Probability and Stochastic Processes I - Lecture 5

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

Michael Evans University of Toronto http://Probability and Stochastic Processes I - Lectu

- we start (as always) with a probability model (Ω, \mathcal{A}, P)

- a random variable isn't really "random", it is just a function X defined on Ω and taking values in R^1 , namely, $X : \Omega \to R^1$

- think of Ω as a population and $X(\omega)$ is a measurement of some sort taken of ω

- we want to assign probabilities to events like $\textit{a} \leq \textit{X}(\omega) \leq \textit{b},$ namely, $\textit{X}(\omega) \in [\textit{a},\textit{b}]$

- but the probabilities are on Ω not R^1 so how do we do this? answer: through $inverse\ images$

- the inverse image of the set $B \subset R$ under the function $X : \Omega \to R^1$ is given by

$$X^{-1}B = \{\omega \in \Omega : X(\omega) \in B\},$$

and it is the set of ω that get mapped into B by X . A set $A = \{x, y, z\}$

Example II.1.1 - suppose $\Omega = \{1, 2, 3, 5, 6\}$ and

$$X(\omega) = \begin{cases} 0.00 & \omega = 1\\ 0.20 & \omega = 2\\ 0.30 & \omega = 3\\ 0.01 & \omega = 4\\ 0.20 & \omega = 5\\ 0.20 & \omega = 6 \end{cases}$$

- note that X is not 1-1

if
$$B = [0, 1]$$
, then $X^{-1}B = \Omega$
if $B = [0.00, 0.25]$, then $X^{-1}B = \{1, 2, 4, 5, 6\}$,
if $B = \{0\}$, then $X^{-1}B = \{1\}$
if $B = (-\infty, 0)$, then $X^{-1}B = \phi$

< 回 ト < 三 ト < 三 ト

- X^{-1} has the important property that it preserves Boolean operations

$$\begin{array}{rcl} X^{-1}(B_1 \cup B_2) &=& X^{-1}B_1 \cup X^{-1}B_2 \\ X^{-1}(B_1 \cap B_2) &=& X^{-1}B_1 \cap X^{-1}B_2 \\ & X^{-1}B^c &=& (X^{-1}B)^c \end{array}$$

Exercise II.1.1 Prove that X^{-1} preserves Boolean operations and if $B_1 \cap B_2 = \phi$, then $X^{-1}B_1$ and $X^{-1}B_2$ are also disjoint.

note - this property holds for any number of Boolean operations, e.g., $X^{-1} \cup_{i=1}^{\infty} B_i = \cup_{i=1}^{\infty} X^{-1} B_i$

- when $X : \Omega \to R^1$ it is natural to assign the probability $P(X^{-1}B)$ to the event $X(\omega) \in B$ since $X(\omega) \in B$ iff $\omega \in X^{-1}B$

- but for this we need to place a restriction on X

Definition II.1 A random variable (r.v.) is a function $X : \Omega \to R^1$ with the property that for any $B \in B^1$ (B is a Borel set in R^1) then $X^{-1}B \in A$.

- then when X is a r.v. the assignment $P(``X(\omega) \in B") = P(X^{-1}B)$ can be made

Proposition II.1.1 When X is a r.v., then P_X defined on \mathcal{B}^1 by $P_X(B) = P(X^{-1}B)$ is a probability measure on \mathcal{B}^1 called the *marginal* probability measure of X.

Proof: Clearly $P_X : \mathcal{B}^1 \to [0, 1]$. Now (i) $P_X(R^1) = P(X^{-1}R^1) = P(\Omega) = 1$ so P_X is normed and (ii) if B_1, B_2, \ldots are mutually disjoint elements of \mathcal{B}^1 , then

$$P_X(\bigcup_{i=1}^{\infty} B_i) = P(X^{-1} \cup_{i=1}^{\infty} B_i) = P(\bigcup_{i=1}^{\infty} X^{-1} B_i)$$
$$= \sum_{i=1}^{\infty} P(X^{-1} B_i) = \sum_{i=1}^{\infty} P_X(B_i)$$

and P_X is countably additive.

- a r.v. X has an associated probability model $(R^1, \mathcal{B}^1, \mathcal{P}_X)$

Example II.1.2 - when $\mathcal{A} = 2^{\Omega}$, then any $X : \Omega \to \mathbb{R}^1$ is a r.v.

- how do we check whether or not a specific $X : \Omega \to R^1$ is a r.v.?

