Hungry Mice

When laboratory mice (and maybe other animals) are fed a nutritionally adequate but near-starvation diet, they may live longer on average than mice that eat a normal amount of food. In this experiment, mice were randomly assigned to one of six experimental treatments. The dependent variable was how long they lived before dying of old age. The experimental treatments were:

NP: Mice in this group ate as much as they pleased of a non-purified, standard diet for laboratory mice.

N/N85: This group was fed normally both before and after weaning. (The slash distinguishes the two periods.) After weaning, the ration was controlled at 85 kcal/wk. This, rather than NP, serves as the control group because caloric intake is held reasonably constant.

N/R50: This group was fed a normal diet before weaning and a reduced-calorie diet of 50 kcal/wk after weaning.

R/R50: This group was fed a reduced-calorie diet of 50 kcal/wk both before and after weaning.

N/R50 lopro: This group was fed a normal diet before weaning, a restricted diet of 50 kcal/wk after weaning, and had dietary protein content decreased with advancing age.

N/R40: This group was fed normally before weaning and was given a severely reduced diet of 40 kcal/wk after weaning.

The investigators were not interested in every possible comparison between treatment means. They had *very* specific research questions.

NP	N/N85	N/R50	R/R50	N/R50 lopro	N/R40
μ_1	μ ₂	μ3	μ4	μ ₅	μ_6

Writing a contrast of the treatment means as

 $c = a_1 \mu_1 + a_2 \mu_2 + a_3 \mu_3 + a_4 \mu_4 + a_5 \mu_5 + a_6 \mu_6$

Give the coefficients of the contrast you would test to answer each of the following questions. In each case you will test the null hypothesis that the contrast equals zero.

1) Do control mice have the same average lifetimes as laboratory mice?

a ₁	a ₂	a ₃	a 4	a_5	a_6

2) Does reducing calorie intake from 85 to 50 kcal per week increase average life-span?

a	ı a	2 a ₃	a 4	a ₅	a_6

3) Is there an effect of pre-weaning diet restriction?

a_1	a_2	a_3	\mathbf{a}_4	a_5	\mathbf{a}_6

4) Does further restriction from 50 to 40 kcal per week further increase average life-span?

a ₁	a ₂	a ₃	\mathbf{a}_4	a_5	\mathbf{a}_6

5) Does reduction in protein, with the same calories, change average life length?

a_1	a_2	a_3	\mathbf{a}_4	a_5	\mathbf{a}_6

My Answers

NP	N/N85	N/R50	R/R50	N/R50 lopro	N/R40
μ_1	μ_2	μ_3	μ_4	μ_5	μ_6

Do control mice have the same average lifetimes as laboratory mice?

a_1	a_2	a ₃	a_4	a ₅	a ₆
1	-1	0	0	0	0

Does reducing calorie intake from 85 to 50 kcal per week increase average life-span?

a ₁	a ₂	a ₃	a ₄	a ₅	a ₆
0	1	-1	0	0	0

Is there an effect of pre-weaning diet restriction?

a ₁	a ₂	a ₃	a_4	a_5	a_6
0	0	1	-1	0	0

Does further restriction from 50 to 40 kcal per week further increase average life-span?

a ₁	a ₂	a ₃	a ₄	a ₅	a_6
0	0	1	0	0	-1

Does reduction in protein, with the same calories, change average life length?

\mathbf{a}_1	a_2	a ₃	a ₄	a ₅	a_6
0	0	0	1	-1	0

What's the most promising multiple comparison method? Why?

Data are in an Excel Spreadsheet

Most real data sets these days are Microsoft Excel spreadsheets. The data from this study come in a spreadsheet called StarvingMice.XLS. Reading the data from an Excel spreadsheet into SAS is easy with proc import. Otherwise, it's a nightmare.

