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1. [10] Please indicate true or false. no explanations required

—1 for incorrect answer, +2 for correct answer, 0 for blank answer .

(a) [T]

In an arbitrage-free economy, there exists a unique risk-neutral measure.
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o) 11 (F)

The price of a put option always decreases with increasing volatility.

prices Cineveose wdh uml .
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In the one-period binomial model, if an economy has two distinct traded assets, then any

contingent claim can be replicated.
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If the risk-free interest rate follows a multi-period binomial tree, then the risk-neutral branch-
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ing probabilities are

The price of a T-maturity call option, on an asset with no dividends with strike K, approaches

the line S — Ke™"" from below as the spot price increases to infinity.
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2. Sketch the option price as a function of the current spot-level for maturities of 7' = 0, 7' = 1 month

and T =1 year for

(a) [5] digital put option (which pays 1 if S < K and 0 otherwise).

[draw the three curves on the same graph, clearly label them and any interesting points.]
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[draw the three curves on the same graph, clearly label them and any interesting points..|

(b) [5] A portfolio consisting of 1 long call struck at $1, 2 short calls struck at $2 and 1 long call
struck at $3.



3. [10] Consider an economy with the two traded assets below. State the formal conditions of an
arbitrage strategy and construct one for this economy.

[As usual, all real-world branching probabilities are strictly positive.]

100 1
1oo< 100 1 < 1
110 1

Asset A Asset B
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4. (a) [6] Consider the interest rate tree shown in the diagram below — each time step is 1-year. The
rates correspond to effective discounting — e.g. discounting over the first period is 1/(1 + Ry).

The probabilities shown are risk-neutral probabilities.
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A one-year zero coupon bond on a notional of $100 costs $91.1121. As well, a 2-year coupon
bearing bond with coupons of $10 paid every year and notional of $100 is valued at par (i.e.
is valued at $100). Calibrate this model to the market prices, i.e. determine Ry and R, such

that the market prices are equal to the model prices.
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(b) /4] You are given the following model (on the left) for a stock price:

[the extra tree on the right is include just for your convenience.]

120
110 110
100 100 100
90 90
80

Consider a 2-period barrier option which pays 10 the instant the asset touches the level 110,
otherwise it pays 0. Assume interest rates are 0. Find the no-arbitrage bounds on the value

of the Barrier option.
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This page left intentionally blank... continue work here...
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5. Assume an equity price S; is modeled as in the Black-Scholes model (i.e. the limiting case of the
CRR model as At | 0 and interest rates are constant at r). For each of the following, write your

answers terms of ®(z) £ Q(Z < z) where Z is a standard normal random variable under the

risk-neutral measure Q.
(a) [5] Derive an expression for the (¢ = 0) price of an option with T-maturity payoff

(ID = (ST)Q]IST>K .

Here K is a constant and, as usual, I, is the indicator function of the event w, i.e. equals 1 if

w occurs and 0 if w otherwise.
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(b) /5] Derive an expression for the (¢ = 0) price of a forward starting option with 7-payoff

@
@zmin(ST—k SU, ASU) .
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6. Consider the modified CRR model of stock prices
Snat = S(n—1)At €XP {(u —10*)At + oV AL xn}

where x1, 2o, ... are iid r.v. with P(z; = +1) = p and P(x; = —1) = 1 — p. Interest rates are

constant so that the money-market account M, evolves as
Myas = Mp—1)a exp{rAt}.

(a) [4] Prove that, in this model, under the risk-neutral measure @Q, the up-branching probabilities
as At | 0 are

q:%{l%—r_'u\/ﬁ}jLo(\/Kt).
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Recall that o(v/At) is a term which goes to zero faster than v At.

Rr —
6_rn£ |E ). gn %t—x

Sw-nae =
(-t DAt +oJay 6Q¢+{‘r"‘-)l.\t _ «Jat
Ak .
e = cl @ + L 1\
AL (c—-$ed bt - oot
= e - e
(-t At + oAt (-4t - o rt
- €
(F—act 3ot At e
- e _ e
@rm - e o JBt
Qi (r- st £ealy o (1= s AL 4 TTAE) +o RO
(Vs oax + fo2st) - (- e JKt tFoAd) v (8D
: Zz

cJht + (r-40At +olad)

Z o Jat v o (s

’J—(l* r'“ﬂ)«»o&ﬂﬁ)

-

15



(b) /6] Prove that in the limit as At | 0, the joint distribution of the asset price at two points in
time, 17 and T, with T5 > T}, can be written as follows
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