Proposition II.1.2 If $X^{-1}(a, b] \in \mathcal{A}$ for every $a, b \in \mathbb{R}^1$, then X is a r.v. Proof: Let

$$\mathcal{B}^1_* = \{ B \in \mathcal{B}^1 : X^{-1}B \in \mathcal{A} \}.$$

Since $\phi \in \mathcal{B}^1$ and $X^{-1}\phi = \phi \in \mathcal{A}$ then $\phi \in \mathcal{B}^1_*$. If $B \in \mathcal{B}^1_*$ then $X^{-1}B \in \mathcal{A}$ which implies $(X^{-1}B)^c = X^{-1}B^c \in \mathcal{A}$ and since $B^c \in \mathcal{B}^1$ this implies $B^c \in \mathcal{B}^1_*$. If $B_1, B_2, \ldots \in \mathcal{B}^1_*$ then $X^{-1}B_1, X^{-1}B_2, \ldots \in \mathcal{A}$ which implies that $\bigcup_{i=1}^{\infty} X^{-1}B_i = X^{-1} \bigcup_{i=1}^{\infty} B_i \in \mathcal{A}$ and since $\bigcup_{i=1}^{\infty} B_i \in \mathcal{B}^1$ this implies $\bigcup_{i=1}^{\infty} B_i \in \mathcal{B}^1_*$. Therefore, \mathcal{B}^1_* is a sub σ -algebra of \mathcal{B}^1 .

By hypothesis, $(a, b] \in \mathcal{B}^1_*$ for every $a, b \in \mathbb{R}^1$ and so $\mathcal{B}^1 \subset \mathcal{B}^1_*$ as \mathcal{B}^1 is the smallest containing all the intervals (a, b]. Therefore, $\mathcal{B}^1_* = \mathcal{B}^1$. This implies $X^{-1}B \in \mathcal{A}$ for every $B \in \mathcal{B}^1$ and so X is a r.v.

- note -
$$(a, b] = (-\infty, b] \setminus (-\infty, a]$$
 so "If $X^{-1}(-\infty, b] \in \mathcal{A}$ for every $b \in \mathbb{R}^1$, then X is a r.v." is also true.

Example II.1.2 - let $\Omega = R^1$, $\mathcal{A} = \mathcal{B}^1$

- let $X : \Omega \to R^1$ be given by $X(\omega) = c$ for all ω , so X is constant, is R^1 a r.v.?

- for any $(-\infty, b]$ then

$$X^{-1}(-\infty, b] = \left\{ egin{array}{c} \Omega & ext{if } c \leq b \ \phi & ext{if } c > b \end{array}
ight.$$

so $X^{-1}(-\infty, b] \in \mathcal{A}$ for every b and X is a r.v.

- now consider $X(\omega) = \omega$, for any $(-\infty, b]$ then $X^{-1}(-\infty, b] = (-\infty, b] \in \mathcal{A}$ for every b, so X is a r.v.

- consider $X(\omega)=\omega^2$, for any $(-\infty, \textit{b}]$ then

$$X^{-1}(-\infty, b] = \begin{cases} [-\sqrt{b}, \sqrt{b}] & \text{if } b \ge 0\\ \phi & \text{if } b < 0 \end{cases}$$

so
$$X^{-1}(-\infty, b] \in \mathcal{A}$$
 for every b and X is a r.v.

Michael Evans University of Toronto http://probability and Stochastic Processes I - Lectu

Exercise II.1.2 For Example II.1.2 show that $X(\omega) = \omega^n$ is a r.v. for any $n \in \mathbb{Z}$.

Example II.1.3 - let $\Omega = \{1, 2, 3, 4\}$, $\mathcal{A} = \{\phi, \{1, 2\}, \{3, 4\}, \Omega\}$ and $X : \Omega \to R^1$ be given by

$$X(1) = 3, X(2) = 4, X(3) = 5, X(4) = 5$$

- then let $B = \{4\} \in \mathcal{B}^1$ and note that $X^{-1}\{4\} = \{2\}$ and $\{2\} \notin \mathcal{A}$ so X is not a r.v.

Example II.1.4 - quite often $\Omega = R^k$, $\mathcal{A} = \mathcal{B}^k$ and almost any $X : \Omega \to R^1$ that you can think of is a r.v.

