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Introduction

Aim is to learn about
I Algorithmic Trading (AT): The use of computer algorithms

that make trading decisions, submit orders, and manage those
orders after submission.

I For example, the SEC reports that in the NYSE between 2005
and 2009: consolidated average daily share volume increased
181%; average speed of execution for small, immediately
executable (marketable) orders shrunk from 10.1 to 0.7
seconds; consolidated average daily trades increased 662%;
and consolidated average trade size decreased from 724 to 268
shares, SEC (2010).

I We will learn about
I VWAP and TWAP
I Optimal liquidation
I Pairs trading
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Introduction

I Why AT? One example
I Institutional or large players need to trade (buy and sell) large

amounts of securities. These quantities are too large for the
market to process without prices moving in the ‘wrong
direction’ (slippage).

I Thus, large orders are broken up in small ones and these are
traded over time (minutes, hours, days, weeks, or even
months) and across different venues.

I Deciding how to break up and execute a large order can mean
saving millions of dollars for large players
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Introduction

Aim is to learn about
I High Frequency (HF) Trading: refers to the subset of AT

trading strategies that are characterised by their reliance on speed
differences relative to other traders to make profits based on
short-term predictions and also by the objective to hold essentially
no inventories for more than a very short period of time.

I We will learn about

I Market making

I Momentum and short-term-alpha strategies

I Risk metrics for HFT
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Exchanges
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Exchanges

An exchange is a ‘place’ where ‘people’ meet to buy/sell securities:
shares, commodities, derivatives, etc

I Order Driven Market:
I All buyers and sellers display the prices and quantities at which

they wish to buy or sell a particular security, This is the
opposite of a quote driven market, which is one that only
displays bids and asks of designated market makers and
specialists for a specific security.

I Quote Driven Market:
I Designated market makers and specialists display bids and asks

for a specific security.
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Order Driven Market

I All participants can post limit buy or sell orders

I limit orders show an intention to buy or sell and must indicate
the amount of shares and price at which the agent is willing
to trade

I limit buy order with the highest price is known as the best bid

I limit sell order with the lowest price is known as the best offer

I The best bid/ask is also called the touch

I The difference between the best bid and offer is called the
spread
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Evolution of markets

I Old days brokerage model: Ring a broker, broker sends order
to the pit and after screaming and hand signalling the order is
executed.

I Electronic market: Ring or use internet to contact broker who
sends the order to the electronic exchange (no screaming)

I Direct Access Market: clients send orders directly to market

But to which market? ARCA-NYSE: electronic platform of NYSE,
BATS (Kansas), BEX: Boston Equity Exchange, CBSX (CBOE Stock
Exchange), CSXZ (Chicago Stock Exchange), DRCTEDGE (Direct Edge,
Jersey City, NJ), ISE (International Securities Exchange), ISLAND
(Acquired by Nasdaq in 2003), LAVA (Citigroup), NSX (National Stock
Exchange, Chicago) TRACKECN (Track ECN), ChiX, LSE (London
Stock Exchange), etc, etc
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Limit Order Book
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Limit Order Book

I Limit orders are accumulated in the limit order book (LOB)
until they find a counterparty for execution or are cancelled

I The counterparty is a market order which is an order to buy
or sell an amount of shares, regardless of the price, and is
immediately executed against the best prices
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Limit Order Book

Immediate Execution Costs
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Limit Order Book

Impact dynamics throughout the day
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Limit Order Book

Trade Activity
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Limit Order Book

Trade Activity
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Limit Order Book

Trade Activity

0 2 4 6 8 10
25.3

25.35

25.4

25.45
MSFT 20110322 :  11:0:0.0 to 11:10:0.0

16 / 76



Limit Order Book

Trade Activity
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Limit Order Book

Trade Activity

0 2 4 6 8 10
25.24

25.26

25.28

25.3

25.32

25.34

25.36

25.38

25.4

25.42
MSFT 20110322 :  13:0:0.0 to 13:10:0.0

18 / 76



Limit Order Book

Trade Activity
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Limit Order Book

Trade Activity
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Limit Order Book

Trade Activity

0 2 4 6 8 10

25.25

25.3

25.35

25.4
MSFT 20110322 :  15:50:0.0 to 16:0:0.0

21 / 76



Order Imbalance
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Order Imbalance

I Order Imbalance ρ ∈ [0, 1]

ρt =
V b
t

V a
t + V b

t

I It is a good predictor of trade direction
(ORIT June 21, 2011)

ρ # Buy Orders # Sell Orders

All 756 ( 67% ) 396 ( 33 % )
> 0.5 568 ( 79% ) 155 ( 21% )
> 0.75 320 ( 84% ) 60 ( 16% )
< 0.5 168 ( 43% ) 225 ( 57% )
< 0.25 39 ( 25% ) 116 ( 75%)

