
ACT 460 / STA 2502 Stochastic Methods for Actuarial Science

Problem Set #1 – due Tuesday, Oct 6 at 2PM:

ACT460 - Hand in only questions marked with (**).

STA2502 - IN ADDITION, hand in questions marked with (!!).

1. Construct each of the following payoffs using only stock, bonds, calls, and puts:
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2. Use the Excel file Porfolio.xls to plot the price versus spot level for each option in Q1 using the

following sets of parameters (put each parameter set on a single plot):

(a) T = {1
4
, 1

2
, 1}; σ = 20%; r = 5%; δ = 3%

(b) T = 1; σ = {10%, 20%, 30%}; r = 5%; δ = 3%

(c) T = 1; σ = 20%; r = {0%, 5%, 10%}; δ = 3%

(d) T = 1; σ = 20%; r = 5%; δ = {0%, 3%, 6%}

[Note: δ is a dividend yield. ]

3. Using a CRR tree, with S = 100, σ = 50%, r = 5% and ∆t = 1
12

, determine the value and replicating

strategy for each of the following 3-month European options:

(a) digital call struck at 100 (A digital call pays 1 if ST > K, otherwise it pays nothing)

(b) digital put struck at 100 (A digital put pays 1 if ST < K, otherwise it pays nothing)

(c) put struck at 100

(d) call struck at 100

(e) straddle struck at 100

(f) strangle with K1 = 95, K2 = 115

(g) bull spread with K1 = 95, K2 = 115

Suppose that the market prices for all of the above options are 10% higher than the no arbitrage prices,

construct arbitrage strategies for each option.
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4. Suppose a market has two risky assets At and Bt and the money-market account with risk-free rate

of zero. Furthermore assume that Atn = Atn−1e
xnσA

√
∆t and Btn = Btn−1e

ynσB

√
∆t where tk = k∆t and

(x1, y1), . . . , (xN , yN) are i.i.d joint Bernoulli r.v. with risk-neutral probabilities

Q(x1 = +1, y1 = +1) = q1

Q(x1 = +1, y1 = −1) = q2

Q(x1 = −1, y1 = +1) = q3

Q(x1 = −1, y1 = −1) = q4

Find an expression for the no arbitrage bounds on the instantaneous correlation between asset A and

asset B to lowest order in ∆t, i.e. find the no arbitrage bounds on

ρ =
Cov[ln(Atk/Atk−1

) ; ln(Btk/Btk−1
)]√

V ar[ln(Atk/Atk−1
)] V ar[ln(Btk/Btk−1

)]
.

What are the bounds for the case σA = 20%, σB = 15%, and ∆t = 1/252? Any comments?

5. The following two assets are being actively traded in a two-period binomial market economy. Asset A

behaves like a stock which may default, while asset B behaves “normally”.
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(a) Determine the probabilities induced by using asset B as a numeraire asset.

(b) [5]** Determine the risk-neutral probabilities and the implied risk-free rate over each branch of the

model.

[Note: that the risk-free rate may differ from branch to branch – but at each node the risk-free rate

used for discounting must be the same.]

(c) [5]** Compute the price and the replication strategy for a two-period European put option on asset

A struck at 90.

[NOTE: The replication strategy must be specified at all nodes in the tree. ]
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(d) [5]** Compute the price and the replication strategy for a two-period American put option on

asset A struck at 90. [NOTE: The replication strategy must be specified at all nodes in the tree. Be

careful at nodes where the option is exercised.]

6. Assume that a stock price follows the continuous limit of the CRR tree and the continuous risk-free rate

is r. Determine the value (at t = 0) of a contingent claim having the following payoff at time T :

(a) SαT

(b) I(ST > K)

(c) [5] ** ST I(ST > K)

(d) [5] ** ST I(ST > SU) where U < T .

7. [5] !! Let {tj : j = 0, . . . ,m} be an ordered series of times t0 = 0 < t1 < t2 < · · · < tm = T .

Suppose that an asset’s price is modeled as the continuous time limit of the CRR model. Then define

S(n) as the geometric average of the asset’s price over the first n ordered times (n ≤ m). That is,

S(n) :=
(∏n

j=1 S(tj)
)1/n

. Determine the value of a call option written on S(n) with strike K maturing

at T .

[Hint: What is the distribution of S(n)?]
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