Probability and Stochastic Processes I - Lecture 6

Michael Evans
University of Toronto

http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

II. 2 Probability on Euclidean Spaces

- consider random vector $\mathbf{X} \in R^{k}$
note - there is an underlying (Ω, A, P) with $\mathbf{X}: \Omega \rightarrow R^{k}$ but this structure will only be mentioned if needed
- recall that with random vectors the basic sets we want to assign probabilities to are k-cells $(\mathbf{a}, \mathbf{b}]=X_{i=1}^{k}\left(a_{i}, b_{i}\right]$
note - $(\mathbf{a}, \mathbf{b}]$ can be written in terms of sets of the form $X_{i=1}^{k}\left(-\infty, b_{i}\right]$

Example II.2.1 - suppose $k=2$

$$
\begin{aligned}
& (\mathbf{a}, \mathbf{b}] \\
= & \left(a_{1}, b_{1}\right] \times\left(a_{2}, b_{2}\right] \\
= & \left(-\infty, b_{1}\right] \times\left(-\infty, b_{2}\right] \backslash\left(-\infty, a_{1}\right] \times\left(-\infty, b_{2}\right] \backslash\left(-\infty, b_{1}\right] \times\left(-\infty, a_{2}\right]
\end{aligned}
$$

and

$$
\left(-\infty, b_{1}\right] \times\left(-\infty, a_{2}\right]=\left(a_{1}, b_{1}\right] \times\left(-\infty, a_{2}\right] \cup\left(-\infty, a_{1}\right] \times\left(-\infty, a_{2}\right]
$$

is a disjoint union so

$$
\begin{aligned}
P_{\mathbf{X}}((\mathbf{a}, \mathbf{b}])= & P_{\mathbf{X}}\left(\left(-\infty, b_{1}\right] \times\left(-\infty, b_{2}\right]\right)-P_{\mathbf{X}}\left(\left(-\infty, a_{1}\right] \times\left(-\infty, b_{2}\right]\right)- \\
& P_{\mathbf{X}}\left(\left(-\infty, b_{1}\right] \times\left(-\infty, a_{2}\right]\right)+P_{\mathbf{X}}\left(\left(-\infty, a_{1}\right] \times\left(-\infty, a_{2}\right]\right)
\end{aligned}
$$

Definition II.2.1 For random vector $\mathbf{X} \in R^{k}$ the cumulative distribution function (cdf) $F_{\mathbf{X}}: R^{k} \rightarrow[0,1]$ is given by

$$
F_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)=P_{\mathbf{X}}\left(\left(-\infty, x_{1}\right] \times \cdots \times\left(-\infty, x_{k}\right]\right)=P_{\mathbf{X}}((-\infty, \mathbf{x}])
$$

- for any $g: R^{k} \rightarrow R^{1}$ define the i-th difference operator $\Delta_{a, b}^{(i)}$ by
$\Delta_{a, b}^{(i)} g: R^{k-1} \rightarrow R^{1}$ given by

$$
\begin{aligned}
& \left(\Delta_{a, b}^{(i)} g\right)\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right) \\
= & g\left(x_{1}, \ldots, x_{i-1}, b, x_{i+1}, \ldots, x_{k}\right)-g\left(x_{1}, \ldots, x_{i-1}, a, x_{i+1}, \ldots, x_{k}\right)
\end{aligned}
$$

Proposition II.2.1 Any distribution function $F_{\mathbf{X}}: R^{k} \rightarrow[0,1]$ satisfies
(i) If $a_{i} \leq b_{i}$ for $i=1, \ldots, k$, then $P_{\mathbf{X}}((\mathbf{a}, \mathbf{b}])=\Delta_{a_{1}, b_{1}}^{(1)} \Delta_{a_{2}, b_{2}}^{(2)} \cdots \Delta_{a_{k}, b_{k}}^{(k)} F_{\mathbf{X}}$, (ii) $F_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right) \downarrow 0$ as $x_{i} \downarrow-\infty$ and $F_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right) \uparrow 1$ as $x_{i} \uparrow \infty$ for every i,
(iii) F_{X} is right continuous, namely, if $\delta_{i} \downarrow 0$ for all i, then

$$
F_{\mathbf{X}}\left(x_{1}+\delta_{1}, \ldots, x_{k}+\delta_{k}\right) \rightarrow F_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)
$$

