Probability and Stochastic Processes I - Lecture 9

Michael Evans
University of Toronto

http://www.utstat.utoronto.ca/mikevans/stac62/STAC622023.html

2023

II. 5 Transformations and Change of Variables (continued)

absolutely continuous case

- suppose $\mathbf{X} \in R^{k}$ has density function f_{X} and we want the distribution of $\mathbf{Y}=T(\mathbf{X}) \in R^{\prime}$ where $I \leq k$
- as noted \mathbf{Y} could have a discrete distribution but our interest here is in the situations where \mathbf{Y} also has an a.c. distribution with density $f_{\mathbf{Y}}$ which we want to determine
- one approach to this (which can be carried out sometimes) is through the cdf

$$
\begin{aligned}
f_{\mathbf{Y}}\left(y_{1}, \ldots, y_{k}\right) & =\frac{\partial^{k} F_{\mathbf{Y}}\left(y_{1}, \ldots, y_{k}\right)}{\partial y_{1} \cdots \partial y_{k}} \\
& =\frac{\partial^{k} P_{\mathbf{X}}\left(T^{-1}\left\{\left(-\infty, y_{1}\right] \times \cdots \times\left(-\infty, y_{k}\right]\right\}\right)}{\partial y_{1} \cdots \partial y_{k}}
\end{aligned}
$$

- this will generally work with projections T when there is a formula for $F_{\mathbf{X}}$

Example II.5.1 (Example II.2.2 Continued)

- we defined $F: R^{2} \rightarrow[0,1]$ by

$$
F\left(x_{1}, x_{2}\right)= \begin{cases}0 & x_{1}<0 \text { or } x_{2}<0 \\ 1-e^{-x_{1}}-e^{-x_{2}}+e^{-x_{1}-x_{2}} & x_{1} \geq 0 \text { and } x_{2} \geq 0\end{cases}
$$

but we didn't actually prove it is a cdf (via the Extension Thm)

- but if it is, then

$$
f\left(x_{1}, x_{2}\right)=\frac{\partial^{2} F\left(x_{1}, x_{2}\right)}{\partial x_{1} \partial x_{2}}= \begin{cases}0 & x_{1}<0 \text { or } x_{2}<0 \\ e^{-x_{1}-x_{2}} & x_{1} \geq 0 \text { and } x_{2} \geq 0\end{cases}
$$

and we see that (i) $f\left(x_{1}, x_{2}\right) \geq 0$ for all $\left(x_{1}, x_{2}\right)$ and (ii)

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=\int_{0}^{\infty} \int_{0}^{\infty} e^{-x_{1}-x_{2}} d x_{1} d x \\
= & \int_{0}^{\infty} e^{-x_{1}} d x_{1} \int_{0}^{\infty} e^{-x_{2}} d x_{2}=\left(-\left.e^{-x_{1}}\right|_{0} ^{\infty}\right)\left(-\left.e^{-x_{2}}\right|_{0} ^{\infty}\right)=1
\end{aligned}
$$

- so f is a valid pdf and thus F is a valid cdf since

$$
F\left(x_{1}, x_{2}\right)=\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} f\left(z_{1}, z_{2}\right) d z_{1} d z_{2}
$$

- therefore, if $Y=T\left(X_{1}, X_{2}\right)=X_{1}$, then

$$
F_{X_{1}}\left(x_{1}\right)=F\left(x_{1}, \infty\right)= \begin{cases}0 & x_{1}<0 \\ 1-e^{-x_{1}} & x_{1} \geq 0\end{cases}
$$

so

$$
f_{X_{1}}\left(x_{1}\right)=\frac{\partial F_{X_{1}}\left(x_{1}\right)}{\partial x_{1}}= \begin{cases}0 & x_{1}<0 \\ e^{-x_{1}} & x_{1} \geq 0\end{cases}
$$

and similarly for X_{2}, namely, both X_{1} and X_{2} have exponential(1) distributions \square

- generally, we need alternative methods to determine f_{Y}

Example II.5.2

- suppose $y=T\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ and $\left(X_{1}, X_{2}\right)$ has density

