrow R^{2}$ be given by $\mathbf{X}(\omega)=\binom{X_{1}(\omega)}{X_{2}(\omega)}$

- then for $B \in \mathcal{B}^{2}$

$$
P_{\mathbf{X}}(B)=\left\{\begin{array}{cc}
1 & \text { if }(0,0),(0,1),(1,0) \in B \\
2 / 3 & \text { if only two of }(0,0),(0,1),(1,0) \in B \\
1 / 3 & \text { if only one of }(0,0),(0,1),(1,0) \in B \\
0 & \text { if none of }(0,0),(0,1),(1,0) \in B
\end{array}\right.
$$

Exercise II.1.6. Compute $P_{\mathbf{X}}$ in Example II.1.5 when $P(\{1\})=1 / 2, P(\{2\})=1 / 3, P(\{3\})=1 / 6$ and

$$
\begin{aligned}
& X_{1}(1)=0, X_{1}(2)=0, X_{1}(3)=1 \\
& X_{2}(1)=1, X_{2}(2)=1, X_{2}(3)=0
\end{aligned}
$$

- we can obtain the Borel sets on R^{k} from the Borel sets on R^{1} Proposition II.1.4 If $B_{1}, B_{2}, \ldots, B_{k} \in \mathcal{B}^{1}$, then

$$
B_{1} \times B_{2} \times \cdots \times B_{k}=\left\{\left(x_{1}, \ldots, x_{k}\right)^{\prime}: x_{i} \in B_{i}, i=1, \ldots, k\right\} \in \mathcal{B}^{k}
$$

and the smallest σ-algebra on R^{k} containing all such sets is \mathcal{B}^{k}.
Proof: Consider the sets $R^{1} \times \cdots \times B_{i} \times \cdots \times R^{1}$ that only restrict the i-th coordinate. Then $\left\{R^{1} \times \cdots \times B_{i} \times \cdots \times R^{1}: B_{i} \in \mathcal{B}^{1}\right\}$ is a sub σ-algebra of \mathcal{B}^{k} (Exercise II.1.7) and so

$$
B_{1} \times B_{2} \times \cdots \times B_{k}=\cap_{i=1}^{k}\left(R^{1} \times \cdots \times B_{i} \times \cdots \times R^{1}\right) \in \mathcal{B}^{k}
$$

Since each k-cell $(\mathbf{a}, \mathbf{b}]=\left(a_{1}, b_{1}\right] \times \cdots \times\left(a_{k}, b_{k}\right]$ is of this form there cannot be a smaller σ-algebra on R^{k} containing all such sets than \mathcal{B}^{k}.

Proposition II.1.5 If $X_{i}: \Omega \rightarrow R^{1}$ is a r.v. for $i=1, \ldots, k$, then $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)^{\prime}: \Omega \rightarrow R^{k}$ is a random vector.
Proof: Suppose $B_{1}, B_{2}, \ldots, B_{k} \in \mathcal{B}^{1}$ so $B_{1} \times B_{2} \times \cdots \times B_{k} \in \mathcal{B}^{k}$ by the previous result. Then

$$
\begin{aligned}
\mathbf{X}^{-1}\left(B_{1} \times B_{2} \times \cdots \times B_{k}\right) & =\left\{\omega: \mathbf{X}(\omega) \in B_{1} \times B_{2} \times \cdots \times B_{k}\right\} \\
& =\left\{\omega: X_{i}(\omega) \in B_{i} \text { for } i=1, \ldots, k\right\} \\
& =\cap_{i=1}^{k} X_{i}^{-1} B_{i} \in \mathcal{A} .
\end{aligned}
$$

Since this implies $\mathbf{X}^{-1}(\mathbf{a}, \mathbf{b}] \in \mathcal{A}$ for every $\mathbf{a}, \mathbf{b} \in R^{k}$ this implies (as in Prop. II.1.2) that $\mathbf{X}^{-1} B \in \mathcal{A}$ for every $B \in \mathcal{B}^{k}$ and \mathbf{X} is a random vector.