Proof: (i) For $k=2$,

$$
\begin{aligned}
\Delta_{a_{1}, b_{1}}^{(1)} \Delta_{a_{2}, b_{2}}^{(2)} F_{\mathbf{X}} & =\Delta_{a_{1}, b_{1}}^{(1)}\left(F_{\mathbf{X}}\left(\cdot, b_{2}\right)-F_{\mathbf{X}}\left(\cdot, a_{2}\right)\right) \\
& =F_{\mathbf{X}}\left(b_{1}, b_{2}\right)-F_{\mathbf{X}}\left(b_{1}, a_{2}\right)-\left(F_{\mathbf{X}}\left(a_{1}, b_{2}\right)-F_{\mathbf{X}}\left(a_{1}, a_{2}\right)\right) \\
& =F_{\mathbf{X}}\left(b_{1}, b_{2}\right)-F_{\mathbf{X}}\left(b_{1}, a_{2}\right)-F_{\mathbf{X}}\left(a_{1}, b_{2}\right)+F_{\mathbf{X}}\left(a_{1}, a_{2}\right)
\end{aligned}
$$

and the result follows by Example II.2.1.
Exercise II.2.1 Show $\Delta_{a_{1}, b_{1}}^{(1)} \Delta_{a_{2}, b_{2}}^{(2)} F_{\mathbf{X}}=\Delta_{a_{2}, b_{2}}^{(2)} \Delta_{a_{1}, b_{1}}^{(1)} F_{\mathbf{X}}$ and for $k=3$ write out $\Delta_{a_{1}, b_{1}}^{(1)} \Delta_{a_{2}, b_{2}}^{(2)} \Delta_{a_{3}, b_{3}}^{(3)} F_{\mathbf{X}}$.
(ii)

$$
\begin{aligned}
& \lim _{x_{i} \downarrow-\infty} F_{\mathbf{X}}\left(x_{1}, \ldots, x_{i}, \ldots, x_{k}\right) \\
= & \lim _{x_{i} \downarrow-\infty} P_{\mathbf{X}}\left(\left(-\infty, x_{1}\right] \times \cdots \times\left(-\infty, x_{i}\right] \times \cdots \times\left(-\infty, x_{k}\right]\right)=0
\end{aligned}
$$

because $\left(-\infty, x_{1}\right] \times \cdots \times\left(-\infty, x_{i}\right] \times \cdots \times\left(-\infty, x_{k}\right]$ is a monotone decreasing sequence as $x_{i} \downarrow-\infty$ with intersection equal to the null set and the continuity of probability.
Exercise II.2.2 Prove the second part of (ii).
(iii)

$$
=\begin{aligned}
& \lim _{\delta_{1} \downarrow 0, \ldots, \delta_{k} \downarrow 0} F_{\mathbf{X}}\left(x_{1}+\delta_{1}, \ldots, x_{k}+\delta_{k}\right) \\
& \lim _{\delta_{1} \downarrow 0, \ldots, \delta_{k} \downarrow 0} P_{\mathbf{X}}\left(\left(-\infty, x_{1}+\delta_{1}\right] \times \cdots \times\left(-\infty, x_{k}+\delta_{k}\right]\right)=F_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)
\end{aligned}
$$

since $\left(-\infty, x_{1}+\delta_{1}\right] \times \cdots \times\left(-\infty, x_{k}+\delta_{k}\right]$ is a monotone decreasing sequence of sets with intersection equal to $\left(-\infty, x_{1}\right] \times \cdots \times\left(-\infty, x_{k}\right]$ and the continuity of probability.