○ ○ ○ StarvingMice.XLS □						
2				to to	>>	
New	/ Open Sa	we Print	Import	Copy Paste		
S	heets	Chart:		SmartArt G	raphics	
\diamond	A	В	Ċ	D	E	
1	LIFETIME	DIET				
2	35.5	NP				
3	35.4	NP				
4	34.9	NP				
5	34.8	NP				
6	33.8	NP				
7	33.5	NP				
8	32.6					
9	32.4					
10	31.8					
11	31.6					
12	31.5					
13	31.4					
14	31.4					
15	31.3					
16 17	30.8 30.7					
18	30.7					
19	30.5					
20	30.2					
21	30.2					
22	30.1					
22	20	ND				
			case	501 +		

```
/* hungrymice.sas */
options linesize=79 pagesize=500 noovp formdlim=' ';
title 'Calorie restriction and Longevity in Mice';
/* Read data directly from Excel spreadsheet */
proc import datafile="StarvingMice.XLS" out=mouse1 dbms=xls;
            getnames=yes;
/* Input data file is StarvingMice.XLS
   Output data set is called mouse1
   dbms=xls The input file is an Excel spreadsheet.
            Necessary to read an Excel spreadsheet directly under unix/linux
            Works in PC environment too except for Excel 4.0 spreadsheets
            The xlsx file type is not supported as of SAS Version 9.2
            If there are multiple sheets, use sheet="sheet1" or something.
   getnames=yes
                  Use column names as variable names
                                                                         */
/* proc print; */
proc freq;
     tables diet;
proc means;
     class diet;
     var lifetime;
data mouse2;
     set mousel; /* Now mouse2 is just mouse1, and we can
                    transform the data. */
     diet0 = diet;
     if diet = 'NP' then diet = 'Feed at Will';
        else if diet = 'lopro' then diet = 'N/R50 lopro';
     label lifetime = 'Life Length in Months';
/* By default, procedures use the most recent SAS data set. If you
   don't want this, use the data= option. */
proc freq;
     title2 'Check Re-labeling of Diet';
     tables diet * diet0 / norow nocol nopercent;
proc glm;
     class diet;
     model lifetime=diet / clparm; /* clparm gives CIs for contrasts down in
                                       the estimate statements. */
     means diet;
     /* Estimate (like Contrast) uses alphabetical order: Be careful!
   Feed at Will | N/N85 | N/R40 | N/R50 | N/R50 lopro | R/R50
        Positive values of contrast mean longer life with less food. */
     estimate 'Feed at Will vs. N/N85'
                                          diet -1 1 0 0 0 0;
     estimate 'N/N85 vs. N/R50'
                                                             0 0;
                                          diet 0 -1
                                                      0 1
     estimate 'N/R50 vs. R/R50'
                                          diet 0 0 0 -1 0 1;
     estimate 'N/R40 vs. N/R50'
                                                                0;
                                          diet 0 0 1 -1
                                                             0
     estimate 'N/R50 vs. N/R50 lopro'
                                          diet 0 0 0 -1
                                                            1
                                                               0;
```

Calorie restriction and Longevity in Mice

The FREQ Procedure

DIET

DIET	Frequency	Percent	Cumulative Frequency	Cumulative Percent
 N/N85 N/R40 N/R50	57 60 71	16.33 17.19 20.34	57 57 117 188	16.33 33.52 53.87
N/R50 NP R/R50 lopro	49 56 56	14.04 16.05 16.05	237 293 349	67.91 83.95 100.00

Calorie restriction and Longevity in Mice

The MEANS Procedure

Analysis Variable : LIFETIME LIFETIME

DIET	N Obs	N	Mean	Std Dev	Minimum	Maximum
n/n85	57	57	32.6912281	5.1252972	17.9000000	42.3000000
N/R40	60	60	45.1166667	6.7034058	19.6000000	54.6000000
N/R50	71	71	42.2971831	7.7681947	18.6000000	51.9000000
NP	49	49	27.4020408	6.1337010	6.4000000	35.5000000
R/R50	56	56	42.8857143	6.6831519	24.2000000	50.7000000
lopro	56	56	39.6857143	6.9916945	23.4000000	49.7000000

Compare Order

NP	N/N85	N/R50	R/R50	R/R50 lopro	N/R40
μ_1	μ_2	μ_3	μ4	μ_5	μ_6

2

Calorie restriction and Longevity in Mice 4 Check Re-labeling of Diet						
		Г	he GLM Proced	ıre		
		Clas	s Level Inform	nation		
Class	Levels	Value	s			
DIET	6	Feed	at Will N/N85	N/R40 N/R50 N/	R50 lopro 1	R/R50
Number of Observations Read349Number of Observations Used349						
	Calor		riction and Los Re-labeling o	ngevity in Mice of Diet		5
		Г	he GLM Proced	ire		
Dependent V	ariable: LIFE	LIWE I	ife Length in	Months		
Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model		5	12733.94181	2546.78836	57.10	<.0001
Error		343	15297.41532	44.59888		
Corrected T	otal	348	28031.35713			
	R-Square	Coeff	Var Root	MSE LIFETIM	E Mean	
	0.454275	17.21	.323 6.67	3239 38	.79713	
Source		DF	Type I SS	Mean Square	F Value	Pr > F
DIET		5	12733.94181	2546.78836	57.10	<.0001
Source		DF	Type III SS	Mean Square	F Value	Pr > F
DIET		5	12733.94181	2546.78836	57.10	<.0001