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}2 & \text { if } 0<x_{1}<x_{2}<1 \\ 0 & \text { otherwise }\end{cases}
$$

SO

$$
\begin{aligned}
F_{Y}(y) & =P_{Y}((-\infty, y])=P_{\left(x_{1}, x_{2}\right)}\left(\left\{\left(x_{1}, x_{2}\right): x_{1}+x_{2} \leq y\right\}\right) \\
& = \begin{cases}0 & y<0 \\
\int_{0}^{y / 2} \int_{x_{1}}^{y-x_{1}} 2 d x_{2} d x_{1}=y^{2} / 2 & 0 \leq y \leq 1 \\
1-\int_{y / 2}^{1} \int_{y-x_{2}}^{x_{2}} 2 d x_{1} d x_{2}=2 y-y^{2} / 2-1 & 1 \leq y \leq 2 \\
1 & 2<y\end{cases} \\
f_{Y}(y) & = \begin{cases}0 & y \leq 0 \text { or } y \geq 2 \\
y & 0<y<1 \\
2-y & 1 \leq y<2\end{cases}
\end{aligned}
$$

the triangular density

change of variable

- suppose now $T: R^{k} \rightarrow R^{k}$ is 1-1 and smooth (all 1st order partial derivatives exist and are continuous)
- so

$$
T(\mathbf{x})=\left(\begin{array}{c}
T_{1}(\mathbf{x}) \\
\vdots \\
T_{k}(\mathbf{x})
\end{array}\right)
$$

and put

$$
J_{T}(\mathbf{x})=\left|\operatorname{det}\left(\begin{array}{ccc}
\frac{\partial T_{1}(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial T_{1}(\mathbf{x})}{\partial x_{k}} \\
\vdots & & \vdots \\
\frac{\partial T_{k}(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial T_{k}(\mathbf{x})}{\partial x_{k}}
\end{array}\right)\right|^{-1}
$$

- $J_{T}(\mathbf{x})$ indicates how T is changing volume at \mathbf{x} since (fact)

$$
J_{T}(\mathbf{x})=\lim _{\delta \downarrow 0} \frac{\operatorname{vol}\left(B_{\delta}(\mathbf{x})\right)}{\operatorname{vol}\left(T B_{\delta}(\mathbf{x})\right)}
$$

so $J_{T}(\mathbf{x})<1$ means T expands volume at \mathbf{x} and $J_{T}(\mathbf{x})>1$ means T contracts volumes at $\mathbf{x}=T^{-1}(\mathbf{y})$

- now if $\mathbf{Y}=T(\mathbf{X})$, then for small δ

$$
\begin{aligned}
f_{\mathbf{Y}}(\mathbf{y}) & \approx \frac{P_{\mathbf{Y}}\left(T B_{\delta}\left(T^{-1}(\mathbf{y})\right)\right)}{\operatorname{vol}\left(T B_{\delta}\left(T^{-1}(\mathbf{y})\right)\right)}=\frac{P_{\mathbf{X}}\left(B_{\delta}\left(T^{-1}(\mathbf{y})\right)\right)}{\operatorname{vol}\left(B_{\delta}\left(T^{-1}(\mathbf{y})\right)\right.} \frac{\operatorname{vol}\left(B_{\delta}\left(T^{-1}(\mathbf{y})\right)\right)}{\operatorname{vol}\left(T B_{\delta}\left(T^{-1}(\mathbf{y})\right)\right)} \\
& \approx f_{\mathbf{X}}\left(T^{-1}(\mathbf{y})\right) J_{T}\left(T^{-1}(\mathbf{y})\right)
\end{aligned}
$$

- this intuitive argument can be made rigorous to prove the following

Proposition II.5.1 (Change of Variable) When $T: R^{k} \rightarrow R^{k}$ is 1-1, smooth and $\mathbf{Y}=T(\mathbf{X})$ where \mathbf{X} has an a.c. distribution with density $f_{\mathbf{X}}$, then \mathbf{Y} has an a.c. distribution with density

$$
f_{\mathbf{Y}}(\mathbf{y})=f_{\mathbf{X}}\left(T^{-1}(\mathbf{y})\right) J_{T}\left(T^{-1}(\mathbf{y})\right)
$$