Theorem II.2.1 (Extension Theorem) If $F: R^{k} \rightarrow[0,1]$ satisfies
(i) $\Delta_{a_{1}, b_{1}}^{(1)} \Delta_{a_{2}, b_{2}}^{(2)} \cdots \Delta_{a_{k}, b_{k}}^{(k)} F \geq 0$ whenever $a_{i} \leq b_{i}$ for $i=1, \ldots, k$,
(ii) $F\left(x_{1}, \ldots, x_{k}\right) \uparrow 1$ as $x_{i} \uparrow \infty$ for every i and $F\left(x_{1}, \ldots, x_{k}\right) \downarrow 0$ as $x_{i} \downarrow-\infty$ for any i
(iii) F is right continuous,
then there exists a unique probability measure P on \mathcal{B}^{k} such that F is the distribution function of P.
note - such an F determines a probability model $\left(R^{k}, \mathcal{B}^{k}, P\right)$ and we can define a random vector with this probability model by taking $\Omega=R$ and $\mathbf{X}(\omega)=\omega$.

- so we can present $P_{\mathbf{X}}$ by the simpler $F_{\mathbf{X}}$

Example II.2.2

- define $F: R^{2} \rightarrow[0,1]$ by

$$
F\left(x_{1}, x_{2}\right)= \begin{cases}0 & x_{1}<0 \text { or } x_{2}<0 \\ 1-e^{-x_{1}}-e^{-x_{2}}+e^{-x_{1}-x_{2}} & x_{1} \geq 0 \text { and } x_{2} \geq 0\end{cases}
$$

- as we will see this satisfies the Extension Theorem and so is a cdf

Exercise II.2.3 In Example II.2.2 verify that
$\Delta_{a_{1}, b_{1}}^{(1)} \Delta_{a_{2}, b_{2}}^{(2)} F=\left(e^{-a_{1}}-e^{-b_{1}}\right)\left(e^{-a_{2}}-e^{-b_{2}}\right)$
when $0 \leq a_{1} \leq b_{1}, 0 \leq a_{2} \leq b_{2}$.
Exercise II.2.4 Define P on \mathcal{B}^{2} by

$$
P(B)= \begin{cases}0 & (1,1),(-1,-1) \notin B \\ 1 / 2 & (1,1) \in B,(-1,-1) \notin B \\ 1 / 2 & (1,1) \notin B,(-1,-1) \in B \\ 1 & (1,1),(-1,-1) \in B\end{cases}
$$

Verify that P is a probability measure and determine the cdf F.

- suppose we have $F_{\mathbf{X}}$ for $\mathbf{X} \in R^{k}$ when $k>2$ but we really are only interested in the probability distribution of $\left(X_{1}, X_{2}\right)$?
- we can get this from F_{X} since

$$
\begin{aligned}
F_{\left(x_{1}, x_{2}\right)}\left(x_{1}, x_{2}\right) & =P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right) \\
& =P\left(X_{1} \leq x_{1}, x_{2} \leq x_{2}, x_{3}<\infty, \ldots, X_{k}<\infty\right) \\
& =F_{\mathbf{X}}\left(x_{1}, x_{2}, \infty, \ldots, \infty\right)
\end{aligned}
$$

- similarly

$$
\begin{aligned}
F_{X_{1}}(x) & =F_{\mathbf{X}}\left(x_{1}, \infty, \infty, \ldots, \infty\right) \\
F_{X_{2}}\left(x_{2}\right) & =F_{\mathbf{X}}\left(\infty, x_{2}, \infty, \ldots, \infty\right)
\end{aligned}
$$

- these are called the marginal distributions of the coordinates and obviously we can obtain the marginal distribution of any subvector $\left(X_{i_{1}}, \ldots, X_{i_{l}}\right)$ for $1 \leq I \leq k$ and $i_{1}<i_{2}<\cdots<i_{l}$

Example II.2.2 (continued)

$$
\begin{aligned}
& F_{X_{1}}\left(x_{1}\right)= \begin{cases}0 & x_{1}<0 \\
1-e^{-x_{1}} & x_{1} \geq 0\end{cases} \\
& F_{X_{2}}\left(x_{2}\right)= \begin{cases}0 & x_{2}<0 \\
1-e^{-x_{2}} & x_{2} \geq 0\end{cases}
\end{aligned}
$$