Calorie restriction and Longevity in Mice Check Re-labeling of Diet

The GLM Procedure

Level of		LIFET	IME
DIET	N	Mean	Std Dev
Feed at Will	49	27.4020408	6.13370096
N/N85	57	32.6912281	5.12529723
N/R40	60	45.1166667	6.70340583
N/R50	71	42.2971831	7.76819471
N/R50 lopro	56	39.6857143	6.99169452
R/R50	56	42.8857143	6.68315191

Page 8 of 16

Level of		LIFETIME			
DIET	Ν	Mean	Std Dev		
Feed at Will	49	27.4020408	6.13370096		
N/N85	57	32.6912281	5.12529723		
N/R40	60	45.1166667	6.70340583		
N/R50	71	42.2971831	7.76819471		
N/R50 lopro	56	39.6857143	6.99169452		
R/R50	56	42.8857143	6.68315191		

Calorie restriction and Longevity in Mice Check Re-labeling of Diet

The GLM Procedure

Dependent Variable: LIFETIME Life Length in Months						
Parameter	Estimate	Standa Err		Pr > t		
Feed at Will vs. N/N85 N/N85 vs. N/R50 N/R50 vs. R/R50 N/R40 vs. N/R50 N/R50 vs. N/R50 lopro	5.28918725 9.60595503 0.58853119 2.81948357 -2.61146881	1.193550 1.171096	48 8.09 07 0.49 86 2.41	<.0001 0.6223 0.0166		
Parameter		95% Confide	nce Limits			
Feed at Will N/N85 vs. N/R N/R50 vs. R/R N/R40 vs. N/R N/R50 vs. N/R	50 50 50	7.26989727 -1.75906755	2.93612992 5.12291900			

Rank-Based Non-parametric Tests

Wilcoxon scores are just ranks of the data: Lowest=1, Highest=n. Tests are based on observed versus expected sums of ranks in each group. Expected sums of ranks are based on the assumption (null hypothesis) that the experimental treatment has no effect, so the data have the same probability distribution within each group. The 2-sample version is called a Wilcoxon test, and the p-sample version is called a Kruskal-Wallis test, or a Kruskal-Wallis one-way analysis of variance by ranks.

```
/* hungrymice2.sas */
options linesize=79 pagesize=500 noovp formdlim=' ' nodate;
title 'Calorie restriction and Longevity in Mice: Nonparametric Analysis';
/* Read data directly from Excel spreadsheet */
proc import datafile="StarvingMice.XLS" out=mouse1 dbms=xls;
             getnames=yes;
data mouse2; set mouse1;
     if diet = 'NP' then diet = 'Feed at Will';
     else if diet = 'lopro' then diet = 'N/R50 lopro';
label lifetime = 'Life Length in Months';
proc npar1way Wilcoxon;
     title2 'Compare all 6 conditions';
     class diet;
     var lifetime;
/* Pairwise Comparisons */
proc npar1way Wilcoxon;
     title2 'Do control mice have the same average lifetimes';
     title3 'as laboratory mice?';
     where diet = 'Feed at Will' or diet = 'N/N85';
     class diet;
     var lifetime;
proc npar1way Wilcoxon;
     title2 'Does reducing calorie intake from 85 to 50 kcal per week';
     title3'increase average life span?';
     where diet = 'N/N85' or diet = 'N/R50';
     class diet;
     var lifetime;
proc npar1way Wilcoxon;
     title2 'Is there an effect of pre-weaning diet restriction?';
     where diet = 'N/R50' or diet = 'R/R50';
     class diet;
     var lifetime;
proc npar1way Wilcoxon;
     title2 'Does further restriction from 50 to 40 kcal per week further'; title3 'increase average life span?';
     where diet = 'N/R50' or diet = 'N/R40';
     class diet;
     var lifetime;
proc npar1way Wilcoxon;
     title2 'Does reduction in protein, with the same calories, change';
title3 'average life length?';
where diet = 'N/R50' or diet = 'N/R50 lopro';
     class diet;
     var lifetime;
```

Calorie restriction and Longevity in Mice: Nonparametric Analysis Compare all 6 conditions

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable LIFETIME Classified by Variable DIET

DIET	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score
Feed at Will	49	2566.00	8575.0	654.775948	52.367347
N/N85	57	5758.50	9975.0	696.727422	101.026316
N/R50 lopro	56	10078.50	9800.0	691.770239	179.973214
N/R50	71	15334.50	12425.0	758.727147	215.978873
R/R50	56	12396.00	9800.0	691.770239	221.357143
N/R40	60	14941.50	10500.0	711.145714	249.025000

Average scores were used for ties.