Example II.5.3

- $f(x)=1 / 2$ for $0<x<2$ (the $\operatorname{Uniform}(0,2)$ distribution)
- let $y=T(x)=x^{2}$ so $T^{-1}(y)=y^{1 / 2}$ and $J_{T}(x)=|\operatorname{det}(2 x)|^{-1}=1 / 2 x$ for $x \in(0,2)$
- note T contracts lengths on $(0,1 / 2)$ and expands lengths on $(1 / 2,2)$
- then

$$
\begin{aligned}
f_{Y}(y) & =f\left(T^{-1}(y)\right) J_{T}\left(T^{-1}(y)\right) \\
& =f\left(y^{1 / 2}\right) \frac{1}{2 y^{1 / 2}} \\
& = \begin{cases}0 & y \leq 0 \text { or } y \geq 4 \\
1 / 4 y^{1 / 2} & 0<y<4\end{cases}
\end{aligned}
$$

Example II.5.4 Prove $\int_{-\infty}^{\infty} \varphi(x) d x=1$ for $N(0,1) p d f \varphi$.

- consider

$$
\begin{aligned}
\left(\int_{-\infty}^{\infty} \varphi(x) d x\right)^{2} & =\int_{-\infty}^{\infty} \varphi(x) d x \int_{-\infty}^{\infty} \varphi(y) d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2 \pi} \exp \left(-\frac{x^{2}+y^{2}}{2}\right) d x d y
\end{aligned}
$$

- make the polar coordinate change of variable $T(x, y)=(r, \theta)$ where for $r \in(0, \infty), \theta \in[0,2 \pi)$

$$
(x, y)=T^{-1}(r, \theta)=(r \cos \theta, r \sin \theta)
$$

- fact - $J_{T}(\mathbf{x})=1 / J_{T^{-1}}(T(\mathbf{x}))$ in general so

$$
\begin{aligned}
J_{T^{-1}}(r, \theta) & =\left|\operatorname{det}\left(\begin{array}{cc}
\frac{\partial r \cos \theta}{\partial r} & \frac{\partial r \cos \theta}{\partial \theta} \\
\frac{\partial r \sin \theta}{\partial r} & \frac{\partial r \sin \theta}{\partial \theta}
\end{array}\right)\right|^{-1} \\
& =\left|\operatorname{det}\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)\right|^{-1} \\
& =\left|r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\right|^{-1}=1 / r
\end{aligned}
$$

- then, using $r^{2}=x^{2}+y^{2}$,

$$
\begin{aligned}
& \left(\int_{-\infty}^{\infty} \varphi(x) d x\right)^{2}=\int_{0}^{\infty} \int_{0}^{2 \pi} \frac{r}{2 \pi} \exp \left(-r^{2} / 2\right) d \theta d r \\
= & \int_{0}^{\infty} r \exp \left(-r^{2} / 2\right) d r=-\left.\exp \left(-r^{2} / 2\right)\right|_{0} ^{\infty}=1
\end{aligned}
$$

- this proves $\int_{-\infty}^{\infty} \varphi(x) d x=1$

Example II.5.5 Affine transformations

- consider a general affine transformation $T: R^{k} \rightarrow R^{k}$ given by

$$
T(\mathbf{x})=A \mathbf{x}+\mathbf{b}=\left(\begin{array}{c}
a_{11} x_{1}+\cdots+a_{1 k} x_{k}+b_{1} \\
a_{21} x_{1}+\cdots+a_{2 k} x_{k}+b_{2} \\
\vdots \\
a_{k 1} x_{1}+\cdots+a_{k k} x_{k}+b_{k}
\end{array}\right)
$$