II. 3 Discrete Distributions on Euclidean Spaces

- suppose we have $\left(R^{k}, \mathcal{B}^{k}, P_{\mathbf{X}}\right)$
- define $p_{\mathrm{X}}: R^{k} \rightarrow[0,1]$ by

$$
p_{\mathbf{X}}(\mathbf{a})=P_{\mathbf{X}}(\{\mathbf{a}\})=\lim _{\delta_{1} \downarrow 0, \ldots, \delta_{k} \downarrow 0} P_{\mathbf{X}}\left(\left(a_{1}-\delta_{1}, a_{1}\right] \times \cdots \times\left(a_{k}-\delta_{k}, a_{k}\right]\right)
$$

for $\mathbf{a} \in R^{k}$
Definition II.3.1 The probability model $\left(R^{k}, \mathcal{B}^{k}, P_{\mathbf{x}}\right)$ is discrete if for any $B \in \mathcal{B}^{k}$,

$$
P_{\mathbf{X}}(B)=\sum_{\mathbf{a} \in B} p_{\mathbf{X}}(\mathbf{a})
$$

and $p_{\mathbf{X}}$ is then called the probability function of \mathbf{X}. \square

Proposition II.3.1 If $\left(R^{k}, \mathcal{B}^{k}, P_{\mathbf{X}}\right)$ is a discrete probability model, then there are at most countably many points $\mathbf{a} \in R^{k}$ such that $p_{\mathbf{X}}(\mathbf{a})>0$.

Proof: Let $n>0$ and consider the set $\left\{\mathbf{a}: p_{\mathbf{X}}(\mathbf{a})>1 / n\right\}$. If $\#\left(\left\{\mathbf{a}: p_{\mathbf{X}}(\mathbf{a})>1 / n\right\}\right)=\infty$ Then

$$
\begin{aligned}
& P_{\mathbf{X}}\left(\left\{\mathbf{a}: p_{\mathbf{X}}(\mathbf{a})>1 / n\right\}\right)=\sum_{\left\{\mathbf{a}: p_{\mathbf{X}}(\mathbf{a})>1 / n\right\}} p_{\mathbf{X}}(\mathbf{a}) \\
\geq & \sum_{\left\{\mathbf{a}: p_{\mathbf{X}}(\mathbf{a})>1 / n\right\}} \frac{1}{n}=\frac{\infty}{n}=\infty \notin[0,1]
\end{aligned}
$$

which is a contradiction so $\#\left(\left\{\mathbf{a}: p_{\mathbf{X}}(\mathbf{a})>1 / n\right\}\right)<\infty$ for every n which implies that

$$
\#\left(\left\{\mathbf{a}: p_{\mathbf{X}}(\mathbf{a})>0\right\}\right)=\#\left(\cup_{n=1}^{\infty}\left\{\mathbf{a}: p_{\mathbf{X}}(\mathbf{a})>1 / n\right\}\right)
$$

which is countable.

Proposition II.3.2 If $p: R^{k} \rightarrow[0,1]$ satisfies (i) $p(\mathbf{a}) \geq 0$ for all $\mathbf{a} \in R^{k}$ and (ii) $\sum_{\mathbf{a} \in R^{k}} p(\mathbf{a})=1$, then p defines a probability measure on \mathcal{B}^{k} given by

$$
P(B)=\sum_{\mathbf{a} \in B} p(\mathbf{a})
$$

for $B \in \mathcal{B}^{k}$.
Proof: Clearly $0 \leq P(B) \leq 1$ for every B and $P\left(R^{k}\right)=1$. Further, if $B_{1}, B_{2}, \ldots \in \mathcal{B}^{k}$ are mutually disjoint, then

$$
P\left(\cup_{n=1}^{\infty} B_{n}\right)=\sum_{\mathbf{a} \in \cup_{n=1}^{\infty} B_{n}} p(\mathbf{a})=\sum_{n=1}^{\infty} \sum_{\mathbf{a} \in B_{n}} p(\mathbf{a})=\sum_{n=1}^{\infty} P\left(B_{n}\right)
$$

as required.