Chi-Square	159.0128
DF	5
Pr > Chi-Square	<.0001

Calorie restriction and Longevity in Mice: Nonparametric Analysis Do control mice have the same average lifetimes as laboratory mice?

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable LIFETIME Classified by Variable DIET

DIET	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score
Feed at Will	49	1826.50	2621.50	157.795697	37.275510
N/N85	57	3844.50	3049.50	157.795697	67.447368

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 1826.5000

Normal Approximation	
Z	-5.0350
One-Sided Pr < Z	<.0001
Two-Sided Pr > $ Z $	<.0001

t Approximation One-Sided Pr < Z <.0001 Two-Sided Pr > |Z| <.0001

Z includes a continuity correction of 0.5.

Chi-Square	25.3831
DF -	1
Pr > Chi-Square	<.0001

Calorie restriction and Longevity in Mice: Nonparametric Analysis Does reducing calorie intake from 85 to 50 kcal per week increase average life span?

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable LIFETIME Classified by Variable DIET

DIET	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score
N/N85	57	2271.0	3676.50	208.570468	39.842105
N/R50	71	5985.0	4579.50	208.570468	84.295775

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 2271.0000

Normal Approximation	
Z	-6.7363
One-Sided Pr < Z	<.0001
Two-Sided Pr > $ Z $	<.0001

t Approximation	
One-Sided Pr < Z	<.0001
Two-Sided Pr > $ Z $	<.0001

Z includes a continuity correction of 0.5.

Chi-Square	45.4105
DF -	1
Pr > Chi-Square	<.0001

Calorie restriction and Longevity in Mice: Nonparametric Analysis Is there an effect of pre-weaning diet restriction?

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable LIFETIME Classified by Variable DIET

DIET	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score
N/R50	71	4512.50	4544.0	205.924023	63.556338
R/R50	56	3615.50	3584.0	205.924023	64.562500

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 3615.5000

Normal Approximation	
Z	0.1505
One-Sided Pr > Z	0.4402
Two-Sided Pr > $ Z $	0.8803

t Approximation One-Sided Pr > Z 0.4403Two-Sided Pr > |Z| 0.8806

Z includes a continuity correction of 0.5.

Chi-Square	0.0234
DF	1
Pr > Chi-Square	0.8784

Calorie restriction and Longevity in Mice: Nonparametric Analysis Does further restriction from 50 to 40 kcal per week further increase average life span?

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable LIFETIME Classified by Variable DIET

DIET	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score
N/R50	71	4238.50	4686.0	216.448595	59.697183
N/R40	60	4407.50	3960.0	216.448595	73.458333

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 4407.5000

Normal Approximation	
Z	2.0652
One-Sided Pr > Z	0.0195
Two-Sided Pr > $ Z $	0.0389
+ Approximation	

t Approximati	on	
One-Sided Pr	> Z	0.0204
Two-Sided Pr	> Z	0.0409

Z includes a continuity correction of 0.5.

Chi-Square	4.2744
DF _	1
Pr > Chi-Square	0.0387

Calorie restriction and Longevity in Mice: Nonparametric Analysis Does reduction in protein, with the same calories, change average life length?

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable LIFETIME Classified by Variable DIET

DIET	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score
N/R50 lopro	56	3073.0	3584.0	205.926135	54.875000
N/R50	71	5055.0	4544.0	205.926135	71.197183

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 3073.0000

Normal Approximation Z One-Sided Pr < Z Two-Sided Pr > Z	-2.4790 0.0066 0.0132
t Approximation One-Sided Pr < Z Two-Sided Pr > Z	0.0072 0.0145

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square 6.1577 DF 1 Pr > Chi-Square 0.0131

Compare Parametric and Non-parametric results

Overall Test	F = 57.10		χ^2 = 159.0128	
	t	р	Z	р
Feed at Will vs. N/N85 N/N85 vs. N/R50 N/R50 vs. R/R50 N/R40 vs. N/R50 N/R50 vs. N/R50 lopro	4.07 8.09 0.49 2.41 -2.19	<.0001 <.0001 0.6223 0.0166 0.0293	5.0350 6.7363 0.1505 2.0652 -2.4790	<.0001 <.0001 0.8803 0.0389 0.0145

Note: The signs of some Z statistics were changed manually.