23 / 76



Order Imbalance

A slice of imbalance for MSFT 10:00am to 10:10am on 22 Mar
2011
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Order Imbalance

Midprice change pre/post MO event with ρ ∈ [0, 0.1)
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Order Imbalance

Midprice change pre/post MO event with ρ ∈ [0.1, 0.2)
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Order Imbalance

Midprice change pre/post MO event with ρ ∈ [0.2, 0.3)
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Order Imbalance

Midprice change pre/post MO event with ρ ∈ [0.3, 0.4)
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Order Imbalance

Midprice change pre/post MO event with ρ ∈ [0.4, 0.5)
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Order Imbalance

Midprice change pre/post MO event with ρ ∈ [0.5, 0.6)
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Order Imbalance

Midprice change pre/post MO event with ρ ∈ [0.6, 0.7)
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Order Imbalance

Midprice change pre/post MO event with ρ ∈ [0.7, 0.8)
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Order Imbalance

Midprice change pre/post MO event with ρ ∈ [0.8, 0.9)
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Order Imbalance

Midprice change pre/post MO event with ρ ∈ [0.9, 1.0]
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Statistical Machine Learning Models
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Statistical Machine Learning

I Statistical machine learning models are quite varied
I Supervise learning (inputs and outputs known – i.e. data is

“labeled”)
I Support vector machines

I Gaussian random fields

I Restricted Boltzman Machines

I Unsupervise learning (only inputs known – no “labels”)
I Clustering (k-means, mixture models)

I Hidden Markov Models

I Blind signal separation (PCA, SVD, independent component
analysis)
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Restricted Boltzman Machines
I An RBM is a probabilistic model with a hidden and a visible

layer with connections only between layers:
Hidden layer h

Visible layer v Visible target layer y

I Joint distribution of observing a configuration is

p(y , v , h | θ) =
1

Z (θ)
e−E(y ,v ,h|θ)

where the “Energy” of the configuration is

E = −
R∑

r=1

K∑
k=1

vr ωrk hk −
C∑
i=1

K∑
k=1

yi βik hk −
R∑

r=1

br vr −
K∑

k=1

ck hk −
C∑
i=1

di yi
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Restricted Boltzman Machines

I Training of the model (i.e., learning ω, β, b, c and d)
I compute all binary states
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Restricted Boltzman Machines

The number of predictions using the given confidence cutoff
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Restricted Boltzman Machines

The % correct predictions using the given confidence cutoff
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Who are you trading with? Is she better
informed?
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Imagine that you are a market maker... (part I)

Glosten-Milgrom model

I An asset is worth either V or V with prob 1
2

I MM sets the bid and ask prices

I A trader arrives and buys OR sells the asset to the MM

I The trader is informed with probability α

I Informed traders know the asset outcome before trading

I Uniformed traders buy/sell with probability 1
2
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Imagine that you are a market maker... (part II)

Glosten-Milgrom model

I What are the rational prices that a risk-neutral MM sets?

I Naive answer is simply to set

ask = bid = E[ V ]

I The MM will then be adversely selected...

I When trading with uninformed trader... no losses on average.

I When they sell... they sometimes sell to an informed trader
who knows the price was going up

I When they buy... they sometimes buy from an informed trader
who knows the price was going down
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Imagine that you are a market maker... (part III)

Glosten-Milgrom model

I To account for the potential of being adversely selected, the
MM sets instead

ask =E[ V | MO is buy ]

bid =E[ V | MO is sell ]

I After some simple computations one finds

ask =E[ V ] +
α

2
(V − V )

bid =E[ V ]− α

2
(V − V )

I Therefore
spread = α (V − V )
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Optimal Liquidation
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Optimal Liquidation

I Imagine you have a large position in an asset to liquidate

I If you sell all at once, then your orders will walk the book
and receive you a large market impact

I If you sell slowly, then you have large uncertainty in the
price

I You need to tradeoff impact and uncertainty
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Optimal Liquidation

Several target prices are used in practice

I VWAP (volume weighted average price)
I The objective is to obtain the volume-weighted average price

(might be a self-fulfilling prophecy)

I Must predict the volume

I TWAP (time weighted average price)
I The objective is to obtain the time-weighted average price

I POV (percentage of volume)
I Use a constant participation rate, say β

I For example, if the agent still needs to purchase Q shares, the
algo computes the volume traded over a time window, say V ,
and then executes min(Q, βV )
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Optimal Liquidation
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Optimal Liquidation
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Optimal Liquidation