where $\mathbf{b} \in R^{k}, A \in R^{k \times k}$
note $T\left(\mathbf{x}_{1}\right)=T\left(\mathbf{x}_{2}\right)$ iff $A\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=\mathbf{0}$ so T is $1-1$ iff A is a nonsingular (invertible) matrix and in that case $T^{-1}(\mathbf{y})=A^{-1}(\mathbf{y}-\mathbf{b})=\mathbf{x}$

$$
J_{T}(\mathbf{x})=\left|\operatorname{det}\left(\begin{array}{ccc}
\frac{\partial T_{1}(\mathbf{x})}{\partial x_{1}} & \ldots & \frac{\partial T_{1}(\mathbf{x})}{\partial x_{k}} \\
\vdots & & \vdots \\
\frac{\partial T_{k}(\mathbf{x})}{\partial x_{1}} & \ldots & \frac{\partial T_{k}(\mathbf{x})}{\partial x_{k}}
\end{array}\right)\right|^{-1}=|\operatorname{det} A|^{-1}
$$

- so if $\mathbf{Y}=A \mathbf{X}+\mathbf{b}$ then

$$
f_{\mathbf{Y}}(\mathbf{y})=f_{\mathbf{X}}\left(T^{-1}(\mathbf{y})\right) J_{T}\left(T^{-1}(\mathbf{y})\right)=f_{\mathbf{X}}\left(A^{-1}(\mathbf{y}-\mathbf{b})\right)|\operatorname{det} A|^{-1}
$$

Example II.5.6 General Multivariate Normal

- suppose $\mathbf{Z} \sim N_{k}(\mathbf{0}, I)$ so $f_{\mathbf{Z}}(\mathbf{z})=(2 \pi)^{-k / 2} \exp \left(-\mathbf{z}^{\prime} \mathbf{z} / 2\right)$ for $\mathbf{z} \in R^{k}$
- let $\mathbf{X}=A \mathbf{Z}+\boldsymbol{\mu}$ where $A \in R^{k \times k}$ is nonsingular and $\boldsymbol{\mu} \in R^{k}$
- then by the previous example \mathbf{X} has an a.c. distribution with density

$$
\begin{aligned}
f_{\mathbf{X}}(\mathbf{x}) & =f_{\mathbf{Z}}\left(A^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)|\operatorname{det} A|^{-1} \\
& =(2 \pi)^{-k / 2} \exp \left(-\left(\left(A^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)^{\prime} A^{-1}(\mathbf{x}-\boldsymbol{\mu}) / 2\right)|\operatorname{det} A|^{-1}\right. \\
& =(2 \pi)^{-k / 2}|\operatorname{det} A|^{-1} \exp \left(-\left((\mathbf{x}-\boldsymbol{\mu})^{\prime}\left(A^{-1}\right)^{\prime} A^{-1}(\mathbf{x}-\boldsymbol{\mu}) / 2\right)\right. \\
& =(2 \pi)^{-k / 2}\left|\operatorname{det} A \operatorname{det} A^{\prime}\right|^{-1 / 2} \exp \left(-\left((\mathbf{x}-\boldsymbol{\mu})^{\prime}\left(A A^{\prime}\right)^{-1}(\mathbf{x}-\boldsymbol{\mu}) / 2\right)\right. \\
& =(2 \pi)^{-k / 2}\left|\operatorname{det} A A^{\prime}\right|^{-1 / 2} \exp \left(-\left((\mathbf{x}-\boldsymbol{\mu})^{\prime}\left(A A^{\prime}\right)^{-1}(\mathbf{x}-\boldsymbol{\mu}) / 2\right)\right. \\
& =(2 \pi)^{-k / 2}(\operatorname{det} \Sigma)^{-1 / 2} \exp \left(-\left((\mathbf{x}-\boldsymbol{\mu})^{\prime} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu}) / 2\right)\right.
\end{aligned}
$$