- in particular if X is continuous then X is a random variable

- suppose $X(\omega_1, \dots, \omega_k) = \omega_i$ = projection on the i-th coordinate
- then X is continuous and so is a random variable but also

$$\begin{array}{ll} X^{-1}(-\infty,b] &=& \{(\omega_1,\ldots,\omega_k)\in R^k:\omega_i\leq b\}\\ &=& R^1\times\cdots\times(-\infty,b]\times\cdots\times R^1\in \mathcal{B}^n \end{array}$$

and so X is a r.v. ■

Proposition II.1.3 If X, Y are r.v.'s defined on Ω , then (i) W = X + Y is a r.v. and (ii) W = XY is a r.v.

Proof: (i) Let
$$c_n \in \mathbb{Q}$$
 be s.t. $c_n \downarrow b$. Suppose
 $\omega \in W^{-1}(-\infty, b] = \{\omega : X(\omega) + Y(\omega) \le b\}$. Then $\exists q \in \mathbb{Q}$ s.t.
 $X(\omega) \le q, Y(\omega) \le c_n - q$ s.t.

$$\omega \in X^{-1}(-\infty, q] \cap Y^{-1}(-\infty, c_n - q] \in \mathcal{A}$$

and putting

$$C_n = \cup_{q \in \mathbb{Q}} \{ \omega : X(\omega) \le q \} \cap \{ \omega : Y(\omega) \le c_n - q \}$$

we have $W^{-1}(-\infty, b] \subset C_n$ for every n and $C_n \in \mathcal{A}$ (since \mathbb{Q} is countable C_n is a countable union of elements of \mathcal{A}). Now note that C_n is monotone decreasing so $\lim_{n\to\infty} C_n = \bigcap_{n=1}^{\infty} C_n = W^{-1}(-\infty, b] \in \mathcal{A}$ and W = X + Y is a r.v.

(ii) Exercise II.1.3. (Challenge).

Exercise II.1.4. Prove that a polynomial $p(X) = \sum_{i=0}^{n} a_i X^i$ is a r.v. whenever X is a r.v.

Exercise II.1.5. When $a, b, c \in R^1$ and X, Y r.v.'s then prove that aX + bY + c is a r.v.

- later we will need the σ -algebra generated by r.v. X

Proposition II.1.3 When X is a r.v., then

$$\mathcal{A}_X = X^{-1}\mathcal{B}^1 = \{X^{-1}B : B \in \mathcal{B}^1\}$$

is a sub σ -algebra of \mathcal{A} called the σ -algebra on Ω generated by X.

Proof: (i) $\phi = X^{-1}\phi \in \mathcal{A}_X$. (ii) If $A_1, A_2, \ldots \in \mathcal{A}_X$, then there exist $B_1, B_2, \ldots \in \mathcal{B}^1$ such that $A_i = X^{-1}B_i$. Then

$$\cup_{i=1}^{\infty}A_i=\cup_{i=1}^{\infty}X^{-1}B_i=X^{-1}\cup_{i=1}^{\infty}B_i\in\mathcal{A}_X$$

since $\bigcup_{i=1}^{\infty} B_i \in \mathcal{B}^1$. (iii) If $A \in \mathcal{A}_X$, then there exists $B \in \mathcal{B}^1$ such that $A = X^{-1}B$. This implies $A^c = (X^{-1}B)^c = X^{-1}B^c \in \mathcal{A}_X$ since $B^c \in \mathcal{B}^1$. We conclude that \mathcal{A}_X is a sub σ -algebra of \mathcal{A} .

note also can write
$$\mathcal{A}_X = \mathcal{A}(\{X^{-1}(a, b] : a, b \in \mathbb{R}^1_{*}\})_{=}$$

Definition II.2 A random vector is a function $\mathbf{X} : \Omega \to R^k$ with the property that for any $B \in \mathcal{B}^k$ (B is a Borel set in R^k) then $\mathbf{X}^{-1}B = \{\omega : \mathbf{X}(\omega) \in B\} \in \mathcal{A}.$

- similar results hold for random vectors as for random variables

- if **X**, **Y** are random vectors $a, b \in R^1$, then $a\mathbf{X}+b\mathbf{Y}$ is a random vector

- $P_X : B^k \to [0, 1]$ given by $P_X(B) = P(X^{-1}B)$ is the marginal probability measure of X