Example II.3.1 Multinomial $\left(n, p_{1}, \ldots, p_{k}\right)$ distribution

- consider a wheel divided into k sectors labelled 1 through k and sector i comprises a proportion p_{i} of the wheel
- the wheel is spun and the sector where a pointer rests is recorded
- provided the wheel is of uniform construction and the spinning is done without control, it is reasonable to suppose that the probability of observing sector i on a spin is p_{i}
- suppose now that n "independent" spins are obtained with

$$
X_{i}=\text { the number of times sector } i \text { is recorded }
$$

- then let $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)^{\prime}$ and it is clear that \mathbf{X} is a discrete random vector with $p_{\mathbf{X}}(\mathbf{a})>0$ iff

$$
\begin{equation*}
a_{i} \in\{0, \ldots, n\} \text { and } a_{1}+\cdots+a_{k}=n \tag{}
\end{equation*}
$$

- also, because of independence the probability of getting i on the first spin and j on the second spin is

$$
\begin{aligned}
& P(\text { " } i \text { on } 1 \text { st spin }) P(" j \text { on } 2 \text { nd spin } \mid " i \text { on } 1 \text { st spin" }) \\
= & P(\text { " } i \text { on } 1 \text { st spin }) P(" j \text { on } 2 \text { nd spin" })=p_{i} p_{j} \\
= & P(\text { " } j \text { on } 1 \text { st spin }) P(\text { " } i \text { on } 2 \text { nd spin" } \mid \text { " } j \text { on } 1 \text { st spin" })
\end{aligned}
$$

- so the probability of observing a_{1} spins giving 1 , a_{2} spins giving $2, \ldots, a_{k}$ spins giving k, in some specified order is $p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$
- then for an a satisfying (*)

$$
\begin{aligned}
p_{\mathbf{X}}(\mathbf{a}) & =P\left(X_{1}=a_{1}, \ldots, X_{k}=a_{k}\right) \\
& =\left(\# \text { of sequences of length } n \text { with } a_{1} 11^{\prime} s, \ldots, a_{k} \text { k's }\right) p_{1}^{a_{1}} \cdots p_{k}^{a_{k}} \\
& =\binom{n}{a_{1}}\binom{n-a_{1}}{a_{2}} \cdots\binom{n-a_{1}-\cdots-a_{k-1}}{a_{k}} p_{1}^{a_{1}} \cdots p_{k}^{a_{k}} \\
& =\frac{n!}{a_{1}!a_{2}!\cdots a_{k}!} p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}=\binom{n}{a_{1} a_{2} \cdots a_{k}} p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}
\end{aligned}
$$

which is the multinomial $\left(n, p_{1}, \ldots, p_{k}\right)$ probability function

Exercise II.3.1 (Multivariate hypergeometric (N_{1}, \ldots, N_{k} distribution) Suppose that an urn contains N balls each labelled with a number in $\{1, \ldots, k\}$ with N_{i} balls labelled i so $N_{1}+\cdots+N_{k}=N$. A subset of $n \leq N$ balls is drawn out of the urn (without replacement) in such a way that it is reasonable to assign the probability $1 /\binom{N}{n}$ to each such subset. Let $X_{i}=$ the number of balls in the sample of n labelled i. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)^{\prime}$ be a possible value for the random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)^{\prime}$ so $0 \leq a_{i} \leq N_{i}$ for $i=1, \ldots, k$ and $a_{1}+\cdots+a_{k}=n$. Argue that

$$
p_{\mathbf{X}}(\mathbf{a})=\frac{\binom{N_{1}}{a_{1}}\binom{N_{2}}{a_{2}} \cdots\binom{N_{k}}{a_{k}}}{\binom{N}{n}}
$$

is the relevant probability function.
When $k=3, N_{1}=3, N_{2}=3, N_{3}=2$ and $n=4$ what are the values of $\left(a_{1}, a_{2}, a_{3}\right)$ such that $p_{\mathbf{X}}(\mathbf{a})>0$?