where $\Sigma=A A^{\prime} \in R^{k \times k}$

- when a random vector \mathbf{X} has this pdf we write $\mathbf{X} \sim N_{k}(\boldsymbol{\mu}, \Sigma)$
note - $\Sigma^{\prime}=\left(A A^{\prime}\right)^{\prime}=\left(A^{\prime}\right)^{\prime} A^{\prime}=A A^{\prime}=\Sigma$ so it is a symmetric matrix and for any vector $\mathbf{x} \in R^{k}$

$$
\mathbf{x}^{\prime} \Sigma \mathbf{x}=\mathbf{x}^{\prime} A A^{\prime} \mathbf{x}=\left(A^{\prime} \mathbf{x}\right)^{\prime} A^{\prime} \mathbf{x}=\left\|A^{\prime} \mathbf{x}\right\|^{2} \geq 0
$$

and $\left\|A^{\prime} \mathbf{x}\right\|^{2}=0$ iff $A^{\prime} \mathbf{x}=\mathbf{0}$ which is true iff $\mathbf{x}=\mathbf{0}$ and so Σ is a positive definite matrix \square

Exercise II.5.4 Suppose $\mathbf{X} \sim N_{k}(\boldsymbol{\mu}, \Sigma)$ and $\mathbf{Y}=A \mathbf{X}+\mathbf{b}$ where $A \in R^{k \times k}$ is nonsingular and $\boldsymbol{\mu} \in R^{k}$. Prove that $\mathbf{Y} \sim N_{k}\left(A \boldsymbol{\mu}+\mathbf{b}, A \Sigma A^{\prime}\right)$.
Exercise II.5.5 Suppose $\mathbf{X} \sim N_{k}(\boldsymbol{\mu}, \Sigma)$ and $\Sigma=C C^{\prime}$ where $C \in R^{k \times k}$ is nonsingular. Prove that $\mathbf{Z}=C^{-1}(\mathbf{X}-\boldsymbol{\mu}) \sim N_{k}(\mathbf{0}, l)$.
Exercise II.5.6 When $k=2$ write out the density

$$
f_{\mathbf{X}}(\mathbf{x})=(2 \pi)^{-k / 2}(\operatorname{det} \Sigma)^{-1 / 2} \exp \left(-\left((\mathbf{x}-\boldsymbol{\mu})^{\prime} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu}) / 2\right)\right.
$$

in terms of x_{1} and x_{2} using $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}\right)^{\prime}$,

$$
\Sigma=\left(\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{12} & \sigma_{22}
\end{array}\right)
$$

and we have used the symmetry of Σ to put $\sigma_{21}=\sigma_{12}$.

Example II.5.7 Some Properties of the Multivariate Normal

- consider, for $\mu \in R^{k}, \Sigma \in R^{k \times k}$ p.d., is

$$
\begin{equation*}
f_{\mathbf{X}}(\mathbf{x})=(2 \pi)^{-k / 2}(\operatorname{det} \Sigma)^{-1 / 2} \exp \left(-\left((\mathbf{x}-\boldsymbol{\mu})^{\prime} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu}) / 2\right)\right. \tag{*}
\end{equation*}
$$

a valid density so we can say $\mathbf{X} \sim N_{k}(\mu, \Sigma)$?

- recall the Spectral Theorem from linear algebra which says that, for any p.d. matrix $\Sigma \in R^{k \times k}$,

$$
\begin{aligned}
\Sigma & =Q \Lambda Q^{\prime}=\sum_{i=1}^{k} \lambda_{i} \mathbf{q}_{i} \mathbf{q}_{i}^{\prime} \text { where } \\
Q & =\left(\begin{array}{lll}
\mathbf{q}_{1} & \cdots & \mathbf{q}_{k}
\end{array}\right) \in R^{k \times k} \text { orthogonal } \\
\Lambda & =\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right) \text { with } \lambda_{1} \geq \cdots \geq \lambda_{k}>0
\end{aligned}
$$

- here

$$
\Sigma \mathbf{q}_{j}=\sum_{i=1}^{k} \lambda_{i} \mathbf{q}_{i} \mathbf{q}_{i}^{\prime} \mathbf{q}_{j}=\lambda_{j} \mathbf{q}_{j}
$$

since $\mathbf{q}_{i}^{\prime} \mathbf{q}_{j}=0$ when $i \neq j$ and $\mathbf{q}_{j}^{\prime} \mathbf{q}_{j}=1$, so λ_{j} is an eigenvalue of Σ with eigenvector \mathbf{q}_{j}