Almgren-Chriss framework minimizes arrival price slippage

I Trader sells at a rate of νt

I Without trading, fundamental price is a Brownian motion

I But trading permanently impacts prices

dSt = −b νt dt + σ dWt

I Also, trader does not receive St when purchasing, instead
there is a temporary impact and the trader receives

S∗t = St − a νt

per share
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Optimal Liquidation

Almgren-Chriss framework minimizes arrival price slippage

I Trader’s wealth X from liquidating shares is therefore

Xt =

∫ t

0
(Su − a νu) ν du

I The trader’s optimization problem is to maximize
expected profits but penalize inventories

sup
ν∈A

E
[

XT − φσ2

∫ T

0
q2
u du

]
where trader’s inventory remaining is

qt = Q −
∫ t

0
νu du
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Optimal Liquidation

Almgren-Chriss framework minimizes arrival price slippage

I This is a stochastic control problem

I In general solved via the dynamic programming principle
(DPP) leading to dynamic programming equations (DPEs)

I Basic ideas
I Introduce a time indexed collection of performance criteria

for an arbitrary strategy (not necessarily optimal)

H(ν)(t, x ,S , q) = Et,x,S,q

[
X

(ν)
T − φσ2

∫ T

t

(
q(ν)
u

)2

du

]
I Use iterated expectations to show that

H(ν)(t, x ,S , q) = Et,x,S,q

[
H(ν)(τ,Sντ , q

ν
τ )− φσ2

∫ τ

t

(
q(ν)
u

)2

du

]
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Optimal Liquidation

Almgren-Chriss framework minimizes arrival price slippage

I Choose the arbitrary strategy

νt =

{
νt , t ∈ [t, τ ] arbitrary

ν∗t . t ∈ (τ,T ] optimal

I Let H(t, S , q) denote the optimal strategy, then

H(ν)(t, x ,S , q) ≤ Et,x ,S ,q

[
H(τ,Sν

∗
τ , qντ )− φσ2

∫ τ

t

(
q

(ν)
u

)2
du

]
I Equality holds for the optimal strategy

H(t, x , S , q) = Et,x ,S ,q

[
H(τ,Sν

∗
τ , qν

∗
τ )− φσ2

∫ τ

t

(
q

(ν∗)
u

)2
du

]
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Optimal Liquidation

Almgren-Chriss framework minimizes arrival price slippage

I Write the above in infinitesimal form using Ito’s lemma to find

0 = ∂tH+
1
2σ

2∂SS

+ sup
ν

{
(S − a ν) ν ∂xH + (S − b ν) ∂SH − ν ∂qH

}
I optimal trading speed in feedback form is

ν∗ =
1

2 a ∂xH
(S∂x + b ∂S + ∂q)H
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Optimal Liquidation

Almgren-Chriss framework minimizes arrival price slippage

I Substitute back into the DPE to find a non-linear PDE for H

0 =

(
∂t +

1

2
σ2∂SS

)
H−φ q2 +

1

4a∂xH
[(S∂x + b∂S + ∂q) H]2

I An ansatz H = x + S q + h(t) q2 in fact reduces the problem
to a Riccati ODE

0 = ∂th − φ+ 1
4a(b − 2 h)2
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Optimal Liquidation

Almgren-Chriss framework minimizes arrival price slippage

I Substitute everything back, one then finds

ν∗ =
1

a
ht qt

It is deterministic function scaled by current remaining
inventory

I More explicitly, one can show that

qt =
sinh(γ(T − t)

sinh(γ T )

where γ =
√
φ/a
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Optimal Liquidation

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Q
ν
∗

time ( t )

 

 

φ = 0

φ = 0.01

φ = 0.1

φ = 1

57 / 76



Optimal Liquidation
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Optimal Acquisition

If there is a limit price, i.e., trader must acquire all shares prior to
an upper bound... see J. & Kinzebulatov (2013)
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Now optimal strategy is dependent on asset price
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Optimal Acquisition

If there is a limit price, i.e., trader must acquire all shares prior to
an upper bound... see J. & Kinzebulatov (2013)
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Market Making
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Market Making

I The market maker’s problem is to find prices at which to
post limit buy/sell order to profit from round-trip trades

I The benchmark models: Ho & Stoll (81), Avellanda &
Stoikov (08) J. & Cartea (12)

I Need to account for
I market order arrival rate

I Probability that you are filled at a given level

I midprice dynamics

62 / 76



Market Making

I Market orders. arrive at jump times of a Poisson process
M±t with intensity λ±

I Fill probabilities. MOs fill posted LOs with p = e−κ
±δ±
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I Midprice. The midprice is a drifted Brownian motion

dSt = µ dt + σ dWt .
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Market Making

I Other ingredients to solve MMs profit maximisation problem

I N±t – counting process for filled limit orders

Nt =

∫ t

0

∫ +∞

c±δ±s

µ±(dy , ds)