- $\mathcal{A}_{\mathbf{X}} = \mathbf{X}^{-1}\mathcal{B}^k = {\mathbf{X}^{-1}B : B \in \mathcal{B}^k} = \mathcal{A}({\mathbf{X}^{-1}(\mathbf{a}, \mathbf{b}] : \mathbf{a}, \mathbf{b} \in \mathbb{R}^k})$ is the σ -algebra on Ω generated by \mathbf{X}

Example II.1.5 - suppose $\Omega = \{1, 2, 3\}$, $\mathcal{A} = 2^{\Omega}$ and let P be the uniform probability measure

- define X_1, X_2 by

$$\begin{array}{rcl} X_1(1) &=& 0, X_1(2) = 0, X_1(3) = 1\\ X_2(1) &=& 1, X_2(2) = 0, X_2(3) = 0 \end{array}$$

and let $\mathbf{X} = \begin{pmatrix} X_1\\ X_2 \end{pmatrix} : \Omega \to R^2$ be given by $\mathbf{X}(\omega) = \begin{pmatrix} X_1(\omega)\\ X_2(\omega) \end{pmatrix}$
- then for $B \in \mathcal{B}^2$

$$P_{\mathbf{X}}(B) = \begin{cases} 1 & \text{if } (0,0), (0,1), (1,0) \in B \\ 2/3 & \text{if only two of } (0,0), (0,1), (1,0) \in B \\ 1/3 & \text{if only one of } (0,0), (0,1), (1,0) \in B \\ 0 & \text{if none of } (0,0), (0,1), (1,0) \in B \\ \end{cases}$$

Exercise II.1.6. Compute P_X in **Example II.1.5** when $P(\{1\}) = 1/2$, $P(\{2\}) = 1/3$, $P(\{3\}) = 1/6$ and

$$\begin{array}{rcl} X_1(1) &=& 0, X_1(2) = 0, X_1(3) = 1 \\ X_2(1) &=& 1, X_2(2) = 1, X_2(3) = 0. \end{array}$$

- we can obtain the Borel sets on R^k from the Borel sets on R^1 **Proposition II.1.4** If $B_1, B_2, ..., B_k \in B^1$, then

$$B_1 \times B_2 \times \cdots \times B_k = \{(x_1, \ldots, x_k)' : x_i \in B_i, i = 1, \ldots, k\} \in \mathcal{B}^k.$$

and the smallest σ -algebra on \mathbb{R}^k containing all such sets is \mathcal{B}^k .

Proof: Consider the sets $R^1 \times \cdots \times B_i \times \cdots \times R^1$ that only restrict the *i*-th coordinate. Then $\{R^1 \times \cdots \times B_i \times \cdots \times R^1 : B_i \in \mathcal{B}^1\}$ is a sub σ -algebra of \mathcal{B}^k (**Exercise II.1.7**) and so

$$B_1 \times B_2 \times \cdots \times B_k = \cap_{i=1}^k (R^1 \times \cdots \times B_i \times \cdots \times R^1) \in \mathcal{B}^k$$

Since each k-cell $(\mathbf{a}, \mathbf{b}] = (a_1, b_1] \times \cdots \times (a_k, b_k]$ is of this form there cannot be a smaller σ -algebra on \mathbb{R}^k containing all such sets than \mathcal{B}^k .

Proposition II.1.5 If $X_i : \Omega \to R^1$ is a r.v. for i = 1, ..., k, then $\mathbf{X} = (X_1, ..., X_k)' : \Omega \to R^k$ is a random vector.

Proof: Suppose $B_1, B_2, \ldots, B_k \in B^1$ so $B_1 \times B_2 \times \cdots \times B_k \in B^k$ by the previous result. Then

$$\begin{aligned} \mathbf{X}^{-1}(B_1 \times B_2 \times \cdots \times B_k) &= \{ \omega : \mathbf{X}(\omega) \in B_1 \times B_2 \times \cdots \times B_k \} \\ &= \{ \omega : X_i(\omega) \in B_i \text{ for } i = 1, \dots, k \} \\ &= \bigcap_{i=1}^k X_i^{-1} B_i \in \mathcal{A}. \end{aligned}$$

Since this implies $\mathbf{X}^{-1}(\mathbf{a}, \mathbf{b}] \in \mathcal{A}$ for every $\mathbf{a}, \mathbf{b} \in \mathbb{R}^k$ this implies (as in Prop. II.1.2) that $\mathbf{X}^{-1}B \in \mathcal{A}$ for every $B \in \mathcal{B}^k$ and \mathbf{X} is a random vector.