- define $\Sigma^{1 / 2}=Q \Lambda^{1 / 2} Q^{\prime}$, where $\Lambda^{1 / 2}=\operatorname{diag}\left(\lambda_{1}^{1 / 2}, \ldots, \lambda_{k}^{1 / 2}\right)$, called the symmetric square root of Σ since

$$
\begin{aligned}
\left(\Sigma^{1 / 2}\right)^{\prime} & =Q \Lambda^{1 / 2} Q^{\prime} \\
\Sigma^{1 / 2} \Sigma^{1 / 2} & =Q \Lambda^{1 / 2} Q^{\prime} Q \Lambda^{1 / 2} Q^{\prime}=Q \Lambda^{1 / 2} I \Lambda^{1 / 2} Q^{\prime} \\
& =Q \Lambda^{1 / 2} \Lambda^{1 / 2} Q^{\prime}=Q \Lambda Q^{\prime}=\Sigma
\end{aligned}
$$

- if $\mathbf{Z} \sim N_{k}(\mathbf{0}, I)$ and $A=\Sigma^{1 / 2}$, then Example II.5.5 shows that $X=A \mathbf{Z}+\boldsymbol{\mu} \sim N_{k}\left(\boldsymbol{\mu}, A A^{\prime}\right)$ where $A A^{\prime}=\Sigma^{1 / 2} \Sigma^{1 / 2}=\Sigma$
- therefore * defines a valid pdf on R^{k} whenever Σ is p.d.
- clearly the level sets of f_{X} are given by

$$
\begin{aligned}
\partial E_{r}(\boldsymbol{\mu}, \Sigma)= & \left\{\mathbf{x}:(\mathbf{x}-\boldsymbol{\mu})^{\prime} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})=r^{2}\right\} \\
= & \text { the boundary of the ellipsoidal region } \\
& \text { with center at } \mu \text { and principal axes } \\
& \text { determined by } \Sigma \text { and } r
\end{aligned}
$$

Exercise II.5.7 When Σ is p.d. with spectral decomposition $Q \Lambda Q^{\prime}$, then prove $\Sigma^{-1}=Q \Lambda^{-1} Q^{\prime}$.

- so putting $\mathbf{w}=Q^{\prime}(\mathbf{x}-\boldsymbol{\mu})$ then $\mathbf{x}=\boldsymbol{\mu}+Q \mathbf{w}$ and

$$
\begin{aligned}
\partial E_{r}(\boldsymbol{\mu}, \Sigma) & =\left\{\mathbf{x}:(\mathbf{x}-\boldsymbol{\mu})^{\prime} Q \Lambda^{-1} Q^{\prime}(\mathbf{x}-\boldsymbol{\mu})=r^{2}\right\} \\
& =\boldsymbol{\mu}+Q\left\{\mathbf{w}: \mathbf{w}^{\prime} \Lambda^{-1} \mathbf{w}=r^{2}\right\} \\
& =\boldsymbol{\mu}+Q\left(\partial E_{r}(\mathbf{0}, \Lambda)\right)
\end{aligned}
$$

and

$$
\partial E_{r}(\mathbf{0}, \Lambda)=\left\{\mathbf{w}: \sum \frac{w_{i}^{2}}{r^{2} \lambda_{i}}=1\right\}
$$

which is the ellipsoid in R^{k} with i-th semi-principal axis along the i-th standard basis vector \mathbf{e}_{i} of length $r \lambda_{i}^{1 / 2}$

- so $\partial E_{r}(\boldsymbol{\mu}, \Sigma)$ has i-th semi-principal axis is on the line $\left\{\boldsymbol{\mu}+c \mathbf{q}_{i}: c \in R^{1}\right\}$ of length $r \lambda_{i}^{1 / 2}$