µ±(dy , ds) is a Poisson Random Measure with
mean-measure

ν±(dy , ds) = λ± A± e−A
± y dy ds

I Total market orders are given in terms of the random measure

M±t =

∫ t

0

∫ +∞

0

µ±(dy , ds)
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Market Making

A PRM µ with mean measure ν is a random measure on a
measurable space (E , E)

Set A

such that

I µ(A) is Poisson random variable, with mean ν(A), ∀ A ∈ E
I µ(A1), µ(A2), . . . are independent for countable disjoint

A1,A2, · · · ∈ E
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Market Making

I Other ingredients to solve MMs profit maximisation problem
I qt – agent’s inventory

qt = N−
t − N+

t

I Xt – agent’s cash process

dXt = (St + δ+
t ) dN+

t︸ ︷︷ ︸
gains from filled sells

− (St − δ−t ) dN−
t︸ ︷︷ ︸

costs from filled buys

I Choose δ± to maximise expected penalised wealth:

H(t, x , q, S) = sup
δ±t ∈A

E [XT + qT (ST − `(qT ))| Ft ]
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Market Making

I A DPP shows that H is the unique viscosity solution to

∂tH +
(
µ∂S + 1

2σ
2∂SS

)
H︸ ︷︷ ︸

mid-price Diffusion

+ sup
δ+

{
λ+ e−κ+δ+︸ ︷︷ ︸

prob. filled sell LO

(
H(t, x + (S + δ+), q − 1, S) − H(t, x , q, S)

)
︸ ︷︷ ︸

change due to filled sell LO

}

+ sup
δ−

{
λ− e−κ−δ−︸ ︷︷ ︸

prob. filled buy LO

(
H(t, x − (S − δ−), q + 1, S) − H(t, x , q,S)

)
︸ ︷︷ ︸

change due to filled buy LO

}
= 0 ,

s.t. H(T , x , q, S) = x + q(S − `(q)) .
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Optimal Sell Spreads – No Ambiguity
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Figure : Optimal sell spreads. Parameter values are κ± = 15, λ± = 2,
σ = 0.01, µ = 0, `(q) = αq, α = 0.01, q = −q = 3 and T = 10 seconds.
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Market Making

Sample inventory path...
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Market Making

Risk-Reward profile...
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Informed Trading
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Informed Trading

I Suppose an agent makes a prediction ŜT about ST

I E.g., IBM will go up within two hours by $2

I Naive strategy is to execute a market order to

I buy asset if ŜT > St + ∆/2

I sell asset if ŜT < St −∆/2

I How can one...

I incorporate prediction uncertainty?

I include both limit and market orders?
I learn from the realised dynamics of

I the asset midprice?
I other assets midprice?
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Informed Trading

I Asset midprice S is a randomised Brownian bridge (rBB)

St = S0 + σ βt,T +
t

T
D

βt,T − standard Brownian bridge representing “noise”

fluctuations in the LOB due to the action of traders

D − the random change in asset price

I The midprice history (Su)u≤t generates the filtration Ft

I cannot distinguish signal (D) from noise (βt,T )

I Borrows ideas from Brody, Hughston, Macrina (08) on
information based asset pricing

I But differs since in BHM: St generates filtration, but the asset
price Xt = E[D|Ft ] and is a martingale
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Informed Trading

I In algo trading problems, many model St as Brownian motion

I When D|F0 ∼ N (0, σ2T ), rBB reduces to Brownian motion

I This new approach allows the agent to include their future
views on the asset price directly in the assumed dynamics,
e.g.,

I Uninformed traders have prior D|F0 ∼ N (0, 1)

I Informed traders have prior D|F0 ∼ N (a, b2)

obtained from internal models – e.g. by using LOB shape,
order flow, statistical machine learning, etc...
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Informed Trading

A prediction of upward/downward movement within bands...
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Informed Trading

I All traders observe St and learn about D, e.g.,

I Uninformed traders have prior D|F0 ∼ N (0, 1)

I Informed traders have prior D|F0 ∼ N (a, b2)

obtained from internal models – e.g. by using LOB shape,
order flow, statistical machine learning, etc...

I The posterior probability conditional on Ft is given by

P(D ∈ D|St = s) =

∫
D exp

{
x s−s0
σ2(T−t)

− x2 t
2σ2T (T−t)

}
µD(dx)∫

exp
{

x s−s0
σ2(T−t)

− x2 t
2σ2T (T−t)

}
µD(dx)

I Go to slides from other talk...

76 / 76


	Introduction
	Exchanges
	Limit Order Book
	Order Imbalance
	Statistical Machine LearningModels
	Glosten-Milgrom Model
	Optimal Liquidation
	Market Making
	Informed Trading

